TY - CONF A1 - Prakash, Swayam T1 - Fluorescence Spectroscopy as an Analytical Tool for Rapid and Sensitive Faecal Pigments Detection: From Fundamentals to Onsite Applications N2 - W.H.O estimated that globally at least 2 billion people use drinking water sources contaminated with faeces [1] and according to UNICEF, most of these faecal detection methods are expensive, time-consuming (18–24 h time to result),[2] and, with few exceptions, not suited for on-site analysis.[3] Hence, there is an urgent need for the development of analytical methods that allow to unequivocally test for drinking water quality directly on-site. Today, microbial detection methods primarily targeting E. coli, the major faecal indicator bacteria, are still the prevalent methods for detecting faecal contamination of drinking and recreational waters. As an alternative, Schlesinger proposed the detection of urobilin (UB), a metabolic degradation product of haemoglobin occurring in all mammals, as faecal indicator pigment (FIP) through enhancement of its weak fluorescence by complexation with Zn2+ in alcoholic media already 120 years ago.[4] However, the major limitation of this method is the only weak enhancement of the intrinsically very weak UB fluorescence in aqueous media, requiring either the use of organic solvents or very sensitive instrumentation to reach the relevant detection limits, hampering the method’s use outside of a laboratory environment.[3] In the present work, we addressed the shortcomings relying on interfacial and supramolecular chemistry as well as materials functionalization, transforming Schlesinger’s approach into a fluorometric ‘drop and detect’ assay using a smartphone coupled to a 3D-printed optical setup as a simple and portable device. A series of silanes were used to functionalize glass fibre paper and tune its hydrophobicity, exploiting the influence of matrix tailoring to enhance binding of the Zn salt used as co-reagent to UB for optimal fluorescence response. Combination of bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane and N-octyltrimethoxysilane with ZnCl2-impregnated test strips showed the best response for sensitive (nano- and sub-nanomolar concentration) smartphone-based FIP detection. The obtained fluorescence sensing results were validated with a benchtop fluorometer. Furthermore, the developed analytical method was successfully applied to the analysis of real water samples, allowing for the first time to test for faecal water contamination directly on site in a very short time of few minutes. T2 - Anakon 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Faecal contamination KW - Fluorescence KW - Metal complexes KW - Water analysis KW - Optical and chemical sensing PY - 2025 AN - OPUS4-62795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prakash, Swayam T1 - Photophysical Understanding of Urobilin and its Zinc Complexes for Water Quality Testing N2 - Faecal contaminants in water are considered serious threats for human health, due to the presence of viruses, bacteria and other harmful microorganisms.1 Urobilin (UB) is a well-known faecal pigment and can be used as a marker for faecal matter in water.2 UB is commonly present in the urine of all mammals as the catabolic end product of bilirubin degradation.2 As the only simple chemical approach to its detection, Schlesinger’s test is usually used to enhance the weak fluorescence of UB in alcoholic media by complexation with Zinc.2, 3 The major limitation of this method is the only weak enhancement of the intrinsically weak UB fluorescence in aqueous media.3 This work presents an approach to introduce different Zn salts for improved fluorescence response, where we found a clear dependence of the fluorescence yield of UB-Zn(II) complexes on the counterion of the salt in water. By employing a combination of fluorescence parameters like transition energy, fluorescence intensity, and fluorescence lifetime, a photophysical understanding of the structure and conformation of the UB-Zn(II) complexes responsible for the fluorescence enhancement in water could be gained. The possibilities of developing a sensitive analytical method based on the acquired understanding are also discussed. T2 - Central European Conference on Photochemistry CECP 2024 CY - Bad Hofgastein, Austria DA - 18.02.2024 KW - Water analysis KW - Faecal contamination KW - Metal complexes KW - Fluorescence PY - 2024 AN - OPUS4-59874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biyikal, Mustafa T1 - Development of a handheld device for the trace detection of explosives N2 - This presentation introduces a new explosives trace detector (ETD), a handheld device developed by True Detection Systems (TDS). Addressing the limitations of current handheld detectors—such as unreliable measurements and cumbersome operation— the new ETD XT-1 integrates advanced sensor technology, including a Lab-on-a-Chip, to deliver high sensitivity and accuracy. Capable of detecting trace levels of substances like TNT, TATP, and ammonium nitrate, the device offers rapid, user-friendly detection through AI/ML-enhanced algorithms. These algorithms enable precise substance identification by analyzing absorption and desorption rates, significantly reducing false positives. The XT-1 has broad applications in security, hazardous material detection, and environmental monitoring. T2 - Photonics Days Berlin Brandenburg CY - Berlin, Germany DA - 09.10.2024 KW - Explosives KW - Trace detection KW - Handheld device KW - Lab-on-a-chip KW - Fluorescence PY - 2024 AN - OPUS4-61433 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prakash, Swayam T1 - Development of a Rapid and Sensitive Fluorometric Detection Method for Urobilin Analysis for On-site Water Quality Assessment N2 - The W.H.O. estimated that globally at least 2 billion people use drinking water sources contaminated with faeces and according to UNICEF, most of these faecal contaminants detection methods are expensive, time-consuming (18–24 h time to result), and, with few exceptions, not suited for on-site analysis. Hence, there is an urgent need for the development of rapid analytical methods that allow to unequivocally assess drinking water quality directly on-site. Our approach exploits the weak fluorescence of faecal biomarkers such as urobilin (UB), which is enhanced through complexation with Zn2+ in alcoholic media and is the basis of their detection/estimation, known as Schlesinger’s test.3 However, this method is associated with limitations, as the fluorescence of Zn2+ complexes of UB in water is weak, shows time dependent loss of emission intensity and has strong interference from humic substances that naturally present in surface waters. , To circumvent these issues and achieve the rapid and sensitive on-site detection of FPs, silane-functionalized glass fibre paper test strips were developed following the ‘drop-&-detect’ concept. Drop casting of water samples containing faecal contaminants like UB on specifically functionalized test strips allowed the sensitive detection with a smartphone coupled to a 3D printed optical setup. A series of silanes were used to functionalize glass fibre paper and tune its hydrophobicity, exploiting the influence of matrix tailoring to enhance binding of the Zn2+ salt used as co-reagent to bind UB for optimal fluorometric response. A detection spot was designed by the combination of hydrophilic and hydrophobic silanes with ZnCl2-impregnated test strips. This developed analytical method showed sensitive (nano- and sub-nanomolar concentration) response for UB detection. Furthermore, it can be successfully applied to the analysis of real water samples, allowing for the first time to test for faecal contamination in fresh water directly on-site using a smartphone in only a few minutes, instead of >10 h required for the current standard, i.e., lab-based bacterial tests. T2 - 14th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kefalonia, Greece DA - 14.09.2025 KW - Faecal contamination KW - Fluorescence KW - Metal complexes KW - Water analysis KW - Optical and chemical sensing KW - Spectroscopy KW - Onsite analysis KW - Rapid testing PY - 2025 AN - OPUS4-64270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -