TY - CONF A1 - Schumacher, Julia T1 - Light-dependent development in Botrytis cinerea N2 - Sunlight is an important environmental factor is almost all ecosystems by being a source of energy, information, and stress. All organisms must protect themselves from the harmful effects of light such as UV radiation, ROS accumulation, heat, and desiccation. Finally, light qualities and quantities can be used for decision making, timing and as guide for directed growth when they are sensed and transduced into intracellular signals. Botrytis cinerea and other plant pathogens infecting the sun-exposed parts of the plant must cope with the high light conditions the host plant seeks. Further they experience an altered light spectrum (‘green gap’) when they colonize shaded parts of the plant; it is depleted for blue and red light that is absorbed by the plant chlorophyll and enriched for green and far-red light that is reflected or transmitted by the plant tissue. As these ambient light conditions trigger the shade avoidance response in the plant, the pathogens may trigger their own ‘shading response’ such as the upregulation of virulence determinants and inoculum production. B. cinerea maintains a highly sophisticated light signaling machinery that senses different light qualities to trigger a variety of responses, that are protection, morphogenesis, positive and negative tropisms, and entrainment. These characteristics render B. cinerea a valuable model to enlighten the role of light in parasitic fungus-plant interactions and beyond. The vegetative mycelium – the core of all infection and developmental programs – is not visibly pigmented and thus considered to be sensitive to biotic and abiotic stresses. However, the vegetative hyphae have a very limited half-life and are usually restricted to the invasive growth phase in which they are protected from light by the plant tissue. Fast colonization of host tissues and by this proper nutrient acquisition enables the rapid formation of long-lasting reproduction structures (melanized conidiophores with conidia, sclerotia) on the surfaces of rotted plant tissues. Depending on the light and temperature conditions, conidiation or sclerotial development is initiated. Taken together, B. cinerea uses light-regulated signaling networks to avoid light whenever possible; for example, by minimizing the half-life of sensitive cells that are hiding in plant tissues and by scheduling critical steps such as conidiogenesis, conidial germination and penetration of plant tissues for the night. T2 - BotrySclero2022 CY - Avignon, France DA - 13.06.2022 KW - Fungus KW - Light KW - Stress KW - Melanin PY - 2022 AN - OPUS4-55248 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Fungi in extreme habitats: Lessons from the microcolonial black fungus Knufia petricola N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. But to cope with sunlight-associated stresses [e.g. high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses] it is important for fungi to accurately sense and respond to changes in light. The genomes of black [dihydroxynaphthalene (DHN) melanin-containing] fungi from phyllosphere and exposed solid surfaces contain multiple photoreceptors (PRs). The plant pathogen Botrytis cinerea (Leotiomycetes) has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of PRs along with the same set of protective pigments. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for fungi that receive nutrients through cooperation with phototrophs. T2 - Gordon Research Conference "Cellular and Molecular Fungal Biology" CY - Holderness, NH, USA DA - 26.06.2022 KW - Light KW - Stress KW - Photoperception KW - Pigments PY - 2022 AN - OPUS4-55249 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schumacher, Julia ED - Scott, B. ED - Mesarich, C. T1 - Role of light in the life cycle of Botrytis cinerea T2 - Plant Relationships. The Mycota N2 - The fungus Botrytis cinerea (Botryotinia fuckeliana) infects more than 500 plant species and causes a wide range of symptoms: soft rots, accompanied by collapse and water-soaking of tissues followed by the appearance of gray masses of conidia on leaves and soft fruits (gray mold), and spots that may turn brown to full-scale soft rotting on flower petals (Botrytis blight). In general, B. cinerea is responsible for severe economic losses that are either due to the damage of growing plants in the field or the rot of harvested fruits, flowers, and vegetables during storage under cold and humid conditions. B. cinerea has adapted to the plant host and its environment by evolving strategies to use plant tissues for proliferation in terms of a necrotrophic lifestyle, and to survive biotic stresses (host responses) as well as abiotic factors of the host’s environment such as sunlight and concomitant stresses. B. cinerea maintains a complex regulatory network of light-sensitive proteins and signal transduction pathways to use light for coordinating stress responses, virulence, and reproduction. Different light-controlled reproduction cycles enable B. cinerea to live in moderate climate zones by infecting and propagating in summer and resting in winter when green host tissues are unavailable. KW - Gray mold fungus KW - Plant pathogen KW - Light KW - Photoreceptors KW - Development PY - 2023 DO - https://doi.org/10.1007/978-3-031-16503-0_14 VL - 5 SP - 329 EP - 346 PB - Springer, Cham AN - OPUS4-56724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerrits, Ruben T1 - Fungal biofilms are supported by EPS and protective pigments in their substrate attachment and desiccation tolerance N2 - Rock-inhabiting fungi are known to colonise air-exposed substrates like minerals, photovoltaic panels building facades and monuments, withstanding the various stresses these extreme habitats are known for. Here we show how both colonisation and stress resistance are linked to the properties of the fungal cell surface. By deleting genes involved in the synthesis of melanin and carotenoid pigments of the model rock-inhabiting fungus Knufia petricola via CRISPR-Cas and comparing the behaviour of the gene-deletion mutants with the wild type (WT), we studied the role of these genes in mineral colonisation and stress sensitivity. The extracellular polymeric substances (EPS) of biofilms of the WT and mutants were extracted, quantified and chemically characterised. We observed that the absence of melanin affected the quantity and composition of the produced EPS: melanin-deficient mutants synthesised more EPS containing fewer pullulan-related glycosidic linkages. Moreover, in mineral dissolution experiments, these mutants showed a lower ability to colonise the mineral olivine. We hypothesise that not melanin, but the pullulan-related linkages enabled the melanin-producing strains to attach more strongly to the mineral. Moreover, ICP-OES analysis of the aqueous mineral-derived solutes showed that biofilms of the K. petricola mutants which could attach were able to dissolve the olivine faster than those that could not. The same mutants were also characterised by their sensitivity to desiccation stress: only the mutant deficient in both melanin and carotenoid synthesis was more sensitive to desiccation compared to the WT, indicating that a combination of both pigments is critical to withstand desiccation. Overall, these results show the critical role of the cell surface in the specific capacities of rock-inhabiting fungi. T2 - Biofilms 10 CY - Leipzig, Germany DA - 09.05.2022 KW - Bio-weathering KW - Desiccation KW - Fungal biofilms PY - 2022 AN - OPUS4-56675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia A1 - Breitenbach, Romy A1 - Erdmann, Eileen A1 - Gerrits, Ruben A1 - Heeger, Felix A1 - Nitsche, Sarah A1 - Tonon, Chiara A1 - Voigt, Oliver A1 - Gorbushina, Anna T1 - Knufia petricola – a model for exploring the biology of black rock-inhabiting fungi N2 - Black fungi also called black yeasts, rock-inhabiting fungi or microcolonial fungi are a group of Ascomycetes [Eurotiomycetes, Arthoniomycetes and Dothideomycetes] that exhibit high stress tolerance, yeast‑like or meristematic growth, and constitutive 1,8-dihydroxynaphthalene (DHN) melanin formation. They dominate a range of hostile natural and man‑made environments – from desert rocks and salterns to dishwashers, roofs, and solar panels. Due to their slow growth and the lack of sexual cycles and genetic tools, the underlying mechanisms of black fungi’s phenotypic traits have remained largely unexplored. We consider the rock inhabitant K. petricola [Eurotiomycetes, Chaetothyriales] a suitable model for studying the phenotypic characteristics of black fungi. With K. petricola the regulation of pigment synthesis, general stress responses and the unusual modes of cell division can be dissected by advanced reverse and forward genetics approaches. The genome of K. petricola strain A95 was sequenced using a combination of short high quality Illumina reads and long PacBio reads. The final assembly consists of twelve contigs: five complete chromosomes and six contigs with one telomer each. Gene annotation supported by transcriptomics and proteomics data was manually curated. Recently, we developed a set of genetic tools to manipulate the genome for analyzing gene functions and studying the cell biology. This set includes CRISPR/Cas9-based genome editing and live-cell imaging using genetically encoded fluorescent proteins, as well as protocols for -omics approaches and for simulation of mineral weathering in the laboratory. Mutants defective in DHN melanogenesis, carotenogenesis or both processes are currently studied to elucidate the role of these protective pigments in tolerance of natural and man-made stresses, weathering of olivine, penetration of marble, and adhesion to surfaces. Further, the established protocols and knowledge gained from K. petricola form a starting point for making other extremotolerant black fungi accessible to genetic manipulation. T2 - 31st Fungal Genetics Conference CY - USA, CA, Pacific Grove DA - 15.03.2022 KW - Black fungi KW - Melanin KW - Genome editing PY - 2022 AN - OPUS4-54585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erdmann, Eileen A1 - Nitsche, Sarah A1 - Gorbushina, Anna A1 - Schumacher, Julia T1 - Tools for Knufia petricola: new techniques for CRISPR/Cas9-based genome editing N2 - Black microcolonial fungi represent a group of ascomycetes with similar adaptations for existing in natural and anthropogenically created extreme habitats. They exhibit slow yeast-like or meristematic growth, do not form specialized reproduction structures and accumulate the black pigment 1,8-dihydroxynaphthalene (DHN) in the multilayered cell walls. We chose the rock inhabitant Knufia petricola of the Chaetothyriales as a representative for developing methods for genetic manipulation, simulation of mineral weathering and study of symbiotic interactions. Here, we report on the expansion of the genetic toolkit by more efficient multiplex CRISPR/Cas9 using a plasmid-based system for expression of Cas9 and multiple sgRNAs and three additional resistance selection markers. The targeted integration of expression constructs by replacement of essential genes for pigment synthesis allows for an additional color screening of the transformants. The black-pink screening due to the elimination of pks1 (melanin) was applied for promoter studies using GFP fluorescence as reporter, while the black-white screening due to the concurrent elimination of pks1 (melanin) and phs1 (carotenoids) was used to identify transformants that contain the two expression constructs for co-localization or bimolecular fluorescence complementation (BiFC) studies. In addition, two intergenic regions (igr1, igr2) were identified in which expression constructs can be inserted without causing obvious phenotypes. Plasmids of the pNXR-XXX series (Schumacher, 2012) and new compatible entry plasmids were used for fast and easy generation of expression constructs and are suitable for use in other fungal systems as well. T2 - 31st Fungal Genetics Conference CY - USA, CA, Pacific Grove DA - 15.03.2022 KW - Microcolonial fungi KW - Genetic engineering KW - Fluorescent proteins PY - 2022 AN - OPUS4-54586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - von Laar, C. A1 - Baar, C. A1 - Plarre, Rüdiger A1 - McMahon, Dino Peter T1 - Genetic relationships of local infestations by Anobium punctatum, Xestobium rufovillosum and their associated predator Korynetes caeruleus from buildings in North-Eastern Germany T2 - Proceedings IRG Annual Meeting 2021 N2 - Wood-destroying pests such as Anobium punctatum and Xestobium rufovillosum cause damage to art and cultural objects as well as to buildings. Monitoring population dynamics of pest species as well as of their naturally occurring counterparts are an essential part in the development of biological control measures as alternatives to conventional wood protection. Therefore, both the dispersal and homogeneity of pest and beneficial insect populations across multiple sites and buildings were investigated in the present study using DNA barcoding. Specifically, beetles of Anobium punctatum (de Geer 1774) (Coleoptera, Ptinidae), Xestobium rufovillosum (de Geer, 1974) (Coloeptera, Ptinidae), and Korynetes caeruleus (de Geer 1775) (Coleoptera, Cleridae) were collected from buildings at four different sites in Mecklenburg-Western Pomerania, North-Eastern Germany. DNA analysis was performed using mitochondrial cytochrome c oxidase subunit I (COI). For A. punctatum, low base pair variability was found in the gene segment studied (4-5 SNPs) within one building (Greven) and between four spatially separated sites. Conversely, in X. rufovillosum, the sequences from two sites studied were homogeneous within a site but differed between locations by nine base pair positions (SNPs). The main result of this study is that the pests A. punctatum and X. rufovillosum showed a higher variability in the investigated gene segment than the natural counterpart K. caeruleus. T2 - IRG52 Webinar on Wood Protection CY - Online meeting DA - 01.11.21 KW - Anobium punctatum KW - Xestobium rufovillosum KW - Korynetes caeruleus KW - DNA barcode PY - 2021 SN - 2000-8953 VL - 21 SP - 1 EP - 11 PB - The International Research Group on Wood Protection CY - Stockholm, Sweden AN - OPUS4-54197 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abdallah, Khaled A1 - Stock, S. C. A1 - Heeger, Felix A1 - Koester, M. A1 - Nájera, F. A1 - Merino, C. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. A1 - Dippold, M. A. T1 - Nitrogen Gain and Loss Along an Ecosystem Sequence: From Semi-desert to Rainforest JF - Frontiers in Soil Science N2 - Plants and microorganisms, besides the climate, drive nitrogen (N) cycling in ecosystems. Our objective was to investigate N losses and N acquisition strategies along a unique ecosystem-sequence (ecosequence) ranging from arid shrubland through Mediterranean woodland to temperate rainforest. These ecosystems differ in mean annual precipitation, mean annual temperate, and vegetation cover, but developed on similar granitoid soil parent material, were addressed using a combination of molecular biology and soil biogeochemical tools. Soil N and carbon (C) contents, δ15N signatures, activities of N acquiring extracellular enzymes as well as the abundance of soil bacteria and fungi, and diazotrophs in bulk topsoil and rhizosphere were determined. Relative fungal abundance in the rhizosphere was higher under woodland and forest than under shrubland. This indicates toward plants' higher C investment into fungi in the Mediterranean and temperate rainforest sites than in the arid site. Fungi are likely to decompose lignified forest litter for efficient recycling of litter-derived N and further nutrients. Rhizosphere—a hotspot for the N fixation—was enriched in diazotrophs (factor 8 to 16 in comparison to bulk topsoil) emphasizing the general importance of root/microbe association in N cycle. These results show that the temperate rainforest is an N acquiring ecosystem, whereas N in the arid shrubland is strongly recycled. Simultaneously, the strongest 15N enrichment with decreasing N content with depth was detected in the Mediterranean woodland, indicating that N mineralization and loss is highest (and likely the fastest) in the woodland across the continental transect. Higher relative aminopeptidase activities in the woodland than in the forest enabled a fast N mineralization. Relative aminopeptidase activities were highest in the arid shrubland. The highest absolute chitinase activities were observed in the forest. This likely demonstrates that (a) plants and microorganisms in the arid shrubland invest largely into mobilization and reutilization of organically bound N by exoenzymes, and (b) that the ecosystem N nutrition shifts from a peptide-based N in the arid shrubland to a peptide- and chitin-based N nutrition in the temperate rainforest, where the high N demand is complemented by intensive N fixation in the rhizosphere. KW - Nitrogen KW - Rhizosphere KW - Microbial abundance KW - Natural abundance of 15N KW - Nitrogen fixation KW - Nitrogen uptake PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543708 DO - https://doi.org/10.3389/fsoil.2022.817641 SN - 2673-8619 VL - 2 SP - 1 EP - 14 PB - Frontiers Media CY - Lausanne AN - OPUS4-54370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schumacher, Julia A1 - Gorbushina, Anna T1 - Schwarze Pilze – Wüstenbesiedler finden neue Lebensräume JF - BIOspektrum N2 - Schwarze mikrokoloniale Pilze besiedeln zunehmend von Menschen geschaffene Habitate, wie schadstoffbelastete Böden, Statuen, Gebäudefassaden und Dächer. Sie verfärben und zersetzen die Oberflächen von anfälligen Materialien oder reduzieren die Lichtausbeute von Solaranlagen. Die Biologie dieser Pilze und ihre Relevanz für die Materialforschung stehen im Fokus unserer Studien an der Bundesanstalt für Materialforschung und -prüfung (BAM). Mit einer Kollektion schwarzer Pilze, die von Solaranlagen isoliert wurden, bringen wir klima- und materialrelevante Biodiversität in den Stammbaum des Lebens. Die Überlebensstrategien dieser Organismen versuchen wir mit molekularbiologischen und genetischen Untersuchungsansätzen zu entschlüsseln. KW - Pilze KW - Genetik KW - Diversität PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541037 DO - https://doi.org/10.1007/s12268-021-1646-9 VL - 27 IS - 6 SP - 665 EP - 666 PB - Springer AN - OPUS4-54103 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, Julia T1 - Photoperception in plant- and rock-associated black fungi N2 - Fungi that share light-flooded habitats with phototrophs may profit from their excess photosynthetic products. Sunlight-associated stresses are however multiple: high temperatures, UV radiation with associated DNA damage, accumulation of reactive oxygen species (ROS), desiccation and osmotic stresses. Ascomycota dominating light-flooded habitats accurately sense and respond to changes in light using it as a cue to coordinate growth, stress responses as well as to establish pathogenic or symbiotic relationships. Two species from two light-flooded habitats – phyllosphere and sun-exposed solid surfaces – were analysed for their photoreceptor distribution. In both habitats phototroph-associated and black [dihydroxynaphthalene (DHN) melanin-containing] fungi are prevalent. This diversity was sampled with the plant-associated fungus Botrytis cinerea (Leotiomycetes), while Knufia petricola (Eurotiomycetes) was included as a typical biofilm-former on sun-exposed solid surfaces e.g. rocks, building facades, roofs, and solar panels. The analysis has shown that genomes of black fungi contain more photoreceptors than animal pathogens and saprophytes such as Aspergillus nidulans and Neurospora crassa1,2. B. cinerea that causes the grey mould disease by infecting the above-ground parts of more than 200 dicots has a highly sophisticated photosensory and signalling system that helps to avoid light and to locate susceptible hosts1. Rock-inhabiting Dothideomycetes and Eurotiomycetes including Knufia petricola possess equal numbers of photoreceptors along with the same set of protective metabolites i.e. melanin, carotenoids and mycosporines2. This similarity between black fungi from plant and rock surfaces suggests that photoperception and -regulation are important for sun-stressed fungi that receive nutrients through cooperation with phototrophs. CRISPR/Cas9-based genetic tools for manipulating K. petricola were established3 and are currently used for elucidating the functions of the different photoreceptors in the biology of rock-inhabiting fungi. This work was supported by the grant SCHU 2833/4-1 from the German Research Foundation (DFG) and internal funds of the BAM. T2 - 19th Congress of the European Society for Photobiology CY - Online meeting DA - 30.08.2021 KW - Fungi KW - Light KW - Extreme environments PY - 2021 AN - OPUS4-53191 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -