TY - CONF A1 - Wolff, Dietmar T1 - Ageing management issues for extended SF and HLW dry storage in Germany – Challenges, approach, examples N2 - In this presentation, the history and actual situation of the German nuclear waste management policy of spent fuel (SF) and high-level waste (HLW) is reported. Beside the description of the restructuration of responsible authorities and organizations in Germany, the principle of dry interim storage of SF and HLW in dual purpose casks is explained. The need for extended interim storage towards disposal implicates additional challenges for the nuclear waste management strategy in Germany. (Extended)interim storage, subsequent transportation, and final disposal are closely linked. Integrated approaches concerning waste package designs and operations are supposed to be beneficial for the establishment of efficient long-term SF and HLW management strategies. Knowledge management and staff recruiting, education and training during phase out and beyond nuclear power plant operation are major issues. T2 - IAEA - Second Coordinate Research Meeting and Consultancy Meeting on Ageing Management Programmes for Spent Fuel Dry Storage Systems CY - Lemont, IL, USA DA - 29.04.2019 KW - Ageing Management KW - Extended Storage KW - Spent Nuclear Fuel PY - 2019 AN - OPUS4-48514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Simbruner, Kai T1 - Embrittlement of spent fuel claddings during long-term dry interim storage - Current approach at BAM N2 - In this presentation, the actual situation of long-term dry interim storage of spent nuclear fuel in Germany is reported. An extension of the interim storage period between 40 and 100 years for at least a relevant number of casks is foreseeable. To demonstrate the integrity of fuel rods and cladding tubes throughout the extended dry interim storage, a potential cladding embrittlement should be investigated. The current approach at BAM is a research project on experimental and numerical investigations of sudden failure of unirradiated pre-hydrided cladding tubes after hydride reorientation at small deformation under Ring Compression Test conditions. A fracture mechanics based failure analysis and suggested failure criteria for a potential brittle failure of spent fuel claddings after long-term dry interim storage under mechanical loads are discussed. T2 - IAEA - Second Coordinate Research Meeting and Consultancy Meeting on Ageing Management Programmes for Spent Fuel Dry Storage Systems CY - Lemont, IL, USA DA - 29.04.2019 KW - Ageing Management KW - Extended Storage KW - Spent Nuclear Fuel KW - Cladding Embrittlement KW - Ring Compression Test PY - 2019 AN - OPUS4-48745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Simbruner, Kai A1 - Zencker, Uwe A1 - Wolff, Dietmar A1 - Orellana Pérez, Teresa A1 - Völzke, Holger T1 - Research at BAM for evaluating long term safety of container systems and components N2 - Safety of long term containment and storage of radioactive waste is an essential issue, which is increasingly gaining international attention. Extending interim storage beyond initial license periods is one of the major challenges worldwide. BAM has been involved in all kinds of radioactive waste container safety evaluation for storage and transportation including their long term performance from the very beginning. Today, all work related to the safe management of radioactive waste is linked by the activity field “Nuclear Waste Management” within the Focus Area “Energy” at BAM and in conjunction with a research strategy and agenda. Most recently, the working group “Long Term Safety of Container Systems and Components” was established to launch and perform research projects related to safety issues concerning the extended interim storage of radioactive waste. For example, within our project LaMEP, we investigate ageing effects of metal and elastomer seals as well as polymeric neutron shielding materials, which are container components that fulfil major safety functions. The results of the experiments help to understand the long term behaviour of these components. Likewise, our project BRUZL started at BAM in 2018 with the aim of developing a fracture mechanics approach to understand and describe a potential brittle failure mechanism of fuel cladding during long-term interim storage. BAM also contributes to the GRS project “Development of methods and models and international exchange for safety evaluation in the frame of interim storage of radioactive waste”. Additionally, BAM is involved in several international research programmes dealing with extended interim storage, such as the European Joint Programme on Radioactive Waste Management (EURAD), the Extended Storage Collaboration Program (ESCP) and IAEA Coordinated Research Projects. The present contribution provides a comprehensive overview of BAM research activities contributing to national and international gap analyses and to filling knowledge gaps regarding the safe long term management of radioactive waste. T2 - Annual Meeting on Nuclear Technology 2019 CY - Berlin, Germany DA - 07.05.2019 KW - Radioactive Waste KW - Container Safety KW - Metal Seals KW - Elastomer Seals KW - Fuel cladding PY - 2019 AN - OPUS4-48437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Herold, Christian A1 - Völzke, Holger A1 - Orellana Pérez, Teresa T1 - Projektvorhaben "KoBrA" - AP1 N2 - Eine umfangreiche Darstellung der bisherigen Ergebnisse des ersten Arbeitspaketes im FuE-Vorhaben "KoBrA": Ziele und Anknüpfungspunkte des AP1; Ableitung von Kriterien und Kategorien; internationale Kernenergienutzung; Quellenbasis und Literaturrecherche; Selektion und Sortierung der Dokumentensammlung; Beispiele internationaler Endlagerprogramme N2 - An exhaustive presentation of the first working package of project "KoBrA" and its preliminary results: Objectives and follow-up links in- and outside the project; establishing criteria and categories; screening of international nuclear power programmes; reference basis and literature research; selecting and sorting the compiled documents; examplary international final disposal programmes T2 - Fachinformationsgespräch zum FuE-Vorhaben "KoBrA" CY - Berlin, Germany DA - 28.05.2018 KW - Endlagerbehälter KW - Kernenergienutzung KW - Dokumentensammlung KW - Hochaktive wärmeentwickelnde Abfälle KW - Länderübersicht PY - 2018 AN - OPUS4-45468 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Holger A1 - Herold, Christian T1 - Verbundvorhaben KoBrA: Ausblick zur Umsetzung von Anforderungen in Technische Behälterkonzepte N2 - Als Ausblick auf noch ausstehende Arbeiten zum Verbundvorhaben "KoBrA" zur Erfassung nationaler und internationaler Anforderungen und Konzepte für Behälter zur Endlagerung wärmeentwickelnder radioaktiver Abfälle in den potentiellen Wirtsgesteinformationen Kristallin, Ton und Salz werden die grundlegenden Anforderungen und Schutzziele der Endlagerbehälter untersucht und der konzeptionelle Weg von Anforderungen hin zu Konzepten erläutert. N2 - Within project "KoBrA" we want to establish the international state of the art in final disposal containers for HLW/SF, and, based on boundary conditions and national legislation, to propose generic final disposal canisters for all three potential host rocks (crystalline rock, clay and salt) for the German high-level radioactive waste. As a preview on activities yet to come, the primary requirements and demands on final disposal canisters are evaluated, and the way to develop container concepts is illuminated. T2 - Fachinformationsgespräch zum FuE-Vorhaben "KoBrA" CY - Berlin, Germany DA - 28.05.2018 KW - Endlagerbehälter KW - Schutzziele KW - Behälteranforderungen KW - Behälterkonzepte KW - Konzeptentwicklung PY - 2018 AN - OPUS4-45470 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Grelle, Tobias A1 - Kömmling, Anja A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Long-term evaluation of sealing systems for radioactive waste packages N2 - The investigation of the long-term performance of sealing systems employed in containers for radioactive waste and spent nuclear fuel is one research focus area for division 3.4 “Safety of Storage Containers” at the Bundesanstalt für Materialforschung und -prüfung (BAM). Our investigations comprise investigations on metallic and elastomeric seals and covers experimental investigations to get a database on the component/material behaviour, work on analytical descriptions and numerical analysis. Our aim is to understand the long-term behaviour of the sealing systems for evaluation of their performance during possible extended interim storage and subsequent transportation. T2 - 3rd Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Seal performance KW - Rubber seal KW - Metallic seal KW - Ageing PY - 2019 AN - OPUS4-48224 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Ballheimer, Viktor A1 - Wille, Frank A1 - Zencker, Uwe T1 - Numerical approach to determine a package dependent bar length for the iaea pin drop test N2 - The Federal Institute for Materials Research and Testing (BAM) is assessing the mechanical and thermal safety performance of packages for the transport of radioactive materials. Drop testing and numerical calculations are usually part of the safety case concepts, where BAM is performing the regulatory tests at their own test facility site. Among other mechanical tests the 1 meter drop onto a steel puncture bar shall be considered for accident safe packages. According to the IAEA regulations “the bar shall be of solid mild steel of circular section, 15.0 ± 0.5 cm in diameter and 20 cm long, unless a longer bar would cause greater damage…”. Particularly with regard to the German transport- and storage cask designs, often made from ductile cast iron, an accurate determination of the puncture bar length to guarantee a load impact covering the worst case scenario can be imperative. If the fracture mechanical proof for the cask material shall be provided by a test, small deviations in the concentrated load applied can be decisive for the question if the cask fails or not. The most damaging puncture bar length can be estimated by iterative procedure in numerical simulations. On the one hand, a sufficient puncture bar length shall guarantee that shock absorbers or other attachments do not prevent or reduce the local load application to the package, on the other hand, a longer and thus less stiff bar causes a smaller maximum contact force. The contrary influence of increasing puncture bar length and increasing effective drop height shall be taken into account if a shock absorber is directly placed in the target area. The paper presents a numerical approach to identify the bar length that causes maximum damage to the package. Using the example of two typical package masses the sensitivity of contact forces and puncture bar deformations to the initial length are calculated and assessed with regard to the international IAEA package safety requirements. T2 - PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - IAEA KW - 1-m-punch-bar-drop-test KW - Numerical approach KW - Bar length KW - Finite element analysis PY - 2019 AN - OPUS4-49013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Grelle, Tobias A1 - Jaunich, Matthias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Kömmling, Anja A1 - Zencker, Uwe A1 - Orellana Pérez, Teresa A1 - Völzke, Holger A1 - Wille, Frank T1 - Ongoing research & development about metal and elastomer seals at BAM N2 - Packages for the transport and storage of radioactive materials are often sealed with elastomer or metal seals. These seals are basic components to meet the leak tightness criteria for these kind of packages. An overview over ongoing research and development concerning metal and elastomer seals is given in the presentation. Introductions in the fundamental functionality of elastomer and metal seals are presented. Ageing processes are shown for both components regarding to different ageing effects. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Seal KW - Seals KW - Metal seal KW - Elastomer seal KW - Long term investigation KW - Helical spring KW - Aluminum seal KW - Silver seal KW - Component test KW - Useable resilience KW - Leakage rate KW - Compression set KW - Low temperature investigation KW - Ageing KW - Radioactive KW - Transport KW - Storage KW - IAEA PY - 2018 AN - OPUS4-46881 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feldkamp, Martin A1 - Erenberg, Marina A1 - Bletzer, Claus Wilhelm A1 - Musolff, André A1 - Nehrig, Marko A1 - Wille, Frank T1 - Investigations of the burning behavior of transport package impact limiters and thermal effects onto the cask N2 - Accident safe packages for the transport of spent nuclear fuel and high-level waste shall fulfil international IAEA safety requirements. Compliance is shown by consecutive mechanical and thermal testing. Additional numerical analysis are usually part of the safety evaluation. For damage protection some package designs are equipped with wood filled impact limiters encapsulated by steel sheets. The safety of these packages is established in compliance with IAEA regulations. Cumulative mechanical and fire tests are conducted to achieve safety standards and to prevent loss of containment. Mechanical reliability is proven by drop tests. Drop testing might cause significant damage of the impact limiter steel sheets and might enable sufficient oxygen supply to the impact limiter during the fire test to ignite the wood filling. The boundary conditions of the fire test are precisely described in the IAEA regulatory. During the test the impact limiter will be subjected to a 30 minute enduring fire phase. Subsequent to the fire phase any burning of the specimen has to extinguish naturally and no artificial cooling is allowed. At BAM a large-scale fire test with a real size impact limiter and a wood volume of about 3m³ was conducted to investigate the burning behaviour of wood filled impact limiters in steel sheet encapsulation. The impact limiter was equipped with extensive temperature monitoring equipment. Until today burning of such impact limiters is not sufficiently considered in transport package design and more investigation is necessary to explore the consequences of the impacting fire. The objective of the large scale test was to find out whether a self-sustaining smouldering or even a flaming fire inside the impact limiter was initiated and what impact on the cask is resulting. The amount of energy, transferred from the impact limiter into the cask is of particular importance for the safety of heavy weight packages. With the intention of heat flux quantification a new approach was made and a test bench was designed. A first computational simulation of transport package temperatures taking into account the results of the conducted fire test was performed. T2 - IRSN Conference on Safe Transport of Radioactive Material CY - Fontenay aux Roses, France DA - 13.11.2018 KW - Impact limiter KW - Shock absorber KW - Smoldering KW - Smouldering KW - Burning KW - Thermal testing KW - BAM TTS KW - Combustion KW - Fire KW - Energy release KW - Thermal simulation KW - Heat emission KW - Radioactive KW - Transport KW - IAEA KW - Wood KW - Spruce wood KW - Lid temperature PY - 2018 AN - OPUS4-46882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Qiao, Linan A1 - Keller, Christian A1 - Nagelschmidt, Sven A1 - Wolff, Dietmar T1 - Three-dimensional finite element analysis of O-ring metal seals considering manufacture tolerances N2 - Metal seals are widely used in various industrial branches with severe working conditions (e.g. high pressure, high temperature, corrosion, or radioactive radiation). For example, O-ring metal seals are applied in the closure lid system of transport and storage casks for radioactive materials to guarantee an approved specified leak-tightness and the safe enclosure of the radioactive inventory. Within safety assessments of those casks under normal or accident conditions during transport and long-term interim storage for several decades, numerical simulations of the thermo-mechanical behavior of metal seals by using finite element (FE) analyses are suitable and effective. In general, finite element codes provide the possibility to construct a complex three-dimensional (3D) modelling of metal seals with solid elements, cf., where all components of the metal seals are modeled in detail. This modelling is complex but allows the consideration of underlying physical effects such as elastic-plastic deformation, thermal expansion, creep/relaxation, friction and possible local damage. Therefore, this approach permits the investigation and understanding of the complex behavior of metal seals in detail which can hardly be measured for all seal components. In a prior work, the complex 3D modelling approach was applied to investigate the influence of each seal component on the global seal force by considering varying material properties and different seal diameters. In the present contribution, the influence of manufacturing tolerances is discussed. At first, the results of prior work are summarized. After that, the manufacturing tolerances of the studied O-ring metal seal types are described and the corresponding FE model with all individual components is introduced. Finally, the influence of varying manufacturing tolerances of each seal component on the global seal force is analyzed and discussed. T2 - The 2019 EMI International Conference CY - Lyon, France DA - 3. July 2019 KW - Finite element method KW - Metal seals KW - Material properties KW - Manufacturing tolerances PY - 2019 AN - OPUS4-48448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Simbruner, Kai T1 - Brittle failure of spent fuel claddings during long-term dry interim storage N2 - The current research project BRUZL (Fracture mechanical analysis of spent fuel claddings during long-term dry interim storage) is presented. General aim of the project is the development of methods for risk assessment and identification of boundary conditions to prevent potential sudden brittle failure of spent fuel claddings at small deformation during long-term dry interim storage and subsequent transportation. The project is funded by the Federal Ministry for Economic Affairs and Energy (BMWi) under contract no. 1501561. T2 - 3rd GRS Workshop on Safety of Extended Dry Storage of Spent Nuclear Fuel CY - Garching, Germany DA - 05.06.2019 KW - Ageing Management KW - Cladding Embrittlement KW - Extended Storage KW - Ring Compression Test KW - Spent Nuclear Fuel PY - 2019 AN - OPUS4-48867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Comparison of different test methods for lifetime prediction of O-ring seals N2 - Elastomeric O-ring seals are used in a wide range of applications due to their excellent elasticity. However, like all polymers, elastomers degrade under the influence of e.g. time, temperature, oxygen, radiation and mechanical stress. Especially in applications where a replacement of seals after a certain time is hard or almost impossible, it is important to know the seal lifetime. Therefore, an extensive ageing programme with elastomers made of EPDM, HNBR and other materials was started with the aim of determining suitable methods for accelerated ageing and lifetime prediction. In order to determine the lifetime of polymeric parts, the time-temperature superposition principle is commonly used to shift property changes obtained by accelerated ageing at higher temperatures to lower temperatures. If the shift factors yield a straight line in an Arrhenius diagram, a corresponding activation energy can be determined. However, we have found that the shift factors and thus the predicted lifetime depends on the test method that yielded the shifted data. For example, the shift factor between 125 °C and 150 °C ageing temperature was roughly the same (5/5/4.5 respectively) for hardness, density and maximum of loss factor tan  measured on HNBR, but different for elongation at break (8) and compression set (2.2, excluding DLO-affected data). A possible explanation might be that while the different oxidation reactions proceed with a fixed activation energy, they have differing impact on the measured properties. For example, hardness is lowered by chain scission reactions, and increases by crosslinking reactions during ageing. As usually both chain scission and crosslinking reactions occur during ageing, the measured hardness increase reflects only the net effect of both reaction types. On the other hand, compression set is influenced additively by both reaction types: chain scission leads to an increase of the remaining deformation, as broken chains lose their recovery potential, and crosslinking reactions during ageing fix the compressed geometry, which also leads to less recovery. Thus, compression set reflects the total number of changes in the network and shows degradation effects much faster, which results in lower shift factors and lower activation energy. This phenomenon was observed for EPDM as well. In order to verify our hypotheses and to gain further insights, temperature-dependent oxygen consumption measurements are currently being performed and results will be presented at the conference. The shift factors and activation energy determined by oxygen consumption measurements are expected to be close to the values for compression set. T2 - Polymer Degradation Discussion Group Conference CY - Malta DA - 01.09.2019 KW - Compression set KW - Time-temperature superposition KW - Arrhenius KW - HNBR KW - EPDM KW - FKM KW - Activation energy PY - 2019 AN - OPUS4-48907 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe A1 - Qiao, Linan A1 - Völzke, Holger T1 - Fracture mechanical analysis of a cylindrical cast iron cask N2 - The safety evaluation of cask components made of ductile cast iron includes investigations to prevent brittle fracture. Generally, ductile cast iron is endangered by brittle fracture especially at low temperatures (down to -40°C) and in combination with existing crack-like material defects. An applicable method is the assessment of fracture resistance using fracture mechanics according to the IAEA guidelines. The approach is based on the prevention of fracture initiation. For application of these principles for drop loads, account must be taken both of dynamic stresses within the component and dynamic material behavior. Basically, the dynamic stress intensity factor of postulated pre-existing crack-like defects is compared with the dynamic fracture toughness of the material. Applicable numerical and experimental methods for the safety assessment of cask components are demonstrated for the case of an artificially pre-cracked cylindrical cast iron cask which undergoes dynamic loading conditions as result of the hard impact between the cask and a concrete target. The proposed evaluation procedure is a combination of numerical and experimental steps. Exemplarily, the calculated stress intensity factor is compared with measured fracture toughness values from single edge notched bending specimens. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2019) CY - New Orleans, LA, USA DA - 04.08.2019 KW - Ductile Cast Iron KW - Brittle Fracture KW - Cylindrical Cask PY - 2019 AN - OPUS4-48915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zencker, Uwe T1 - Stress wave propagation with finite element mesh transitions N2 - A reliable finite element analysis presupposes a qualified model of the object to be analyzed. The finite element mesh density may significantly vary throughout a model. A transition between dissimilar meshes can be accomplished by a gradual change of element size or by an interface with constraint conditions. Some issues may arise from such mesh transitions. Generally, a finer mesh can transmit signals of higher frequency than a coarser mesh. Stress wave propagation through the model could be affected by the transition region or the artificially induced interface. Stress waves generated within the fine mesh could be partly encapsulated by the surrounding coarse mesh. Therefore poor mesh transitions could result in reflections or shape changes of stress waves. A thin rod is investigated to demonstrate the effects. This study supports the development of the ASME Guidance Document "Use of Explicit Finite Element Analysis for the Evaluation of Nuclear Transport and Storage Packages in Energy-Limited Impact Events". T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials (PATRAM 2019) CY - New Orleans, LA, USA DA - 04.08.2019 KW - Stress Wave Propagation KW - Thin Rod KW - Finite Element Mesh Transition PY - 2019 AN - OPUS4-48916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Keller, Christian A1 - Herbrich, Uwe T1 - Plastic Instability of Rate-Dependent Materials - Consideration of Isothermal and Adiabatic Conditions in Dynamic Tensile Tests - N2 - During dynamic processes, a certain range of strain rates is often observed along loaded structures and components. For precise numerical simulations, it is necessary to determine rate-dependent properties in dynamic tests and to describe the material behavior correctly within an appropriate domain of strain rates including adiabatic heating effects at higher strain rates, typically higher than 10 1/s. In principle, numerical simulations are compared to experimental results to verify the applied material models. For dynamic tensile tests considering ductile materials and large plastic deformation beyond uniform elongation, it is challenging to obtain comparable results due to plastic instability and necking of the specimen, e.g.. Based on the strain gradient in a general tensile specimen, a theoretical criterion was derived describing the plastic instability in rate-dependent materials under isothermal conditions in. It was applied to different multiplicative and additive constitutive relations and the analytical onset of necking was compared to results from numerical calculations of quasi-static and dynamic tensile tests. The simulations of a sheet-metal specimen with rectangular cross-section were carried out using the Finite Element Method and it was found that the numerical calculated and the theoretical predicted onset of plastic instability agree very good. The analytical criterion for instability holds even for specimens without geometrical or material imperfections and confirms that the onset of plastic instability must be considered a material characteristic. However, real dynamic problems with higher strain rates are not isothermal, the heat generated by plastic work is not dissipated to the surrounding and the temperature of the material increases significantly. Adiabatic heating and thermal softening must be considered within the constitutive relations of rate-dependent materials and the discussion of plastic instability. In this paper, an enhanced and more generalized approach for the description of the condition for stability is discussed and applied to phenomenological as well as more physical constitutive relations from the literature. This allows an individual assessment of the accuracy and verification of rate-dependent material models with respect to plastic instability. T2 - 13th World Congress on Computational Mechanics CY - New York, USA DA - 22.07.2018 KW - Plastic Instability KW - FEM KW - Rate-dependent Materials KW - Dynamic Tensile Test PY - 2018 AN - OPUS4-48923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Mike A1 - Kömmling, Anja A1 - Zaghdoudi, Maha A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Development and application of a finite element model representing the rapid partial release of elastomeric O-ring seals N2 - Due to their high versatility and recovery potential under several load conditions, seals made from elastomers are widely used as barrier seals in containers for low and intermediate level radioactive waste and as auxiliary seals in spent fuel storage and transportation casks (dual purpose casks (DPC)). In DPC, elastomer seals allow leakage rate measurements of metal barrier seals for demonstration of their proper assembly conditions and performance. For spent fuel and high level waste as well as for low and intermediate level waste, long time periods will be required before final disposal will be available. Therefore, the long-term behavior of elastomer seals can be an important issue when the cask’s suitability for an extended interim storage period has to be assessed. During the licensed interim storage duration, the requested leakage rate has to be maintained under any static and dynamic load conditions. A sufficient resilience, the capability of seals to compensate a (rapid) partial release was identified as an important end-of-lifetime criterion. In the framework of extensive aging and testing programs at BAM, specimen made from representative types of elastomer (EPDM, FKM) were aged for several years at different temperatures ranging from 23 °C to 150 °C. One aim of the experiments was to determine an end-of-lifetime criterion correlated to leakage as the point of seal failure. As the seals remained leak-tight under static conditions even after advanced material degradation, a more demanding leakage test set-up was constructed that allowed a rapid partial release of the seal. This device enables a release of the O-ring by approx. 0.2 mm from 25 % to 23 % compression in less than one second during the pressure rise measurement. If the resilience of the seal has decreased past a certain point, the seal cannot follow the decompression fast enough and a leak path can open. Using a finite element (FE) material model derived earlier from different material tests, this process was simulated with a 3D FE model, reproducing the essential characteristics of the test device. The FE-model enables the analyzation of the occurring global mechanisms if a leak path opens. The capability of the seals to follow the lifted flange and the subsequent run of compression force depending on the current state of aging are illustrated. The findings of the simulation are correlated and discussed with respect to the pressure rise measurements. T2 - ASME PVP 2019 CY - San Antonio, TX, USA DA - 14.07.2019 KW - Storage and transportation casks KW - Elastomeric seals KW - Rapid partial release KW - Leakage KW - Numerical simulation PY - 2019 AN - OPUS4-49017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grelle, Tobias A1 - Probst, Ulrich A1 - Wolff, Dietmar A1 - Jaunich, Matthias A1 - Völzke, Holger T1 - Investigations on the Long-term Behavior of Metal Seals for Dual Purpose Casks N2 - In Germany, spent nuclear fuel and high active waste from reprocessing is stored in transport and storage containers with double lid systems that are equipped with metal seals completing the primary sealing barrier. The tasks of the Bundesanstalt für Materialforschung und -prüfung (BAM) within the interim storage licensing procedures ruled by the German Atomic Energy Act include the long-term safety evaluation of the container design regarding the permanently safe enclosure of the inventory. In order to generate a knowledge base for the safety evaluation, research regarding the long-term behavior of the critical components is performed. So far, the containers are licensed for an interim storage period of 40 years. However, due to significant delays in establishing a final repository, the required time span for interim storage is expected to increase significantly. Thus, a widespread investigation program is run to gain systematic data on the long-term behavior of the seals and to develop prediction models. Long-term seal investigations consider the development of their restoring seal force, their useable resilience and their achievable leakage rate caused by aging at temperatures ranging from room temperature up to 150 °C. This year, the total time span of the tests reaches 10 years. Furthermore, seal segments are aged at the selected temperatures for up to 300 days. From these segments additional information on the sealing behavior, changes of the seal contact and the material behavior is gained. This contribution deals with the current results of the long-term seal investigations at BAM. Furthermore, insights of the more in-depth component and material investigations of the metal seals with focus on the seal contact development are discussed and the ongoing work aiming for an analytical description of the thermo-mechanical aging effects on metal seals are presented. T2 - 19th International Symposium on the Packaging and Transportation of Radioactive Materials PATRAM 2019 CY - New Orleans, LA, USA DA - 04.08.2019 KW - Metal seal KW - Radioactive waste containers KW - Creep KW - Long-term behaviour PY - 2019 AN - OPUS4-49018 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zaghdoudi, Maha A1 - Kömmling, Anja A1 - Jaunich, Matthias A1 - Wolff, Dietmar T1 - Overview of ongoing long-term ageing investigations on elastomer seals N2 - At the Bundesanstalt für Materialforschung und -prüfung (BAM) in Division 3.4 Safety of Storage Containers, one of our tasks is to evaluate the safety of containers designed for disposal of low and intermediate radioactive waste. As such containers might be transported before and stored until disposal, safe enclosure of the radioactive inventory is important for this time span. Elastomer O-rings are widely used as barrier seals in these containers. Thus, as for many other applications, an understanding of the practical effects of ageing degradation on elastomer seals during long-term exposure is mandatory for predicting the lifetime of such components. According to a long-term test programme on three kinds of rubbers (EPDM and FKM (relevant for application), HNBR (for comparison)), over several years we have studied the degradation and the change of mechanical properties (e.g. hardness, strain at break) at four different ageing temperatures (75 °C, 100 °C, 125 °C and 150 °C) as well as the change of sealing properties. Continuous and intermittent compression stress relaxation (CSR) measurements were performed in order to investigate the respective contribution of crosslinking and chain scission to the observed degradation effects. Thus, the degradation kinetics and mechanisms could be resolved more clearly. For assessing the seal performance, compression set (CS) and leakage rate measurements were conducted. The experimental results showed that the O-rings remained leak-tight under purely static conditions even when CSR, CS and mechanical properties already indicated far advanced degradation. For this reason, a modified leakage test involving a small and rapid partial decompression of the seal was developed that enabled determining an end-of-lifetime criterion for O-rings with a safety margin for thermal shrinkage and vibrations. T2 - IRC CY - London, UK DA - 03.09.2019 KW - Compression set KW - Continuous compression stress relaxation KW - Intermittent compression stress relaxation KW - Leakage rate PY - 2019 AN - OPUS4-49073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaunich, Matthias A1 - Kömmling, Anja A1 - Grelle, Tobias A1 - Wolff, Dietmar A1 - Völzke, Holger T1 - Aktueller Stand des Forschungsprojekts LaMEP N2 - Ergebnispräsentation zum Forschungsprojekt "Langzeitverhalten von Metall- und Elastomerdichtungen sowie Moderator-materialien als sicherheitsrelevante Komponenten von TLB für radioaktive Stoffe“ (LaMEP). T2 - BGZ Fachworkshop Zwischenlagerung CY - Berlin, Germany DA - 22.10.2019 KW - Metalldichtung KW - Elastomerdichtung KW - Neutronen Abschirmmaterial KW - Alterung KW - Degradation PY - 2019 AN - OPUS4-49429 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -