TY - CONF A1 - Müller, Karsten A1 - Quercetti, Thomas A1 - Borch, Jörg-Peter T1 - Fire tests of RAM packages and containers under high thermal load N2 - Fire testing is an essential part of the hypothetical, cumulative mechanical and thermal test conditions that shall guarantee package safety in severe accidents. Within regulatory approval of transport or storage packages for radioactive material, specific thermal load tests are required in accordance to licensing conditions and international standards, respectively. The specifications of these thermal tests are based on test conditions with equivalent heat input to that of a hydrocarbon fuel fire. In the past, light heating oil, diesel or kerosene was mostly used as the fuel to generate the pool fire. In accordance with IAEA regulations for a fire in an accident, the temperature of 800 °C over a period of 30 minutes must be fulfilled. Furthermore, the delivery acceptance criteria for containers in nuclear waste repositories could reach for example average temperatures of 800 °C during a period of one hour in combination with defined requirements on activity release. BAM as a scientific and technical German federal government institute operates an open air Technical Safety Test Site for experimental investigations of dangerous good and its containment. In this areal a large fire test facility is under operation. Liquid Propane is utilized as fuel which is pumped via pipelines from a central storage tank to the fire exposed test facility areas. In the ring burner system, the gas is released from nozzles, and ignited by ignition burners. The paper includes examples of fire test performance with prototypes of a transport package and a storage container, respectively. In preparation of the thermal load, calorimeter tests have been performed using test specimens of appropriate size and behavior. For the fire test scenario is demonstrated that the IAEA thermal test requirements are fulfilled. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA Thermal Test KW - Thermal package testing KW - Transport package KW - Container for radioactive waste PY - 2019 AN - OPUS4-49092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Quercetti, Thomas A1 - Feldkamp, Martin A1 - Gleim, Tobias A1 - Musolff, Andre A1 - Werner, Jan A1 - Wille, Frank T1 - Enhancement of the bam fire test stand for testing a large transport package for radioactive materials N2 - Packages for the transport of spent nuclear fuel are designed to endure severe accidents. To obtain approval, these transport packages must adhere to the specification-based criteria of the international transport regulations SSR-6 of the International Atomic Energy Agency (IAEA). To ensure compliance with these requirements, specific mechanical and thermal tests need to be addressed with respect to the package type. Typically, SSR-6 prescribes a mechanical test followed by a thermal fire test as part of different testing scenarios. To approve the latter test of the sequence, BAM performs calorimeter tests in advance with so-called fire reference packages for characterizing the actual fire and its impact on the package to be tested. Packages are designed with different geometry sizes depending on their purpose. For previous tests, the implemented test setups in the fire test stand were sufficiently dimensioned and could cover all requirements in this respect. However, to cover additional testing needs in the future, BAM is expanding the test setup for the purpose of testing significantly larger packages. In previous test setups one ring burner for propane surrounding the test specimen was sufficient. The limiting size in this configuration was the design height of the transport package to be tested. According to the thermal test of the IAEA-Regulations [1], a 30-minute fully engulfing 800°C pool fire or an equally severe fire, e.g., propane gas fire, must be applied to the transport package. Possible adjustments such as nozzle cross-section and propane mass flow can be adjusted to a certain extent. Further modifications, to cover significantly higher and larger packages all-around with a fully engulfing fire, must be accomplished with an additional, second burner ring. Both burner rings had the same dimensions and were mounted on top of each other at different heights to create a significantly larger volume of fire that completely engulfs the package including its impact limiter. To meet the IAEA regulatory boundary conditions, the enhanced fire test stand with the second burner ring is tested with a large fire reference package and will then be used for real-size transport packages after all parameters are successfully met. This fire reference package represents the external geometry of a generic transport cask for radioactive material and is equipped with numerous temperature sensors to record temperature curves at the interior wall surfaces. T2 - RAMTrans 2024 CY - London, United Kingdom DA - 14.05.2024 KW - Fire testing KW - Full-scale KW - Transport package PY - 2024 AN - OPUS4-60255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -