TY - JOUR A1 - Hurtado-Hurtado, G. A1 - Morales-Velazquez, L. A1 - Valtierra-Rodríguez, M. A1 - Otremba, Frank A1 - Jáuregui-Correa, J. C. T1 - Frequency Analysis of the Railway Track under Loads Caused by the Hunting Phenomenon JF - Mathematics N2 - Hunting is a potentially dangerous phenomenon related to the lateral oscillation of the wheels that impacts the rails and causes the wear of the infrastructure’s components. Therefore, the analysis and timely detection of hunting can lead to the application of corrective maintenance tasks, reducing damages, and costs and even derailments as a result. In this work, the vibration response of a finite element model of a rail with hunting-induced loads by a single wheel is analyzed in three directions: longitudinal, lateral, and vertical. The contact patch forces are calculated by means of Simpack® using the Kalker linear theory and the contact Hertz theory. The system is solved by using the Newmark-_ approach. The results of the deflection and vibration analysis, following the proposed methodology, show how the different characteristics of the loads impact the rail. KW - Continuous wavelet transform KW - Empirical mode decomposition KW - Finite element method KW - Frequency analysis KW - Hunting phenomenon KW - Mechanical modelling KW - Rail vibrations PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551517 UR - https://www.mdpi.com/2227-7390/10/13/2286/htm# DO - https://doi.org/10.3390/math10132286 VL - 10 IS - 13 SP - 1 EP - 17 PB - MDPI AN - OPUS4-55151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero Navarrete, J. A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Experimental-theoretical modelling of the lateral sloshing in rail tankers JF - International Journal of Heavy Vehicle Systems N2 - The objective of this paper is to describe and to validate a simplified pendulum-analogy model to simulate the interaction of a liquid cargo with ist carrying vehicle. The resulting testing rig consists of a rectangular container, spring supported on a two wheelset-bogie having a scale down of 1/10 with respect to a full-size equipment. The testing rig is used to validate a simple pendulum-based, simplified three degree-of-freedom mathematical model of the response of a partially filled container to lateral accelerations. The length of the pendulum is set according to validated methodologies. The resulting mathematical scheme reveals a high correlation with the experimental output, on the order of 99%, while some other performance measures, related to the peak forces and the range of variation of the wheel-rail forces, also show good concordance with the experimental results. KW - Sloshing KW - Rail tankers KW - Pendulum analogy KW - Experimental modelling KW - Mechanical fatigue PY - 2021 DO - https://doi.org/10.1504/ijhvs.2021.117504 VL - 28 IS - 3 SP - 435 EP - 454 AN - OPUS4-53101 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero Navarrete, J. A. A1 - Otremba, Frank A1 - Lozano Guzmán, A. A. T1 - Liquid cargo effect on load transfer under orthogonal accelerations JF - International journal of heavy vehicle systems N2 - A methodology is proposed for the experimental analysis of the liquid cargo effect under combined orthogonal accelerations. To simultaneously subject the vehicle-cargo system to longitudinal and lateral accelerations, the vehicle is set obliquely on a tilt table. The experimental outputs suggest that there is a significant effect of the liquid cargo on the lateral load transfer ratio (LTR), on the order of 20%, which is attributable to the resulting shifting of the liquid cargo’s centre of gravity. That is, the peak LTR values due exclusively to sloshing were not significant, in such a way that the liquid cargo would only pose a safety risk under a steady acceleration input. Also, the inverse of the product of the magnitude of the acceleration times the free surface length, correlates with the liquid cargo effect. That is, the magnitude of the input acceleration is not fully determinant for greater load transfers. KW - Sloshing KW - Liquid cargo KW - Cargo shifting KW - Lateral load transfer KW - Braking in a turn manoeuvre KW - Experimental methods KW - Transport safety PY - 2022 DO - https://doi.org/10.1504/ijhvs.2022.127011 SN - 1744-232X VL - 29 IS - 3 SP - 213 EP - 226 PB - Inderscience Enterprises CY - Geneva AN - OPUS4-56016 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jauregui-Correa, J. C. A1 - Morales-Velazquez, L. A1 - Otremba, Frank A1 - Hurtado-Hurtado, G. T1 - Method for predicting dynamic loads for a health monitoring system for subway tracks JF - Frontiers in mechanical engineering N2 - This paper presents a method for processing acceleration data registered on a train and determining the health condition of a subway’s substructure. The acceleration data was converted into a dynamic deformation by applying a transfer function defined using the Empirical Mode Decomposition Method. The transfer function was constructed using data produced on an experimental rig, and it was scaled to an existing subway system. The equivalent deformation improved the analysis of the dynamic loads that affect the substructure of the subway tracks because it is considered the primary load that acts on the track and substructure. The acceleration data and the estimated deformations were analyzed with the Continues Wavelet Transform. The equivalent deformation data facilitated the application of a health monitoring system and simplified the development of predictive maintenance programs for the subway or railroad operators. This method better identified cracks in the substructure than using the acceleration data. KW - Health monitoring KW - Transfer function KW - Railroad KW - Substructure failures KW - Dynamic loads PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557480 DO - https://doi.org/10.3389/fmech.2022.858424 SN - 2297-3079 VL - 8 SP - 1 EP - 16 PB - Frontiers Media CY - Lausanne AN - OPUS4-55748 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Borch, Jörg A1 - Otremba, Frank T1 - Der neue Jetfire-Prüfstand der BAM JF - Technische Sicherheit N2 - Die BAM – Bundesanstalt für Materialforschung und -prüfung führt schon seit vielen Jahren auf zwei Brand- prüfständen Brandprüfungen z.B. an Transport- und Lagerbehältern für radioaktive Stoffe oder zur Prüfung von Brandschutzbeschichtungen durch. Als Brandmedium wird auf diesen Prüfständen Flüssiggas (Propan- Butan-Gemisch C) eingesetzt, mit dem die Prüfobjekte simulierten Unfallfeuern ausgesetzt werden. Mit dem neuen Jetfire – Prüfstand der BAM können seit Anfang 2018 diverse Belastungsszenarien nach den Anforde- rungen der ISO22899-1:2007 [1] simuliert werden. KW - Jetfire KW - Prüftstand PY - 2018 UR - https://www.technische-sicherheit.de/ts/article.php?data[article_id]=89195 SN - 2191-0073 VL - 8 IS - 4 SP - 25 EP - 27 PB - Springer-VDI-Verl. CY - Düsseldorf AN - OPUS4-44814 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A testing facility to assess railway car infrastructure damage JF - International Journal of development and intergration N2 - Wheel forces generate stresses in the rail as a function of several vehicle and infrastructure characteristics and operating conditions. The different components of the wheel forces develop strains in the rail which contain an elastic and hysteretic (irreversible) components. The irreversible deformations of the rail would be associated with locomotive energy losses. In this paper, a testing facility is proposed to indirectly characterize the level of stresses in the rail, in terms of the energy that is lost during tuming maneuvers. Different potentially influential factors are considered, including the friction at the Center plate, the wheelbase length, the distance between bogies and the radius of the curved track. The change in the potential energy during a U-turn displacement is measured. In this respect, an experimental model under this operating principle, aimed at validating such a principle of Operation, reveals a significant effect of the friction at the center plate on the energy lost during turning maneuvers, and consequently, on the level of stresses in the rail. T2 - COMPRAIL 2020 - 17th International Conference on Railway Engineering Design & Operation 2020 CY - Online meeting DA - 01.07.2020 KW - Energy losses in transportation KW - Experimental methods KW - Friction energy KW - Rail damage KW - Turning forces KW - Wheel forces PY - 2020 DO - https://doi.org/10.2495/TDI-V4-N2-142-151 SN - 2058-8305 VL - 4 IS - 2 SP - 142 EP - 151 PB - WitPress AN - OPUS4-51125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bradley, Ian A1 - Scarponi, G. E. A1 - Otremba, Frank A1 - Birk, A. M. T1 - An overview of test standards and regulations relevant to the fire testing of pressure vessels JF - Process safety and environmental protection N2 - Fire exposure of storage and transportation vessels of hazardous materials (including pressure liquefied gases) can result in BLEVEs and other high-consequence incidents with large societal and economic impacts. To reduce risk most countries have numerous regulations, codes of practice and guidance notes covering the design, operation and maintenance of vessels and thermal protection systems. Yet despite such regulations there remains no internationally accepted fire test procedure for pressure vessel and accompanying thermal protection systems that is capable of meeting a range of regulatory requirements. This paper considers some of the regulations in place in the western world and considers the origin of these based on large and medium-scale testing conducted to date. It examines conditions found in these tests to propose a set of recommendations on which to base a standard method of test. These recommendations are proposed as being representative of a credible large pool fire scenario that may occur. KW - LPG KW - Pressure vessel KW - Test KW - BLEVE KW - Fire PY - 2021 DO - https://doi.org/10.1016/j.psep.2020.07.047 SN - 0957-5820 VL - 145 SP - 150 EP - 156 PB - Elsevier CY - Amsterdam AN - OPUS4-51139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank T1 - A method to assess the gravity response efficiency of a truck JF - International journal of environmental science N2 - In spite that transport activities do not represent the biggest contributor of pollutants emissions, their reduction has been a priority as some other externalities are associated to such emissions and to the transport itself. A crucial element to characterize the behavior of the vehicles against the environment are the losses that such vehicles exhibit in a passive way, that is, without any involvement of power conditions. The energy loses due to the rolling, the drag and to the friction in mechanical components, have been assessed so far in terms of the stopping acceleration when the vehicle idles on a ramp. However, such a testing procedure produces some uncertainties due to the dynamic conditions that are considered. To avoid such critical limitations, in this paper a testing procedure and facility are proposed, which are based on static conditions of the vehicle at the initiation and at the ending of the test, which are assumed to provide a better reliability to the testing. Some preliminary theoretical analysis should be made in order to validate the operational principles proposed herein for such testing facility. KW - Road tankers KW - Energy efficiency KW - Environmental assessment KW - Gravity response KW - Transportation energy KW - Rolling resistance KW - Drag resistance PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511530 UR - https://www.iaras.org/iaras/home/caijes/a-method-to-assess-the-gravity-response-efficiency-of-a-truck SN - 2367-8941 VL - 5 SP - 213 EP - 219 PB - IARAS CY - Sofia AN - OPUS4-51153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Lozano Guzman, A. A. T1 - Estimation of the effect of the driving style on pollutants emission by heavy trucks JF - International journal of environmental science N2 - Different approaches have been attempted so far to reduce fuel consumption and linked pollutants, including vehicle equipment and design, with rational driving style being recognized as a potential source of fuel savings. However, no specific methodology had been suggested so far to assess fuel economy of driving other than the fuel consumed itself. In this paper, the Standard deviation of driving acceleration has been found to be directly associated to fuel consumption, so that the less dispersion of the driving acceleration, produces the lower fuel consumptions and emissions. Such metric could be thus used to assess driving style. KW - Driving style KW - Fuel consumption KW - Stored energy KW - GPS data KW - Simulation KW - Particle emissions PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511540 UR - https://www.iaras.org/iaras/home/caijes/estimation-of-the-effect-of-the-driving-style-on-pollutants-emission-by-heavy-trucks SN - 2367-8941 VL - 5 SP - 220 EP - 226 PB - IARAS CY - Sofia AN - OPUS4-51154 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Romero-Navarrete, José A. A1 - Otremba, Frank A1 - Hurtado-Hurtado, G. ED - Romero-Navarrete, José A. T1 - A Conceptual Design of a Self-Centering Centre Plate JF - International Journal of Aerospace and Mechanical Engineering N2 - Turning maneuvers originate higher forces exerted on the rail and the loss of locomotive energy, at a rate that is function of several parameters that influence the magnitude of the developed horizontal wheel-rail forces, including the friction at the centre plate and the bogie´s yaw stiffness. However, such a friction at the contact surfaces of the centre plate is needed to mitigate the Hunting phenomenon when the train moves on straight track segments. In this paper, a self-centering centre plate is proposed, consisting of a lubricated centre plate, equipped with a spring- and damper-based self-centering mechanism. Simulation results of the proposed mechanism suggest that the energy performance in turns of a train car equipped with such self-centering centre plate is comparatively better, as the peak friction forces linked to the dry friction at the contact surfaces of current centre plate designs, are avoided. The assessment of the hunting performance of the proposed device in straight track segments is proposed as the continuation of this work. KW - Bogie´s yaw stiffness KW - Bogie´s yaw friction KW - Centre plate KW - Self-centering mechanism KW - Turning PY - 2020 UR - https://publications.waset.org/aerospace-and-mechanical-engineering SN - 1307-6892 VL - 14 IS - 9 SP - 376 EP - 382 AN - OPUS4-51241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -