TY - JOUR A1 - Pokharel, R. A1 - Gerrits, Ruben A1 - Schuessler, J. A. A1 - Frings, P. J. A1 - Sobotka, R. A1 - Gorbushina, Anna A1 - von Blanckenburg, F. T1 - Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants N2 - In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiforme would thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants. KW - Cyanobacteria KW - Black fungi KW - Nostoc punctiforme KW - Knufia petricola KW - Magnesium PY - 2018 DO - https://doi.org/10.1021/acs.est.8b02238 SN - 1520-5851 SN - 0013-936X VL - 52 IS - 21 SP - 12216 EP - 12224 PB - ACS Publications AN - OPUS4-46832 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stock, S. C. A1 - Köster, M. A1 - Dippold, M. A. A1 - Nájera, F. A1 - Matus, F. A1 - Merino, C. A1 - Boy, J. A1 - Spielvogel, S. A1 - Gorbushina, Anna A1 - Kuzyakov, Y. T1 - Environmental drivers and stoichiometric constraints on enzyme activities in soils from rhizosphere to continental scale N2 - Microbial activity and functioning in soils are strongly limited by carbon (C) availability, of which a great proportion is released by living roots. Rhizodeposition and especially root exudates stimulate microbial activity and growth, and may shift the stoichiometric balance between C, N, and P. Thereby, exudates heighten microbial nutrient demand and acquisition of N and P from organic matter, leading to an increase in enzyme production. Aim of this study was to determine environmental controls of extracellular enzyme production, and hence on potential enzyme activities (Vmax) and substrate affinities (Km). To determine the controlling factors, we worked on four spatial scales from the microscale (i.e. rhizosphere) through the mesoscale (i.e. soil depth) and landscape scale (relief positions), and finally to the continental scale (1200 km transect within the Coastal Cordillera of Chile). Kinetics of seven hydrolyzing enzymes of the C, N, and P cycles (cellobiohydrolase, β‑glucosidase, β‑xylosidase, β‑N‑acetylglucosaminidase, leucine‑aminopeptidase, tyrosine‑aminopeptidase, and acid phosphatase) were related to soil texture, C and N contents, pH, and soil moisture via redundancy analysis (RDA). Potential activities of C, N, and P acquiring enzymes increased up to 7-times on the continental scale with rising humidity of sites and C and N contents, while substrate affinities simultaneously declined. On the landscape scale, neither Vmax nor Km of any enzyme differed between north and south slopes. From top- to subsoil (down to 120 cm depth) potential activities decreased (strongest of aminopeptidases under humid temperate conditions with up to 90%). Substrate affinities, however, increased with soil depth only for N and P acquiring enzymes. Affinities of cellobiohydrolase and β‑xylosidase, on the contrary, were 1.5- to 3-times higher in top- than in subsoil. Potential activities of N and P acquiring enzymes and β‑glucosidase increased form bulk to roots. Simultaneously, substrate affinities of N and P acquiring enzymes declined, whereas affinities of β‑glucosidase increased. These trends of activities and affinities in the rhizosphere were significant only for acid phosphatase. The RDA displayed a strong relation of potential activities of C and P acquiring enzymes and β‑N‑acetylglucosaminidase to C and N contents in soil as well as to the silt and clay contents. Aminopeptidase activity was mainly dependent on soil moisture and pH. We conclude that substrate availability for microorganisms mainly determined enzyme activity patterns on the continental scale by the humidity gradient. Patterns on the meso- and microscale are primarily controlled by nutrient limitation, which is induced by a shift of the stoichiometric balance due to input of easily available C by roots in the rhizosphere. KW - Extracellular enzymes KW - Stoichiometric homeostasis KW - Rhizosphere effect KW - Nutrient acquisition KW - Multi-scale study PY - 2018 DO - https://doi.org/10.1016/j.geoderma.2018.10.030 SN - 0016-7061 SN - 1872-6259 VL - 2019 IS - 337 SP - 973 EP - 982 PB - Elsevier B.V. AN - OPUS4-46829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -