TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Übersicht über laufende Untersuchungen zur Langzeitalterung von Elastomerdichtungen JF - Gummi, Fasern, Kunststoffe - GAK N2 - Eine Aufgabe des Fachbereichs 3.4 Sicherheit von Lagerbehältern der Bundesanstalt für Materialforschung und -prüfung (BAM) ist es, die Sicherheit von Behältern zur Lagerung von radioaktivem Abfall mit vernachlässigbarer Wärmeentwicklung zu bewerten. Da solche Behälter vor der Entsorgung transportiert und gelagert werden, ist während dieser Zeit ein sicherer Einschluss des radioaktiven Inhalts von größter Bedeutung. Zur Abdichtung dieser Behälter sind Elastomer-O-Ringe weit verbreitet. Um für solche, wie auch für viele andere Anwendungen, eine Voraussage über die Lebensdauer dieser Komponenten treffen zu können, ist es unerlässlich zu verstehen, welchen Einfluss der durch Alterung hervorgerufene Abbau auf Dauer auf die Elastomerdichtungen hat. In einem Langzeittest wurden drei Kautschukarten (EPDM und FKM, die für die Anwendung relevant sind, und HNBR als Vergleich) über mehrere Jahre untersucht. Dabei wurden die Veränderungen der mechanischen Eigenschaften (z. B. Härte und Bruchdehnung) bei vier verschiedenen Alterungstemperaturen (75 °C, 100 °C, 125 °C und 150 °C) sowie das Dichtungsverhalten betrachtet. Um den Einfluss von Vernetzung und Kettenspaltung auf die beobachteten Alterungseffekte zu bestimmen, wurden Messungen zur kontinuierlichen und intermittierenden Druckspannungsrelaxation durchgeführt. Dadurch konnten Erkenntnisse über Kinetik und Mechanismus der Abbaureaktionen gewonnen werden. Zur Einschätzung des Dichtungsverhaltens wurden Durckverformungsrest und Leckagerate gemessen. Die Ergebnisse zeigen, dass die O-Ringe unter statischen Bedingungen auch dann dicht halten, wenn die Werte für Druckverformungsrest, Druckspannungsrelaxation und mechanische Eigenschaften schon auf einen fortgeschrittenen Alterungsabbau hindeuten. Aus diesem Grund wurde ein modifizierter Dichtigkeitsversuch mit einer geringen und schnellen teilweisen Entlastung der Dichtung entwickelt, mit dessen Hilfe sich ein Lebensdauerkriterium bestimmen lässt, das eine Sicherheitsspanne für thermische Schrumpfung und Vibrationen beinhaltet. KW - Alterung KW - O-ring KW - Elastomer Dichtung PY - 2020 SN - 0176-1625 VL - 73 IS - 07-08 SP - 326 EP - 332 PB - Gupta CY - Ratingen AN - OPUS4-51207 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Wolff, Dietmar A1 - Bevilacqua, A. A1 - Carlsen, B. A1 - Chiguer, M. A1 - González-Espartero, A. A1 - Grahn, P. A1 - Saegusa, T. A1 - Sampson, M. A1 - Seelev, I. A1 - Wasinger, K. A1 - Waters, M. ED - González-Espartero (IAEA), A. T1 - Storing spent fuel until transport to reprocessing or disposal T2 - IAEA NUCLEAR ENERGY SERIES No. NF-T-3.3 N2 - Spent fuel storage periods well beyond those originally foreseen are a reality. This publication offers several ideas and approaches that may be considered to address the increasingly longer storage times. The aim is to raise awareness, encourage dialogue and provide ideas on how to manage spent fuel. Key messages include the following: - Delays in reprocessing or disposal could result in spent fuel being stored for 100 years or longer. Safe, secure and effective storage of spent fuel manages fuel degradation while preserving future fuel cycle options. - Ageing management programmes apply engineering, operations and maintenance actions to ensure safety is maintained during storage, future handling and transport. - Site selection and facility and equipment design can significantly reduce the risks and costs of spent fuel storage over longer periods. - Spent fuel storage configurations can be selected to accommodate uncertain storage periods, to facilitate ageing management and to provide flexibility needed to accommodate the uncertainty of future end points, such as reprocessing or disposal. - By considering multiple licence renewals, regulatory frameworks can be designed to ensure safe storage until an acceptable end point is achieved. - Safety can be assured by maintaining shielding, containment, decay heat removal and criticality control. Navigating the complexity of societal beliefs and values, as well as political systems, has proven to be a greater challenge for the management of spent fuel than maintaining its safety and security or addressing the technical and economic aspects. - Sustainable spent fuel management requires policies and strategies to provide a clear, consistent and stable direction because they drive the need for spent fuel storage as well as the available options and timing for achieving an acceptable end point. Unless States address spent fuel reprocessing and disposal on a sufficient scale to accommodate their spent fuel discharges, then storage for longer and longer periods becomes the de facto end point — which is not considered to be consistent with the responsibility to protect human health and the environment. An effective, periodic licence renewal process can ensure effective ageing management and strong institutional control. Hence, spent fuel can be safely and securely stored for as long as it may be necessary until transport for reprocessing or disposal. However, the risks and costs of storing the growing inventory of spent fuel will continue to increase; and in the absence of an end point, it will eventually become a significant societal burden. KW - Storing spent fuel KW - Extended storing KW - Unknown storage duration PY - 2019 UR - https://www-pub.iaea.org/MTCD/publications/PDF/P1846_web.pdf SN - 978-92-0-100719-3 SN - 1995-7807 SP - 1 EP - 54 PB - IAEA Publishing Section CY - Wien, Austria AN - OPUS4-47693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Weber, Mike A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Simulation of compression set of epdm o-rings during aging T2 - Proceedings of the ASME 2022 Pressure Vessels & Piping Conference PVP2022 N2 - It is common practice in the application of finite element analysis to model compression set (CS) of elastomers during aging with two different material models according to the two-network theory of Tobolsky. The theory relies on the existence of two networks. The first one represents the original network after vulcanization and is sensitive to chain scission. The second network accounts for the formation of additional crosslinking during aging. Besides the use of user subroutines to describe the two-network model, an element overlay technique is also needed as the full set of both material behaviors did not exist for assignment to a single element. This element overlay technique is valuable for research and developmental purposes but makes extension to industrial usage quite challenging. Our goal is to simulate the CS of elastomers after long-term aging in a commercial finite element software with no need for extra subroutine codes or mesh superposition. Ethylene propylene diene (EPDM) O-rings were aged in a compressed state at 75 °C, 100 °C, 125 °C and 150 °C for up to 183 days. Investigations of the experimental test results were used to identify material models and their parameters to develop a finite element model to simulate CS. The model was implemented in the finite element software ABAQUS/Standard® with a sequential temperature-displacement coupling. Regarding the influence of temperature, the Arrhenius equation is adopted for the time-temperature relationship. The activation energy value that is required for the simulation is firstly determined from shifting the experimental CS results with the time-temperature superposition technique and plotting the shift factors in an Arrhenius diagram. The experiments were compared with the simulation results. Afterwards different activation energies were used in the simulation and discussed. A suitable choice of the activation energy value with regard to the reference temperature and the test temperature is presented. With the chosen activation energies, the match between numerical CS values after long-term aging and the experimental results was improved. T2 - ASME 2022 Pressure Vessels & Piping Conference CY - Las Vegas, USA DA - 17.07.2022 KW - Simulation KW - Compression set KW - EPDM KW - Aging PY - 2022 SP - 1 EP - 9 AN - OPUS4-57370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Simbruner, Kai A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Orellana Pérez, Teresa A1 - Völzke, Holger T1 - Research at BAM for evaluating long term safety of container systems and components T2 - Annual Meeting on Nuclear Technology N2 - Safety of long term containment and storage of radioactive waste is an essential issue, which is increasingly gaining international attention. Extending interim storage beyond initial license periods is one of the major challenges worldwide. BAM has been involved in all kinds of radioactive waste container safety evaluation for storage and transportation including their long term performance from the very beginning. Today, all work related to the safe management of radioactive waste is linked by the activity field “Nuclear Waste Management” within the Focus Area “Energy” at BAM and in conjunction with a research strategy and agenda. Most recently, the working group “Long Term Safety of Container Systems and Components” was established to launch and perform research projects related to safety issues concerning the extended interim storage of radioactive waste. For example, within our project LaMEP, we investigate ageing effects of metal and elastomer seals as well as polymeric neutron shielding materials, which are container components that fulfil major safety functions. The results of the experiments help to understand the long term behaviour of these components. Likewise, our project BRUZL started at BAM in 2018 with the aim of developing a fracture mechanics approach to understand and describe a potential brittle failure mechanism of fuel cladding during long-term interim storage. BAM also contributes to the GRS project “Development of methods and models and international exchange for safety evaluation in the frame of interim storage of radioactive waste”. Additionally, BAM is involved in several international research programmes dealing with extended interim storage, such as the European Joint Programme on Radioactive Waste Management (EURAD), the Extended Storage Collaboration Program (ESCP) and IAEA Coordinated Research Projects. The present contribution provides a comprehensive overview of BAM research activities contributing to national and international gap analyses and to filling knowledge gaps regarding the safe long term management of radioactive waste. T2 - Annual Meeting on Nuclear Technology 2019 CY - Berlin, Germany DA - 07.05.2019 KW - Radioactive Waste KW - Long-term safety PY - 2019 SN - 978-3-926956-95-8 SP - 1 EP - 5 AN - OPUS4-51486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar A1 - Albouy, P.-A. A1 - Häcker, Ralf A1 - Stock, Daniel T1 - Overview of ongoing research and future prospects on polyethylene neutron shielding materials at bam T2 - PATRAM22 N2 - The extension of the interim storage period of radioactive waste before disposal will cause additional challenges for the nuclear waste management in Germany, so that an extensive knowledge of the long-term performance of casks, including their components and inventories, will be required for future extended storage licenses. Ultra-high and high molecular weight polyethylenes ((U)HMW-PE) are used for neutron shielding purposes in casks for storage and transport of spent fuel and high-level waste due to their extremely high hydrogen content. During their service life of several decades as cask components, the PE materials are exposed to neutron and gamma radiation from the radioactive inventory of the casks, mechanical assembling stresses and temperature. All these combined effects affect the material properties of such components which in turn may be crucial for some possible accident scenarios. At the Bundesanstalt für Materialforschung und -prüfung (BAM), the effects of high temperature exposure in combination with subsequent or previous irradiation were investigated with a comprehensive aging program including thermal aging at 125 °C for different aging periods up to 5 years and irradiation with doses ranging from 50 to 600 kGy. This contribution provides an overview of the ongoing research related to the structural changes of (U)HMW-PE induced by gamma irradiation and high temperature exposure and focuses on current research perspectives at BAM with regard to the prediction of the dynamic behavior of the material during extended interim storage in case of an accident scenario. First results of the coupled effect of temperature, radiation and mechanical loading will be presented. The effect of microstructural changes induced by gamma irradiation and high temperature on the mechanical behavior of (U)HMW-PE will be assessed. T2 - PATRAM22 CY - Juan-Les-Pins, Antibes, France DA - 11.06.2023 KW - (U)HMWPE KW - Ageing KW - Irradiation KW - WAXD KW - SHPB PY - 2023 SP - 1 EP - 10 AN - OPUS4-57707 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Overview of ongoing long-term ageing investigations on elastomer seals JF - Rubber, fibres, plastics international - RFP N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) in Division 3.4 Safety of Storage Containers, one of our tasks is to evaluate the safety of containers designed for disposal of low and intermediate radioactive waste. As such containers might be transported before and stored until disposal, safe enclosure of the radioactive inventory is important for this time span. Elastomer O-rings are widely used as barrier seals in these containers. Thus, as for many other applications, an understanding of the practical effects of ageing degradation on elastomer seals during long-term exposure is mandatory for predicting the lifetime of such components. According to a long-term test programme on three kinds of rubbers (EPDM and FKM (relevant for application), HNBR (for comparison)), over several years we have studied the degradation and the change of mechanical properties (e.g. hardness, strain at break) at four different ageing temperatures (75 °C, 100 °C, 125 °C and 150 °C) as well as the change of sealing properties. Continuous and intermittent compression stress relaxation (CSR) measurements were performed in order to investigate the respective contribution of crosslinking and chain scission to the observed degradation effects. Thus, the degradation kinetics and mechanisms could be resolved more clearly. For assessing the seal performance, compression set (CS) and leakage rate measurements were conducted. The experimental results showed that the O-rings remained leak-tight under purely static conditions even when CSR, CS and mechanical properties already indicated far advanced degradation. For this reason, a modified leakage test involving a small and rapid partial decompression of the seal was developed that enabled determining an end-of-lifetime criterion for O-rings with a safety margin for thermal shrinkage and vibrations. KW - Seal KW - O-Ring KW - Ageing KW - Component tests PY - 2020 SN - 1863-7116 VL - 15 IS - 3 SP - 146 EP - 151 PB - Gupta CY - Ratingen AN - OPUS4-51161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Herold, Christian A1 - Orellana Pérez, Teresa A1 - Völzke, Holger A1 - Wolff, Dietmar T1 - Nationaler und Internationaler Stand zu bereits existierenden Anforderungen und Konzepten für Endlagerbehälter und Zusammenstellung sicherheitsrelevanter Behältereigenschaften; Bericht zum Arbeitspaket 1 des FuE-Verbundvorhabens KoBrA N2 - Im hier vorliegenden Bericht wurde im Rahmen einer umfassenden Literaturrecherche der nationale und internationale Stand von Wissenschaft und Technik hinsichtlich Behälterkonzepten und Behälteranforderungen erfasst. Dabei wurde eine umfangreiche Dokumentensammlung zusammengestellt und sortiert, die als Quellenbasis für alle weiteren Arbeiten zur Verfügung steht. Die Auswertung der gesammelten Informationen resultiert in einem Überblick über internationale Behälterentwicklungen sowie einer detaillierten Übersicht über die Behälterkonzepte und die ihnen zugrundeliegenden Anforderungskataloge aus elf fortgeschrittenen Endlagerprogrammen. KW - Endlager KW - Behälter KW - Sicherheitsanforderungen KW - Hochradioaktive Abfälle PY - 2020 DO - https://doi.org/10.2314/KXP:1759195804 N1 - Auftraggeber: Bundesministerium für Wirtschaft und Energie (BMWi), Förderkennzeichen: 02E11537. SP - 1 EP - 284 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-53117 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Droste, Bernhard A1 - Wolff, Dietmar A1 - Bevilacqua, A. A1 - Reiche, I. A1 - Harvey, J. A1 - Hirose, M. A1 - Kumano, Y. A1 - McConnell, P. A1 - Saegusa, T. A1 - Einziger, R. ED - González-Espartero, A. T1 - Methodology for a Safety Case of a Dual Purpose Cask for Storage and Transport of Spent Fuel T2 - IAEA TECDOC SERIES N2 - Spent nuclear fuel which is generated in the operation of nuclear reactors needs to be safely managed following its removal from the reactor core. On-site power reactor storage pools were designed on the assumption that after a short period of time spent nuclear fuel would be removed for reprocessing and disposal or further storage elsewhere. The amount of highly radioactive spent fuel that needs to be stored over longer periods of time is growing and additional storage capacity is required. One of the widely used options for additional storage capacity is the use of casks for dry storage of spent fuel. Among various existing dry storage concepts, several Member States are utilizing a concept of dual purpose casks (DPCs). This publication provides practical advice on the structure and contents of a DPC integrated safety case with reference to existing IAEA requirements relevant to the licensing and use of transport and storage casks for spent fuel. KW - Dual Purpose Cask KW - Spent Fuel KW - Storage KW - Transport PY - 2020 UR - https://www.iaea.org/publications/10966/methodology-for-a-safety-case-of-a-dual-purpose-cask-for-storage-and-transport-of-spent-fuel SN - 978-92-0-131620-2 SN - 1011–4289 SP - 1 EP - 109 PB - IAEA Publishing Section CY - Vienna, Austria AN - OPUS4-51962 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Völzke, Holger A1 - Wolff, Dietmar ED - Saegusa, T. ED - Sert, G. ED - Völzke, Holger ED - Wille, Frank T1 - Long-term metal seal performance T2 - Basic of Transport and Storage of Radioactive Materials N2 - For the long-term storage of spent nuclear fuel and other high-Level radioactive waste, dual purpose casks for the transportation and storage are widely used. Usually, these casks consist of a thick-walled monolithic cask body and a bolted double barrier lid System equipped with metal seals (consisting of an inner helical spring and two outer metal layers with a total cross-section diameter between 5 and 10 mm) to ensure the long-term safe confinement of the radioactive inventory. Based on analytical and experimental studies, such metallic Systems have been qualified of storage periods of up to four decades so far as long as proper manufacturing and assembling conditions are met. More than 20 years of Operation experience with a permanently increasing number of casks has shown full compliance with the expectations. In the meantime many countries have to face a significant delay of establishing a high-level radioactive waste repository what leads to Need for extending interim storage periods for probably 60, 80 or 100 years. For that reason the long-term performance of metal seals for such time periods is of specific internst to demonstrate their sufficient safety function and specific investigations have already been launched, e.g. by BAM, to gain more experimental data and to develop validated models to extrapolate the seal performance to longer periods of time and or requested temperature levels. KW - Metal Seal KW - Container KW - Safety KW - radioactive waste PY - 2018 SN - 978-981-3234-03-1 SP - Chapter 20, 293 EP - 303 PB - World Scientific CY - Singapore AN - OPUS4-47669 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger ED - Stuke, M. T1 - Long-term evaluation of sealing systems for radioactive waste packages T2 - Proceedings of the 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 SP - 57 EP - 62 AN - OPUS4-48225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -