TY - JOUR A1 - Su, Bin A1 - Luo, Zhenmin A1 - Krietsch, Arne A1 - Wu, Dejian A1 - Wang, Tao A1 - Zhou, Shangyong A1 - Deng, Jun T1 - Quantitative investigation of explosion behavior and spectral radiant characteristics of free radicals for syngas/air mixtures N2 - The combustion characteristics and explosive hazard of syngas (H2/CO)/air mixtures are affected by its exact composition and equivalence ratios. In this paper, the explosion pressure and spectral radiant intensity of free radicals were quantitatively examined for syngas with different H2 proportions ([H2 in syngas] = 0, 30, 50, 70, 100 vol%) and equivalence ratios (φ = 0.8, 1.0, 1.2, 1.4, 1.6, 2.0, 2.5). The results show that the explosion process of syngas/air mixtures can be separated into the initial slow combustion stage, the violent deflagration stage and the deflagration ending stage. The peaks of explosion pressure, pressure rise rate, OH*spectral intensity and rise rate of spectral intensity first increase and then decrease with increasing the equivalence ratio, and they reduce gradually with the decrease of H2 proportion in syngas. The H2 content in syngas greatly affects the heat release and the concentration of excited state OH*, especially for the syngas/air mixtures with smaller proportion of H2. Additionally, the presence of H2 greatly increases the deflagration index and spectral radiant index of OH* for syngas/air mixtures. The average rise rates of explosion pressure and spectral intensity of free radicals are introduced and the coupling model between them is established based on the first law of thermodynamics and the principle of chain reaction. The established model is furthermore verified by the experimental results. It is indicated that there is a linear relationship between average rise rates of explosion pressure and spectral intensity (OH*). The results can be used to improve the combustion efficiency of syngas and to guide theoretically the prevention, mitigation and control of syngas explosions. KW - Syngas KW - Hydrogen KW - Explosion pressure KW - Free radicals KW - Spectral intensity PY - 2024 U6 - https://doi.org/10.1016/j.ijhydene.2023.10.280 SN - 0360-3199 VL - 50 IS - Part A SP - 1359 EP - 1368 PB - Elsevier Ltd. AN - OPUS4-59482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -