TY - JOUR A1 - Ketelsen, T. A1 - Wintermann, Carsten A1 - Melzer, C. A1 - Dietz, Georg A1 - Golle, U. A1 - Hahn, Oliver ED - Cole, M. ED - Dogramaci, B. ED - Lehmann, A.-S. ED - Sölch, B. ED - Wedekind, G. T1 - Connoisseurship and the Investigation of Materiality: Four “Rembrandt” Drawings in Weimar N2 - The aim of this paper is to present the productive interplay of connoisseurship and material analysis when dealing with drawings by Rembrandt – or previously attributed to him – in the collection of the Klassik Stiftung Weimar. This concerns the more precise determination of the drawing materials used and the reconstruction of the genesis of the drawings discussed. The material analysis allows us to decide whether and how Rembrandt’s inks can be used to determine authorship at all. The “material turn” in drawing studies thus intervenes in the discussion about authorship and opens up a broader production aesthetic perspective. No longer the “style” but rather the handeling becomes the decisive criterion for answering the question “Rembrandt, or not?” KW - Archaeometry KW - History of Art KW - Drawings KW - Rembrandt PY - 2021 SN - 0044-2992 VL - 84 IS - 4 SP - 483 EP - 518 PB - Deutscher Kunstverlag CY - Berlin/München AN - OPUS4-54342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bodechtel, S. A1 - Fuhrmann, A. A1 - Henning, A. A1 - Hahn, Oliver A1 - Rabin, Ira A1 - Kreische, W. A1 - Mäder, M. T1 - The Madonna with the Wash-Basin by Giulio Romano: A Multidisciplinary Study of the Painting’s History N2 - In an interdisciplinary collaboration, restorers, art historians, and scientists examined Guilio Romano’s The Madonna with the Wash-Basin of 1525 (Dresden State Art Collections). Insights into the painting technique along with art historical comparisons provided the opportunity for a better understanding of the painting’s genesis, in particular concerning an early reworking of the background by the artist. A recovery and reconstruction of the earlier version of the background is now possible. The discovery of zinc in distinct passages of the painting, as well as the grey-black pigment stibnite and glass particles used as a supplement in paint layers are of special interest. The technological investigation initiated a discussion about the circumstances of the revision, as well as the painting’s relation to Vasari’s Lives of Artists. KW - Giulio Romano KW - Holy Family KW - Basin KW - Reworking KW - Pentimenti KW - Portrayal of St Joseph KW - Sixteenth-century painting technique KW - Raphael school KW - Zinc KW - Antimony black (stibnite) KW - Vasari PY - 2022 DO - https://doi.org/10.1080/00393630.2022.2118302 VL - 2022 SP - 2 EP - 12 PB - Routledge Taylor & Francis Group CY - London, UK AN - OPUS4-55970 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, Simon A1 - Stege, H. A1 - Bretz, S. A1 - Hahn, Oliver ED - Tomasin, P. T1 - Disclosing glittering and sparkling effects in 20th-century reverse glass paintings: a study of metallic pigments and metal foils by means of in situ XRF and DRIFTS analysis N2 - This work presents a spectroscopic study of metallic pigments and metal foils used in reverse glass paintings that were created between 1912 and 1954. Metallic pigments induce a notable sparkling effect by means of the lateral incidence of light, whereas metal foils enhance the gloss and create a glittering effect when the painting is viewed in reflected light. Both effects were desired features especially in modern reverse paintings on glass and applied by artists in manifold creative manner. The paper gives an overview on the composition of the metalfoils and metal pigments in 14 works as determined in situ by X-ray spectrometry. Metal foils made of tin, brass, aluminium and silver were found in nine paintings. Gold imitating Cu-Zn pigments in different hues and with various Cu/Zn net intensity ratios were recorded for six paintings. Silvery pigments were identified mainly as Al pigments, but also as Cu-Zn-Ni alloy in one case. Other uncommon metallic pigments were detected in Arlequin vindicatif (c. 1925) by Floris Jespers, who used not only Cu-Zn and Al pigments, but also brownish Cu and Cu-Zn-Sn pigments. Non-invasive diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) was used to classify the binding media of the metallic pigments. Drying oil and natural resin probably mixed with oil were the most common binding media. A polysaccharide-based binder was found in the silvery Cu-Zn-Ni pigment of Ohne Titel (1954) by Marianne Uhlenhuth. KW - Archaeometry KW - Non-invasive analysis KW - Reverse paintings on glass PY - 2020 DO - https://doi.org/10.1016/j.culher.2020.11.008 SN - 1296-2074 VL - 48 SP - 196 EP - 204 PB - Elsevier Masson SAS CY - Amsterdam AN - OPUS4-54428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Hahn, Oliver A1 - Nehring, G. A1 - Freisitzer, R. A1 - Rabin, Ira T1 - A study on early european inks from St. Paul in lavanttal N2 - Typology of Inks Archives and museums around the world contain a vast number of manuscripts that were written in different inks: carbon inks, plant inks, iron-gall inks and mixed inks. Yet most archaeometric studies of manuscripts focus on the palette of pigments found in illuminated manuscripts whereas identification of the inks is still largely based on cultural-historical studies and visual inspections. One of the reasons of this disproportion in the studies can be explained by the properties of Raman spectroscopy, the technique of choice for identification of pigments. In contrast, this technique is only partially viable when dealing with organic colourants. Brown and Clark discuss these difficulties and the uncertainties of identification of iron-gall inks by Raman spectroscopy in their pioneering work on early medieval Anglo-Saxon manuscripts (K. Brown and R. Clark 2004). To facilitate instrumental analysis of inks, we have developed a protocol that starts with the identification of the inks type (Rabin et al. 2012) which doesn’t require complicated instrumentation and can be carried out by paleographers and codicologists. Three typological ink classes The black writing materials used in manuscript production in Antiquity und Middle Ages can be sorted in three typologically different ink classes: soot, plant and iron-gall. Soot ink is a fine dispersion of carbon pigments in a water soluble binding agent; plant-based ink consists of a solution of the tannins extracted from gallnuts or tree bark; iron-gall ink, is produced by mixing a soluble compound of iron (II) with gallic or tannic acid extracted from gallnuts or tree bark. Therefore, iron-gall ink presents a boundary case between solution and dispersion ink, in which a water-soluble preliminary stage oxidizes and evolves into a black, insoluble precipitate similar to the carbon pigments when the writing is exposed to air (Krekel 1999). The additional category of mixed inks, i.e. inks produced by addition of various metals to the soot inks or intentional mixing of iron-gall and soot - based inks started attracting scholarly attention only recently because their significance was established only a short while ago (Brun et al. 2016, Colini 2018, Nehring et al. 2021). We suggest that plant and mixed inks build a bridge from the carbon ink of Antiquity to the properly formulated iron-gall ink that became a standard black ink from the late Middle Ages to the 19th century when it gave way to modern inks. KW - Early european inks KW - Typology of Inks KW - Raman spectroscopy KW - Illuminated manuscripts KW - Archaeometric studies KW - Dispersion of carbon pigments PY - 2021 VL - 2021 SP - 56 EP - 75 PB - Gazette du livre médiéval CY - Paris AN - OPUS4-53844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Dietz, Georg A1 - Golle, U. A1 - Hahn, Oliver A1 - Ketelsen, T. A1 - Melzer, C. A1 - Wintermann, Carsten ED - Semff, M. T1 - Der fabelhafte Möglichmacher N2 - Der Beitrag würdigt die Verdienste Wolfgang Hollers bei der Etablierung fächerübergreifender Kooperationen zwischen Natur- und Geisteswissenschaften innerhalb der Zeichnungsforschung. KW - Archäometrie PY - 2022 SN - 978-3-947641-20-8 SP - 370 EP - 371 PB - Sieveking Verlag CY - München AN - OPUS4-54355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cohen, Zina A1 - Hahn, Oliver A1 - Rabin, Ira ED - Lattuati-Derieux, Agnès ED - Ribeyrol, Charlotte ED - Heginbotham, Arlen T1 - Black Carolingian inks under examination. Part 1: recipes and literature survey N2 - Black writing materials of different types and compositions have varied in use over time and different geographical regions. With this paper, we would like to contribute to their study by listing and reviewing recipes for black writing inks that were in circulation in the Carolingian Empire as well as by referencing the archaeometric analyses of the black inks used in the manuscripts. The studies presented here that involved the humanities and natural sciences provide new insights into how the scholars of the early Medieval Ages organized manuscripts. N2 - L’emploi des differents types de materiaux d’ecriture noirs et leurs compositions ont varie selon les epoques et les regions. Nous souhaitons ici contribuer a leur etude en repertoriant et en analysant les recettes d’encres de calligraphie noires en circulation dans l’Empire carolingien, ainsi qu’en procedant au referencement des analyses archeometriques des encres noires utilisees dans les manuscrits. Faisant appel aux sciences humaines et aux sciences naturelles, ces analyses apportent un eclairage nouveau sur la maniere dont les savants du haut Moyen Age organisaient les manuscrits. KW - Ink KW - Manuscript KW - Middle Ages KW - Recipes KW - Ink analyses KW - Carolingian PY - 2023 SN - 1254-7867 VL - 2023 IS - 55 SP - 90 EP - 95 PB - Centre de Recherche et de Restauration des Musées de France CY - Paris AN - OPUS4-58839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - Materialität von Musikhandschriften N2 - Die Bezeichnung „Tinte auf Papier“ bietet einen guten Einstieg in die Beschreibung der Materialität von Musikhandschriften; so haben sich zahlreiche Manuskripte erhalten, die mit Eisengallustinte auf Hadernpapier verfasst wurden. Das Papier besteht aus Fasern meist pflanzlicher Herkunft und wird durch Entwässerung einer Fasersuspension auf einem Sieb gebildet. Der Abdruck des Schöpfsiebes (die Papierstruktur) und ein vorhandenes Wasserzeichen bieten Anhaltspunkte für Provenienz und Datierung; daneben erlaubt die Analyse der Fasern, der Füllstoffe und der Leimung eine weitere Charakterisierung des Schriftträgers. Spätestens seit dem Mittelalter sind es Eisengallustinten, die das schwarze bis bräunliche Erscheinungsbild vieler Manuskripte auf Papier hervorrufen. Daneben lassen sich auch schwarze Rußtuschen oder farbige Auszeichnungstuschen nachweisen. Eisengallustinten werden durch Mischung einer eisenhaltigen Komponente mit Gerbstoffen hergestellt. Eisensulfat ist die am häufigsten genannte Eisen liefernde Zutat, daneben sind aber auch eisenhaltige Minerale, Nägel oder Rost denkbar. Die Gallussäure leitet sich ab aus den Galläpfeln, der krankhaften Veränderung einzelner Planzenteile verschiedener Eichenarten. Diese werden durch die Eiablage von Schlupfwespen hervorgerufen. Wie schon beim Papier ermöglicht der materialanalytische Nachweis charakteristischer Beimischungen oder Verunreinigungen innerhalb der Tinten die Beantwortung kulturhistorischer Fragestellungen – gemeint sind hier die Unterscheidung von Original und Korrektur oder die Sichtbarmachung späterer Ergänzungen. T2 - DFG-Rundgespraech zur Thermographie-Digitalisierung von Wasserzeichen in Musikhandschriften CY - Vienna, Austria DA - 23.10.2023 KW - Thermographie KW - Manuskripte KW - Wasserzeichen KW - Papier PY - 2023 AN - OPUS4-58798 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hahn, Oliver T1 - More than 25 years of ink analysis non-destructive testing of black writing materials N2 - Writing inks can be divided into soluble inks and dispersion inks. Soluble inks are based on plant or insect dyes forming a water solution. In the early European Middle Ages brown plant inks were usually produced from the blackthorn bark and wine. In contrast to these soluble brown inks, one of the oldest black writing materials was produced by mixing soot with gum arabic or animal glue dissolved in a small amount of water. From Pliny’s detailed account of the manufacture of various black carbon inks, we learn that producing pure soot of high quality was not an easy task in Antiquity. Iron gall inks are a borderline case between these two groups. They are produced from four basic ingredients: gallic acid, an iron-containing component, gum arabic as a binding media, and an aqueous medium such as wine, beer, or vinegar. By mixing gallic acid with soluble iron ions, a water-soluble ferrous gallate complex is formed. Exposure to oxygen leads to the formation of insoluble black ferric gallate pigment. Due to the variety of recipes and the natural origin of raw materials, there is a wide range of different components and impurities in writing inks. The Bundesanstalt für Materialforschung und -prüfung (BAM) together with the Centre for the Study of Manuscript Cultures in Hamburg (CSMC) has developed a protocol for ink analysis. It consists of a primary screening to determine the type of the ink and a subsequent in-depth analysis using several spectroscopic techniques (X-ray fluorescence analysis and vibrational spectroscopy). This contribution presents a qualitative and quantitative analysis of historical writing inks to characterize distinguishable inks in manuscripts, to determine the origin of manuscripts, and to assign unknown fragments to time and place. T2 - Beyond the reconstruction of an Urtext: “About the history of the early Qurʾānic text with regard to digital research tools” CY - Hesse, Germany DA - 07.07.2025 KW - Archaeometry KW - Non-destructive testing KW - Material analysis KW - Cultural heritage PY - 2025 AN - OPUS4-63906 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rabin, Ira A1 - Hahn, Oliver ED - Michel, C. ED - Friedrich, M. T1 - Detection of Fakes: The Merits and Limits of Non-Invasive Materials Analysis N2 - This paper addresses the sensitive issue of authenticating unprovenanced manuscripts of high monetary value to certify they are genuine. Over the last decade, the popularity of material studies of manuscripts using non-destructive testing (NDT) has increased enormously. These studies are held in especially high esteem in the case of suspicious writings due to the methodological rigour they are reputed to contribute to debate. We would like to stress that materials analysis alone cannot prove that an object is genuine. Unfortunately, audiences with a humanities background often tend to disregard the technical details and treat any published interpretation of instrumental analysis as an objective finding. Four examples are outlined here to illustrate what questionable contributions the natural sciences can make in describing manuscripts that have actually been forged. KW - Fakes KW - Non-invasive analysis KW - Limitations PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517202 SN - 978-3-11-071422-7 DO - https://doi.org/10.1515/9783110714333 SN - 2365-9696 VL - 20 SP - 281 EP - 290 PB - Walter de Gruyter GmbH CY - Berlin/Boston AN - OPUS4-51720 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Glaser, L. A1 - Shevchuk, I. A1 - Tolkiehn, M. A1 - Rabin, Ira A1 - Hahn, Oliver T1 - Improving Iron Gall Ink Palimpsest X-ray Fluorescence Element Mapping Analysis N2 - In the recent years multispectral imaging and X-ray Fluorescence element mapping have established themselves as a well working two step approach, when dealing with faded, erased or overwritten text in iron gall ink. During the last years a lot was done to improve the mere technical side of the techniques. Especially in the case of XRF mapping experiments the acquisition speed needed to be increased to allow mapping in the high resolution demanded by the challenges at hand. High resolution in moderate times can now be achieved, but with the price of proportionally increased amount of data that needs to be processed ideally in parallel to the measurement. The classical approach in XRF spectroscopy of elemental fitting of the spectral data does not even come close to fulfill any on the fly processing time constraints and will consume too much processing time in the foreseeable future. In this paper we will discuss the applicability of modern statistical data processing methods to XRF mapping of iron gall ink palimpsests. We will present a comparison of a new approach based on principle and independent component analysis (PCA and ICA) and the standard element mapping method. We will show that a reduction in processing time of almost two orders of magnitude can easily be achieved. T2 - Kongress Visual Heritage, CHNT 23 CY - Vienna, Austria DA - 15.11.2018 KW - Palimpsest KW - Iron-gall ink PY - 2020 SP - 1.1 EP - 1.9 AN - OPUS4-50243 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -