TY - CONF A1 - McMahon, Dino Peter A1 - Esparza, M. A1 - Davis, H. A1 - Margy, A. T1 - Infection stage and pathogen life cycle determine collective termite behaviour N2 - Social insects nesting in soil environments are in constant contact with entomopathogens and have evolved disease resistance mechanisms within a colony to prevent the occurrence and spread of infectious diseases. Among these mechanisms: mutual grooming reduces the cuticular load of pathogens, and burial of cadavers and cannibalism can prevent pathogens from replicating within the group. We explored how the rate and type of collective behavioural response is determined by stepwise infection dynamics operating at the level of the individual. Specifically, we infected the eastern subterranean termite Reticulitermes flavipes with different types of infectious particle and infection route of the entomopathogenic fungus Metarhizium anisopliae and recorded behavioural responses of nestmates to individuals at different times during the progression of infections. As expected, termites groomed conidia-exposed individuals significantly more than controls. Interestingly, grooming was significantly elevated after fungal germination than before, suggesting that pathogen growth cues act as strong stimulators of allogrooming. Conidia-exposed termites were cannibalized, but only after they became visibly ill. By contrast, termites did not groom blastospore-injected individuals more than controls at any time-point following infection. Instead, we found that blastospore-injected individuals were continually cannibalized at a low-level following injection with either viable or heat-killed blastospores, with a marked increase in cannibalism after termites injected with viable blastospores became visibly ill and were close to death. Together, these findings point to the importance of host condition as a cue for social hygienic behavior, and that the host itself appears to emit essential sickness cues that act as targets for its own sacrifice. This demonstrates that termites have independently evolved to both identify and destructively respond to sickness. T2 - VI Central European Meeting of the IUSSI 2019 CY - Wien, Austria DA - 19.03.2019 KW - Termite KW - Evolution KW - Social immunity PY - 2019 AN - OPUS4-49643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - The termites are a derived eusocial lineage of otherwise non-social cockroaches. Understanding the proximal and ultimate drivers of this major evolutionary transition represents an important goal in biology. One outstanding question concerns the evolution of termite immunity, which is thought to have undergone broad-sweeping adaptations in order to enhance group-level immune protection. To understand the evolutionary origins of termite immunity, we conducted qualitative and quantitative transcriptome analyses along a gradient of sociality. Firstly, we aimed to identify large-scale genetic shifts in immune traits linked to eusociality by comparing immune gene repertoires in solitary and subsocial cockroaches and across a range of eusocial termite lineages. Secondly, we compared the responses of a solitary cockroach, a subsocial wood-roach and different castes of a lower termite species to a non-specific immune challenge, in order to understand how sociality may have influenced the evolution of immune gene regulation. Firstly, we found that termites have a broadly representative repertoire of canonical immune genes as compared to gregarious cockroaches and subsocial wood-roaches. Secondly, with respect to immune challenge, the solitary cockroach and the subsocial wood-roach displayed a similarly comprehensive induced response, while the termite response was considerably dampened by comparison and strongly influenced by caste; with reproductives displaying a generally higher constitutive level of immune-gene expression compared to sterile castes. In summary we did not find termite eusociality to be associated with significant changes in immune gene diversity, but rather to be linked with significant modifications to the regulation of immunity following the origin of division of labour. T2 - Institute for Evolution and Biodiversity Lecture Series, Universität Münster CY - Münster, Germany DA - 20.02.2019 KW - Immunity KW - Evolution KW - Ecology KW - Termite KW - Molecular PY - 2019 AN - OPUS4-49644 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - G-BOP kick-off meeting proposal ideas Ecology and evolution of termite immunity N2 - Results suggest a reduction in immune gene repertoires in termites and possible complementary expression between termite castes. With comparative genomics we will investigate the evolution of gene families related to immunity, try to understand where reductions and expansions take place and relate these changes to shifts in sociality and ecology. The role of TEs in expansions and contractions of immune gene families will be investigated. For these analyses, we propose to generate high quality, highly contiguous genomes of species from different levels of sociality, covering all major termite families. With comparative transcriptomics we will investigate the expression of immune genes in different castes. Via network analyses we will identify pathways indicated in differential immunity between castes and between species of different sociality levels. We will investigate how these pathways have been rewired along the transitions to higher levels of sociality and how, intra-specifically, they change between castes. T2 - Rundgespräch zur Vorbereitung eines SPP G-BOP - Genomic Basis Of Phenotypic Innovations in Insect Evolution CY - Zoologisches Forschungsmuseum, Bonn, Germany DA - 16.05.2019 KW - Bioinformatics KW - Evolution KW - Termites PY - 2019 AN - OPUS4-49645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - The evolution of termite immunity N2 - A broad suite of immune adaptations have evolved in social insects which hold close parallels with the immune systems of multicellular individuals. However, comparatively little is known about the evolutionary origins of immunity in social insects. We tackle this by identifying immune genes from 18 cockroach and termite species, spanning a gradient of social lifestyles. Termites have undergone contractions of major immune gene families during the early origin of the group, particularly in antimicrobial effector and receptor proteins, followed by later re-expansions in some lineages. In a comparative gene expression analysis, we find that reproductive individuals of a termite invest more in innate immune regulation than other castes. When colonies encounter immune-challenged nestmates, gene expression responses are weak in reproductives but this pattern is reversed when colony members are immune-challenged individually, with reproductives eliciting a greater response to treatment than other castes. Finally, responses to immune challenge were more comprehensive in both subsocial and solitary cockroaches compared to termites, indicating a reduced overall ability to respond to infection in termites. Our study indicates that the emergence of termite sociality was associated with the evolution of a tapered yet caste-adapted immune system. T2 - 112th Annual Meeting of the German Zoological Society CY - Jena, Germany DA - 10.09.2019 KW - Social KW - E$volution KW - Termite KW - Immunity PY - 2019 AN - OPUS4-49646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Knabe, Nicole A1 - Voigt, Oliver A1 - Heeger, Felix A1 - Schumacher, Julia T1 - A Genetic Toolbox for Exploring the Life Style of the Rock-inhabiting Black Fungus Knufia petricola N2 - After their discovery on rock surfaces in cold and hot deserts, a polyphyletic group of ascomycetous black fungi was found to dominate a range of hostile environments – natural and man-made, from salterns to dishwashers, roofs and solar panels. Together with bacteria and algae they may establish sub-aerial biofilms and cause weathering of the surfaces they grow on. Their impressive survival abilities as well as their constitutive protective pigmentation and cluster-like microcolony organisation are similar in environmental isolates as well as in heat-tolerant opportunistic pathogens of animals and humans. The exact genetic properties that ensure their survival in extreme environments can be studied if some black fungi were amenable to genetic manipulations. We selected the rock-inhabiting fungus Knufia petricola (class Eurotiomycetes, order Chaetothyriales) that grows moderately in axenic culture and exhibits all the characteristics of black yeasts such as yeast-like cell growth, absence of reproductive structures and constitutive dihydroxynaphthalene (DHN) melanogenesis. For this environmental strain we developed protocols to efficiently generate and transform protoplasts resulting in stable homokaryotic transformants by targeting genes involved in pigment synthesis and expressing fluorescent reporter genes. Hence, endogenous and foreign genes can be expressed from episomal AMA1-containing plasmids and genome-integrated DNA constructs. Moderate rates of homologous recombination allow for both ectopic and targeted integrations. CRISPR-Cas9 was further validated as a strategy for obtaining selection marker-free mutants and silencing via RNA interference as an approach to study essential genes. Availability of this genetic toolbox and an annotated genome sequence is paving the way for studying interactions of K. petricola and other black yeasts with environmental stressors, material surfaces, soil matrices and phototrophic symbionts. T2 - VAAM symposium 'Molecular Biology of Fungi' CY - Göttingen, Germany DA - 19.09.2019 KW - Knufia petricola KW - Rock-inhabiting fungus KW - Genetics KW - Crispr-Cas9 PY - 2019 AN - OPUS4-49634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abdallah, Khaled A1 - Knabe, Nicole A1 - Breitenbach, Romy A1 - Dementyeva, Polina A1 - Voigt, Oliver A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Developing a genetic toolbox for Knufia petricola A95: a model for stress-tolerant and symbiose-competent rock-inhabiting fungi N2 - Black microcolonial fungi (MCF) are persistent inhabitants of rock surfaces in hostile desert environments. In these niches, MCF have evolved mineral-weathering and symbiotic capabilities as well as mechanisms to cope with multiple stresses such as solar irradiation, temperature extremes and low water activity. Due to their stress tolerance these ascomycetes are prominent in modern terrestrial ecosystems – like man-made material surfaces from roof to solar panels. MCF interactive capabilities support their facultative symbiotic relationships with cyanobacteria and ensure their rock-weathering geochemical activity. Using the rock-inhabiting fungus K. petricola A95 (Chaetothyriales), we developed transformation protocols and deleted genes responsible for production of the protective pigments melanins and carotenoids. To confirm that the mutant phenotypes were not due to hidden mutations, melanin synthesis was restored by complementing the mutants with the respective wild type genes. Strains of K. petricola carrying gene variants for fluorescent proteins EGFP and DsRed are available. We successfully labelled the cytoplasm, nuclei, peroxisomes and mitochondria. Targeted and ectopic integrations result in stable transformants suitable for further phenotypical characterization. As K. petricola is a non-pathogenic fungus with all characteristic features of MCF, including meristematic growth, melanized cell-walls, extracellular polymeric substances and extensive pigment production, our results will shed light on protective role of pigments during cell wall maturation and oxidative stress defence in rock-inhabiting MCF. Genes involved in environmental sensing or substrate and phototroph interactions are currently targeted. With the help of a mutant collection and fluorescently labelled K. petricola we will be able to investigate interactions of MCF with environmental stressors, mineral substrates, soil matrices and phototrophic symbionts. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Genetics KW - Melanin PY - 2019 AN - OPUS4-49635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Heeger, Felix A1 - Whitfield, Daniel A1 - Knabe, Nicole A1 - Nai, Corrado A1 - Schumacher, Julia A1 - Broughton, William A1 - Cuomo, C. A1 - de Souza, E. A1 - Lespinet, O. A1 - Mazzoni, C. A1 - Monaghan, M. A1 - Gorbushina, Anna T1 - Exploring the genome of the black yeast Knufia petricola N2 - Black yeasts form a polyphyletic group of Ascomycota that colonize bare surfaces like rocks, facades of buildings, and solar panels. Their protective adaptations enable an adequate response to fluctuating and diverse temperature, water and UV radiation stresses. Together with bacteria and algae they form sub-aerial biofilms (SAB) this way discoloring and weathering the surfaces they grow on. Strain A95 of Knufia petricola (Eurotiomycetes, Chaetothyriales) displays both typical yeast-like cell growth and constitutive dihydroxynaphthalene (DHN) melanogenesis. Along with the cyanobacterium Nostoc punctiforme as photobiont, it is already used in a model system for studying SAB formation and bio-weathering. Applying the recently developed tools for the generation of deletion mutants will allow to define gene functions and to identify genes critical for abiotic and biotic interactions. We present a chromosome-level genome assembly and annotation for K. petricola A95. The genome was assembled with MaSuRCA using a hybrid assembly approach of Illumina MiSeq and PacBio SMRT sequencing data. The resulting assembly consists of 17 contigs including the complete mitochondrial genome and five complete chromosomes. It shows indication of repeat-induced point mutations (RIP). Supported by RNA sequencing data from eight different growth conditions, 10,994 genes were predicted with the BRAKER2 pipeline. Functional annotation of genes was obtained from general functional annotation databases and the fungal specific database FungiPath. Comparative analyses are in progress to identify genes specific to black yeasts, that may facilitate the survival on exposed surfaces. In sum, the genome sequence of K. petricola is a valuable resource to gain insight into the protein inventory and functional pathways of extremotolerant and symbiosis-capable fungi. T2 - Fungal Genetics Conference 2019 CY - Asilomar, CA, USA DA - 12.03.2019 KW - Knufia petricola KW - Black fungus KW - Genome sequence PY - 2019 AN - OPUS4-49636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoregulation in Plant- & Rock-associated Black Fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from excess photosynthetic products. But to cope with sunlight-associated stresses it is important for fungi to accurately sense and respond to changes in light. To test the hypothesis that light is an environmental cue that Ascomycota use to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships, the photoreceptor (PR) distribution in species from different ecological niches was analysed. The genomes of black fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The filamentous foliar plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideo- and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and photoregulation are important for fungi that avoid loss of energy and nutrients through cooperation with phototrophs. T2 - Scientific Colloquium at the Department of Genetics, University of Seville CY - Seville, Spain DA - 24.10.2019 KW - Light sensing KW - Knufia petricola KW - Botrytis cinerea PY - 2019 AN - OPUS4-49637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Rock-EATING FUNGI - Genetic Dive into the Biology of the Microcolonial Black Fungus Knufia petricola N2 - Microcolonial black fungi are a group of ascomycetes that exhibit high stress tolerance, yeast‑like growth and constitutive melanin formation. They dominate a range of hostile natural and man‑made environments, from desert rocks and salterns to dishwashers, roofs and solar panels. Due to their slow growth and a lack of genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We chose to address this gap by genetically engineering the rock‑inhabiting fungus Knufia petricola (Eurotiomycetes, Chaetothyriales), a species that exhibits all characteristics of black fungi. The state‑of‑the‑art genetic toolkit, together with the annotated genome sequence of strain A95, firmly established K. petricola as a model for exploring microcolonial black fungi. T2 - VAAM-Jahrestagung 2021 CY - Online meeting DA - 18.03.2021 KW - Fungus KW - Genetics KW - Marble PY - 2021 AN - OPUS4-52496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - McMahon, Dino Peter T1 - Evolution, recombination and virulence of emerging bee viruses N2 - Bee populations have declined significantly in recent years and this is thought to be attributable at least in part to the (re-)emergence of viruses. These viruses are predominantly positive single stranded (+ss) RNA viruses belonging to the Picornavirales. Managed honeybees are often infested with the invasive mite, Varroa destructor, which vectors RNA viruses including Deformed wing virus (DWV, family Iflaviridae): a leading culprit of colony losses. Many bee viruses have been sequenced and structural features are now available for viruses such as DWV. DWV consists of at least 3 distinct genotypes, two of which have been shown to be differentially virulent in honeybees. Molecular studies have demonstrated that DWV has a mean evolutionary rate of 1.35 x 10-3 per site per year. For such viruses – in contrast to their eukaryotic hosts – ecological and evolutionary timescales significantly overlap. This rapid evolution allows RNA viruses to adapt quickly to novel host environments with recombination representing an additional key source of genetic variation. Interestingly, recombination between genotypes of DWV has recently been shown to be a common occurrence in honeybees. A challenge has been to develop bioinformatics tools that can accurately reconstruct viral haplotypes – including recombinants – from heterogenous high-throughput sequence data. The impact of blood-to-blood Varroa destructor transmission on virus evolution represents an important question in bee virus research. Due to the nature of the V. destructor life cycle, predictions can be made about the potential impact of the mite on virus virulence evolution. Specifically, the developing honeybee host pupa should remain alive until close to the completion of metamorphosis to provide sufficient time for successful mite reproduction, including offspring mating. For optimal transmission, any virus found in a mature and mated daughter mite will hold a significant selective advantage over a virus found in an immature or unmated daughter mite – placing a cost on virus virulence that impacts honeybee pupae before mites can mate. On the other side, viruses replicating too slowly and with delayed virulence effects will hold a selective handicap because fewer transmission units will be found in mated mites. I have hypothesized that the evolution of virus virulence shifted following the arrival of V. destructor, with viruses, including recombinants and/or specific viral genotypes being selected for a level of virulence in pupae (and likely also in adults) that maximises R0, which represents the basic reproductive number of the virus in the host population. R0 is defined by the number of subsequent infections caused by a single infection and it must be greater than 1 for an infection to spread in a population. It is enhanced by maximising the number of transmission units passed to uninfected susceptible vectors, and ultimately hosts (Figure 1). Honeybee viruses are also shared with sympatric wild bees and viral prevalence and sequence data indicate frequent virus transmission between managed and wild bee species. In addition to infecting the western honeybee (Apis mellifera), DWV can infect other Asian honeybee species such as Apis ceranae. Outside of honeybees, DWV has been found widely in bumblebees, including solitary bees and wasps and there is evidence that it can actively replicate in several Bombus and solitary bee species. Whether the arrival of the V. destructor mite in A. mellifera has driven viral emergence in non-Apis bees is a target of ongoing research. T2 - 2nd European Virus Bioinformatics Centre (EVBC) conference CY - Utrecht, Netherlands DA - 09.05.2018 KW - Virus KW - Virulence KW - Bees PY - 2018 AN - OPUS4-47155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -