TY - CONF A1 - Gerrits, Ruben A1 - Pokharel, R. A1 - Breitenbach, Romy A1 - Radnik, Jörg A1 - Wirth, R. A1 - Schuessler, J. A. A1 - Benning, L. G. A1 - von Blanckenburg, F. A1 - Gorbushina, Anna A1 - Feldmann, Ines T1 - Olivine weathering by the genetically amenable rock-inhabiting fungus Knufia petricola A95 N2 - In arid sun-exposed environments, rock-inhabiting fungi dominate microbial communities on rock surfaces. Fungi are known to enhance rock weathering, although the exact mechanisms are not completely understood. These natural processes can be simulated by reproducible experimental systems. Particularly attractive are genetically amenable rock-weathering fungi, where certain traits can be knocked-out to identify weathering-relevant functions. Here, we studied the effect of the rock-inhabiting fungus Knufia petricola A95 and its melanin-deficient mutant (ΔKppks) on the weathering of a Fe-bearing olivine. We examined the olivine dissolution kinetics and looked at the olivine-fungus interface. For the former we inoculated olivine powder with the fungus in batch and mixed flow reactors and analysed the medium solution by ICP-OES, for the latter biofilm-covered olivine sections from flow-through reactors were analysed by FIB-TEM. In general olivine dissolution was lower when olivine was incubated without fungi: the abiotic olivine dissolution rates were lowest and the surface of the abiotically reacted olivine sections showed no etching. Various chemical analyses show Fe (oxyhydr)oxide precipitation on top of the abiotically reacted olivine, indicating its role in inhibiting olivine dissolution. Both the wild type (WT) and ΔKppks solubilised and bound significant amounts of Fe released by olivine dissolution. Fe (oxyhydr)oxide precipitation was thus reduced, explaining the enhanced olivine dissolution in their presence. Particularly efficient at preventing Fe precipitation were attached WT cells: the inhibition of olivine dissolution almost completely disappeared. The attachment capacity of the WT is most likely caused by the production of WT-specific extracellular polymeric substances. Our presented experimental systems allowed the precipitation of Fe (oxyhydr)oxides and included a rock-inhabiting fungus and thus simulated weathering processes relevant to natural ecosystems. T2 - ISEB 2019 CY - Potsdam, Germany DA - 23.09.2019 KW - Olivine KW - Weathering KW - Fungus PY - 2019 AN - OPUS4-49585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Erdmann, Eileen A. A1 - Nitsche, Sarah A1 - Gerrits, Ruben A1 - Heeger, Felix A1 - Gorbushina, Anna T1 - Genetic engineering of black fungi: lessons learned from Knufia petricola N2 - The exponential rise in the number of fungal genomes sequenced by next-generation sequencing techniques makes it necessary to increase efforts to correctly annotate and assign gene functions. There are two possibilities to explore a genome and its gene functions. The hypothesis-based method proves the function of already existing gene/allele candidates by targeted mutagenesis - so called reverse genetics. The basis of forward genetics approaches is the random mutagenesis of the genome, followed by screening of obtained mutants for the phenotype of interest, and identification of the mutated genes in the respective mutants. This strategy is hypothesis-generating, means it is necessary to verify the relationship between the detected mutations and the observed phenotype by targeted mutagenesis of the identified gene. We developed a toolbox for editing the genome of the rock inhabitant Knufia petricola [Eurotiomycetes, Chaetothyriales] that allows the study of the phenotypic characteristics of black fungi such as the regulation of pigment synthesis, general stress responses, oligotrophy, and the unusual modes of cell division by advanced reverse and forward genetics approaches. The toolbox includes the annotated genome sequence of strain A95, efficient strategies for CRISPR/Cas9-based genome editing and live-cell imaging using genetically encoded fluorescent proteins, as well as protocols for -omics approaches and for simulation of mineral weathering. A forward genetics approach using transposon mutagenesis is currently developed for identifying essential genes. The established protocols and knowledge gained from K. petricola form a starting point for making other fungi from extreme environments accessible to genetic manipulation. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Fungus KW - Extremotolerance KW - Genetics KW - Model organism PY - 2023 AN - OPUS4-58424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Gorbushina, Anna T1 - Versatile DHN melanin – spotlight on its function in microcolonial black fungi N2 - Dihydroxynaphthalene (DHN) melanin is produced by diverse Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g., in melanized reproduction and survival structures of the foliar plant pathogen Botrytis cinerea (Schumacher 2016, Mol Microbiol). In contrast, a polyphyletic group of Ascomycetes (microcolonial fungi/ black yeasts) dwelling in hostile habitats such as bare rock surfaces in hot and cold deserts, exhibits constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. For studying the relevance of constitutive DHN melanogenesis for tolerance of abiotic and biotic stresses, adhesion to substrates and subsequent damage of colonized surfaces, the rock-inhabiting fungus Knufia petricola was chosen as gene functions in this fungus can be studied by CRISPR/Cas9-based genome editing. The putative melanogenic genes were identified in the genome of K. petricola, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Phenotypes of DHN-deficient mutants are studied. Here, we will discuss the role of the DHN melanin layer on the outer cell wall in tolerating UV irradiation. T2 - Annual conference 2023 of the Association for General and Applied Microbiology CY - Göttingen, Germany DA - 10.09.2023 KW - Pigment KW - UV radiation KW - Tolerance PY - 2023 AN - OPUS4-58425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Kunze, R. A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - In-vivo mutagenesis of the rock inhabitant Knufia petricola by a customized Ac/Ds transposon system N2 - Microcolonial black fungi ubiquitously inhabit sun-exposed natural and man-made surfaces of our planet. To promote genetic studies, CRISPR/Cas9-based genome editing was implemented in the rock-inhabiting fungus Knufia petricola (Eurotiomycetes/ Chaetothyriales). Now efficient targeted mutagenesis of K. petricola - as a representative of the polyphyletic group of black fungi - enables the elucidation of extremotolerance, oligotrophism, unusual types of cell division, mineral weathering and symbiotic interactions. Even more progress on assigning functions to yet unknown genes can be achieved by a forward genetics approach. We chose the two-component Activator/Dissociation (Ac/Ds) transposon system from maize for generating K. petricola insertional mutants by in-vivo mutagenesis. For the optimal use of this genetic tool, an inducible promoter i.e, from the metabolism-independent Tet-on system, was combined with the AcTPase-coding sequence enabling the regulatable transposition of the resistance cassette-containing Ds transposon. In total, six auxotrophic Ac/Ds starter strains containing the Ds transposon at different position of ade2, ura3 or ppt1 were generated. The cultivation of these strains with doxycycline for induction of TET::Ac and subsequent selection of cells on ADE/URA/LYS-lacking media resulted in prototrophic colonies (revertants) for most Ac/Ds strains. Amplicon sequencing of excision sites revealed characteristic footprint patterns, proving that the transposon jumped. For identifying unknown Ds re-insertions sites, the thermal asymmetric interlaced (TAIL)-PCR was successfully implemented. First identified Ds re-insertion sites suggest that the distribution pattern may depend on the excision site. Currently, transposition frequencies and genome-wide distribution of re-insertion sites are studied in different Ac/Ds starter strains to identify the best candidate for generating saturated mutant libraries. This transposon mutagenesis strategy is also interesting for studying other black fungi, because once the Ac and Ds components are integrated in the genome, the fungus ‘only’ needs to be cultivated for generating insertional mutants. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Black fungi KW - Genetics KW - Transposon KW - Mutagenesis PY - 2023 AN - OPUS4-58427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Voigt, Oliver A1 - Nitsche, Sarah A1 - Erdmann, Eileen A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - DHN melanin – synthesis, regulation, and functions in Knufia petricola N2 - Dihydroxynaphthalene (DHN) melanin is produced by diverse Ascomycetes via slightly differing biosynthetic routes. The polyketide synthases (PKS) release the heptaketide YWA1, the hexaketide AT4HN or the pentaketide T4HN. The first two products are deacetylated by ‘yellowish-green’ hydrolases to T4HN, and T4HN is further converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. DHN melanogenesis is often regulated in a spatial and temporal fashion resulting e.g., in melanized reproduction and survival structures of the foliar plant pathogen Botrytis cinerea (Schumacher 2016, Mol Microbiol). In contrast, microcolonial black fungi exhibit constitutive melanogenesis. Here, DHN melanin builds a protective layer around all vegetative cells thus contributing to the survival of diverse environmental stresses even without specialized reproduction structures. For studying the regulation and relevance of DHN melanogenesis for tolerance of abiotic and biotic stresses, adhesion to substrates and subsequent damage of colonized surfaces, the rock-inhabiting fungus Knufia petricola was chosen as gene functions in this fungus can be studied by CRISPR/Cas9-based genome editing. The putative melanogenic genes were identified in the genome of K. petricola, deleted to confirm their involvement in DHN melanogenesis and co-expressed in Saccharomyces cerevisiae for reconstruction of the synthesis pathway. Phenotypes of deletion mutants are studied for specifying the functions of DHN melanin in K. petricola. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubliana, Slovenia DA - 19.09.2023 KW - Pigment KW - Fungus KW - Heterologous expression PY - 2023 AN - OPUS4-58430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dehkohneh, Abolfazl A1 - Gerrits, Ruben A1 - Schumacher, Julia A1 - Kreft, J.-U. A1 - Gorbushina, Anna T1 - Fungal biofilms on materials: describing and modelling growth of the black fungus Knufia petricola N2 - Fungi that grow as biofilms are associated with clinical settings as well as various cases of material fouling and material damage. Black fungi as biofilm formers have been rarely studied so far. Their conspicuous dark pigmentation, EPS production, adhesion capabilities and adaptations to stresses allow black fungi to develop biofilms on materials under harsh conditions. For example, rock-inhabiting black fungi withstand sun irradiation and dehydration and are therefore ubiquitous on arid surfaces like solar panels and marble monuments. To understand and control their ability to colonise and deteriorate materials, one should assess and model black fungi’s growth patterns. But so far, no mathematical model has been developed to describe their growth. Knufia petricola A95, representing rock-inhabiting fungi from Chaetothyriales, is genetically amenable and can serve as a model for biofilm studies in black fungi. The primary objective of this project is to develop a growth model for K. petricola A95 which will enable to define and predict material colonisation of black fungi. Dedicated experimental work with K. petricola will allow the quantitative assessment of the impact of environmental conditions (e.g. pH, nutrients, etc.) on the growth behaviour at the biofilm and single cells level. Data which will be used to validate and develop an individual-based model (based on the iDynoMICS modelling platform) that explains how fungal biofilms form, colonise materials, and cause deterioration. Thus far, research has been conducted on the impact of different concentrations and sources of major elements (e.g. C, N, …), as well as trace elements (e.g. Cu, Mg, …), on the colony shape and biomass of Knufia petricola A95 biofilms. To study the behaviour of single cells, the length of the cell cycle in different growth media has been determined via the combined use of microfluidic devices and confocal microscopy. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2023 KW - Biofilm KW - Rock-inhabiting fungus KW - Mathematical modelling PY - 2023 AN - OPUS4-58438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Abdallah, Khaled T1 - Black fungi on technosphere surfaces: new niches for roof-inhabiting cousins N2 - Human-made systems, also called “build environment” or “technosphere”, sustain human comfort as well as our industrial activities. These systems have become particularly widespread since the Industrial Revolution, i.e., since the 17th century. At the same time, these technical systems – buildings, monuments, energy production, transformation and transmission, water purification and supply systems - serve as new habitats for living organisms. Life is ubiquitously present on our planet since a very long time: the Earth is 4.54 billion years old and microbial communities have played a key role on our planet for 3.7 billion years. Once human-made system appeared, microorganisms became an integral part of all types of technosphere infrastructure as well. Here we will illustrate biosphere-technosphere interactions using a specific example of the black fungi and their impact on the efficiency of solar (photovoltaic) panels. This expanding renewable infrastructure for electricity generation is growing on all continents - and create a specific, arid habitat for stress-tolerant black fungi. Black fungi were once discovered in hot and cold natural deserts – and now belong to the persistent colonisers of human-made deserts of solar parks. This new niche is evolving an impressive biodiversity. So far more than 60 isolates of black fungi belonging to Arthoniomycetes, Eurotiomycetes and Dothideomycetes were obtained from solar panels in Europe and Americas. Here we will present the analysis of this emerging anthropogenic biodiversity. Opportunities for future research in the field include quantification of the microbial load on technosphere surfaces – along with characterisation of the corresponding microbial diversity. The strategy of precise measurement and characterisation will enable us to reliably determine the beneficial and harmful functions that living microorganisms play in the functioning of energy-generating systems – and technosphere in general. T2 - IUBMB Focused Meeting on Extremophilic Fungi (FUN-EX) CY - Ljubljana, Slovenia DA - 19.09.2923 KW - Biosphere-technosphere interaction KW - Microbial communities KW - Solar parks PY - 2023 AN - OPUS4-58451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Brandhorst, Antonia A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - DHN melanin synthesis in the rock inhabitant Knufia petricola N2 - DHN (1,8-dihydroxynaphthalene) melanin is produced by Ascomycetes via slightly differing synthetic routes. Polyketide synthases release YWA1, AT4HN or T4HN. YWA1 and AT4HN are deacetylated by ‘yellowish-green’ hydrolases, and T4HN is converted by a core set of enzymes to DHN. Final polymerization steps are accomplished by multicopper oxidases. The melanogenic genes are tightly, partially or not clustered in the genomes, and are often regulated in a spatial and/or temporal fashion. By contrast, microcolonial fungi/black yeasts – a polyphyletic group of Ascomycetes dwelling in hostile habitats such as bare rock surfaces – feature constitutive DHN melanogenesis. Here, we report on the DHN melanogenic genes of Knufia petricola (Eurotiomycetes/Chaetothyriales). T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - DHN melanin KW - Fungus KW - Biosynthesis PY - 2023 AN - OPUS4-57143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Kunze, R. A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - A random mutagenesis approach to elucidate the biology of extremotolerant black fungi N2 - Microcolonial black fungi ubiquitously inhabit sun-exposed natural and man-made surfaces of our planet. To promote genetic studies, which are hindered by slow growth, lack of sexual cycles and transformation difficulties, CRISPR/Cas9-based genetic tools were implemented (Erdmann et al. 2022, Front Fungal Biol). Now efficient targeted mutagenesis of the rock inhabitant Knufia petricola (Eurotiomycetes/Chaetothyriales) - as a representative of the polyphyletic group of black fungi - enables the elucidation of extremotolerance, oligotrophism, unusual types of cell division, mineral weathering and symbiotic interactions. Still more progress on assigning functions to yet unknown genes can be expected if a forward genetics approach is available. We chose the two-component Activator/ Dissociation (Ac/Ds) transposon system from maize for generating a collection of insertional mutants by in-vivo mutagenesis of K. petricola. For the optimal use of this genetic tool, an inducible promoter for the expression of the Ac transposase (AcTPase) and by this the regulatable transposition of the resistance cassette-containing Ds transposon is desired. However, endogenous promoters for nitrate assimilation and galactose catabolism - often used in fungi for regulatable gene expression - are not inducible by their substrates in K. petricola suggesting that the regulatory networks for nutrient acquisition differ significantly in oligotrophic fungi. Therefore, the metabolism-independent Tet-on system was combined with the AcTPase coding sequence and subsequently transformed into Ds-carrying K. petricola strains. In total, four auxotrophic Ac|Ds starter strains containing the Ds transposon at different position of ade2 or ura3 were generated. The cultivation of these strains with doxycycline for induction of TET::Ac and subsequent selection of cells on ADE/URA-lacking media resulted in prototrophic colonies (revertants) for some but not all Ac|Ds strains. Currently, the transposition events in the obtained revertants are studied to validate the procedure. First amplicon sequencing of excision sites revealed footprint patterns, proving the transposon jumped. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Rock-inhabiting fungi KW - Foward genetics KW - In-vivo mutagenesis PY - 2023 AN - OPUS4-57144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Catanzaro, Ilaria A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia A1 - Onofri, S. T1 - Understanding the role of DHN melanin in Cryomyces antarcticus N2 - Cryomyces antarcticus – a cryptoendolithic black fungus endemic to Antarctica – is taxonomically classified in phylum Ascomycota, class Dothideomycetes incertae sedis. C. antarcticus has shown high capability to survive extreme environmental conditions like those found in space (ionizing radiation, vacuum, microgravity), thus fueling fundamental astrobiological questions like “searching for life beyond Earth” (Onofri et al. 2020, Extremophiles Astrobiol Model). Its extraordinary resilience has been attributed to the presence of thick, highly melanized cell walls, which may contain both DHN and DOPA melanins (Pacelli et al. 2020, Appl Microbiol Biotechnol). To better understand the contribution of DHN melanin to the overall resilience of C. antarcticus, we initially adopted chemicals e.g., tricyclazole to inhibit the DHN melanin synthetic pathway; however, these studies gave inconclusive results. Eventually, we decided to generate melanin-deficient mutants by genetic engineering. Using the genetic toolkit developed for the black fungus Knufia petricola (Voigt et al. 2020, Sci Rep; Erdmann et al. 2022, Front Fungal Biol), we designed a strategy for mutating the key enzyme (polyketide synthase)-encoding gene capks1 by transient delivery of Cas9 and capks1-specific sgRNA from AMA-containing plasmids and PCR-generated donor DNA i.e., resistance cassettes flanked by ~75-bp-long sequences homologous to capks1. For this, the melanin-PKS encoding ortholog was identified in the C. antarcticus CBS 116301 genome (mycocosm.jgi.doe.gov) and used to design primers for re-sequencing of the capks1 locus in the strain CCFEE 515. Transformation of C. antarcticus is challenging because of its very slow growth; we expect that 4-6 months are needed from obtaining enough biomass for cell wall lysis until transferring putatively resistant transformants for genotyping. Important parameters were evaluated: protoplasts can be generated, and they survive the transformation procedure, and suitable concentrations of selective agents have been identified. Nowadays, we are waiting for the first C. antarcticus mutants considered to be deficient in DHN melanogenesis. T2 - 16th European Conference on Fungal Genetics CY - Innsbruck, Austria DA - 05.03.2023 KW - Cryptoendolithic black fungus KW - DHN melanin KW - Astrobiology PY - 2023 AN - OPUS4-57145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -