TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian B. A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan A1 - Hülagü, Deniz T1 - Towards automated scanning electron microscopy image analysis of core-shell microparticles for quasi-3D determination of the surface roughness N2 - Core-shell (CS) particles have been increasingly used for a wide range of applications due to their unique properties by merging individual characteristics of the core and the shell materials. The functionality of the designed particles is strongly influenced by their surface roughness. Quantitative evaluation of the roughness of CS microparticles is, however, a challenging task for Scanning Electron Microscopy (SEM). The SEM images contain two-dimensional (2D) information providing contour roughness data only from the projection of the particle in the horizontal plane. This study presents a practical procedure to achieve more information by tilting the sample holder, hence allowing images of different areas of a single particle to be recorded at different orientations under the same view angle. From the analysis of these images, quasi three-dimensional (3D) information is obtained. Three types of home-made particles were investigated: i) bare polystyrene (PS) particles, ii) PS particles decorated with a first magnetic iron oxide (Fe3O4) nanoparticle shell forming CS microbeads, iii) PS/Fe3O4 particles closed with a second silica (SiO2) shell forming core-shell-shell (CSS) microbeads. A series images of a single particle were taken with stepwise tilted sample holder up to 10° by an SEM with high-resolution and surface sensitive SE-InLens® mode. A reliable analysis tool has been developed by a script in Python to analyze SEM images automatically and to evaluate profile roughness quantitatively, for individual core-shell microparticles. Image analysis consists of segmentation of the images, identifying contour and the centre of the particle, and extracting the root mean squared roughness value (RMS-RQ) of the contour profile from the particle projection within a few seconds. The variation in roughness from batch-to-batch was determined with the purpose to set the method as a routine quality check procedure. Flow cytometry measurements provided complementary data. Measurement uncertainties associated to various particle orientations were also estimated. T2 - ICASS 5th International Conference on Applied Surface Science CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core-shell particles KW - Image analysis KW - Roughness KW - Scanning electron microscopy PY - 2022 AN - OPUS4-54774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tobias, Charlie A1 - Rurack, Knut T1 - Design and Application of Polymer-core/ Silica-shell Particles as Promising Tools for Multiplexed Assays N2 - The simultaneous detection of different analytes has gained increasing importance in recent years, especially in the fields of medical diagnostics and environmental analysis. Multiplex assays allow for a range of biomarkers or pollutants to be rapidly and simultaneously measured. Particularly suitable formats for multiplexing are bead-based assays. The beads employed need to fulfil size and density requirements, important for instance for flow cytometry, and shall exhibit a high modularity to be facilely adapted to various kinds of analytes and detection systems. Core/shell particles are ideally suited in this sense because of their modularity in design and adaptability for various (bio)analytical assays. Here, polystyrene particles coated with different kinds of shells are presented, possessing features that are useful for a multitude of assay formats. The particles in focus were coated with mesoporous and non-porous silica shells, with the possibility to introduce magnetic features to facilitate easier handling dependent on the assay format (e.g., in microfluidics). With high throughput analyses in mind, cytometric model assays were developed. Different factors such as pH or mediator salt used during shell preparation were evaluated with shell inspection by electron microscopy (SEM/TEM/EDX) being key to architectural control of the monodisperse particles. The optimized core/shell particles can be functionalized with capture biomolecules for toxins, viruses, or drugs to demonstrate particle performance. Showing how tailoring of the shell’s surface area controls sensitivity and dynamic range of the assay, an antibody-based assay for the detection of mycotoxins and a multiplex assay for the determination of DNA from different human papilloma virus (HPV) lines were developed. T2 - ICASS 2022 CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core–shell particles KW - Multiplexing KW - Surface area control KW - Cytometry PY - 2022 AN - OPUS4-54752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy (EM) images. The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. T2 - Microscopy and Microanalysis 2021 CY - Online Meeting DA - 01.08.2021 KW - MamaLoCA KW - Particle characterization KW - Electron microscopy KW - Roughness KW - Core-shell particles KW - Image processing PY - 2021 AN - OPUS4-53069 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward Determination of the Surface Roughness of Particles from a SEM Image N2 - Welcome to the poster Towards Determination of Surface Roughness from a SEM Image, a contribution from BAM in Berlin, Germany. This work is part of the MamaLoCA project, which aims to develop a biosensor for the detection of mycotoxins in cereals. Biosensors come in a great variety, one of which makes use of microscopic beads produced by homogenous coating of polystyrene microspheres. The beads are functionalized by decorating them with bioreceptors – in our case antibodies – which then specifically react with the analyte – in our case mycotoxins – and emit an electrical or optical signal. The functionalization of the beads depends on the surface roughness because this determines the amount and orientation of binders. In other words, the surface roughness affects the accessibility to the binding sites and influences device sensitivity, hence its quantitative determination is an important step in evaluating the quality of the biosensor in general. The presented solution to the problem of the estimation of surface roughness relies in the repetitive characteristics on the surface of the beads. A SEM image of the bead shows a raspberry like microparticle with a variation of grayscale values, which arise from the secondary electron yield. The principle of the measurement measures the variation of grayscale values along a circumference of a circle centred in the centre of the particle and with an arbitrary radius. The grayscale value variation along the given circumference gives the so-called z-modulation or the lateral profile. By performing Fast Fourier Transform on this profile we obtain the power spectrum as a function of the spatial frequencies through which the grayscales vary. The maximal value for spatial frequency then reveals the most common feature along one given circumference. Surface roughness then is the feature frequency in the spatial domain. This calculation is repeated for several concentric circles with different radii over the particle. The results for the same particle but recorded at two different accelerating voltages show that the applied method has a potential to reveal the roughness. Interpretation of results from an SE InLens SEM image obtained using 3 kV shows that surface roughness is about 21 nm, which is in a good agreement with an alternative method given in a different presentation. The results from the 10 kV are underestimated due to the loss of surface sensitivity on the SE InLens detection at high voltages. In conclusion, this method shows promise in determining quantitatively the surface roughness from a single SEM image and its validation is being sought using 3D SEM images and AFM methods. T2 - Microscopy and Microanalysis 2021 CY - Online Meeting DA - 01.08.2021 KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness KW - Fast Fourier Transform PY - 2021 AN - OPUS4-53089 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hülagü, Deniz A1 - Tobias, Charlie A1 - Gojani, Ardian A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Analysis of the profile roughness of core-shell microparticles by electron microscopy N2 - A particle roughness analysis tool, based on electron microscopy images (SEM and TEM). The influence of various parameters on the calculated roughness was also investigated: the setting of the proper threshold, accelerating voltage, etc. The samples were gradually tilted to extend imaging information of more than only one projection. Furthermore, the measurement uncertainty of the profile roughness of particles associated to various orientations was estimated. KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - MamaLoCa KW - Particle Characterization KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621007285 VL - 27 IS - Suppl. 1 SP - 2002 EP - 2004 PB - Cambridge University Press AN - OPUS4-53123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Rurack, Knut T1 - Combining electrochemiluminescence detection with aptamer-gated indicator releasing mesoporous nanoparticles enables ppt sensitivity for strip-based rapid tests N2 - The combination of electrogenerated chemiluminescence (ECL) and aptamer-gated indicator delivering (gAID) magnetic mesoporous silica nanoparticles embedded into glass fibre paper functionalised with poly(ethyleneglycol) and N-(3-triethoxysilylpropyl)diethanolamine allowed the development of a rapid test that detects penicillin directly in diluted milk down to 50 ± 9 ppt in <5 min. Covalent attachment of the aptamer ‘cap’ to the silica scaffold enabled pore closure through non-covalent electrostatic interactions with surface amino groups, while binding of penicillin led to a folding-up of the aptamer thus releasing the ECL reporter Ru(bpy)32+ previously loaded into the material and letting it be detected after lateral flow by a smartphone camera upon electrochemical excitation with a screen printed electrode inserted into a 3D-printed holder. The approach is simple, generic and presents advantages with respect to sensitivity, measurement uncertainty and robustness compared with conventional fluorescence or electrochemical detection, especially for point-of-need analyses of challenging matrices and analytes at ultra-trace levels. KW - Electrochemiluminiscence KW - Hybrid materials KW - Signal amplification KW - Test strip analysis KW - Penicillin PY - 2021 DO - https://doi.org/10.1002/anie.202110744 SN - 1433-7851 SN - 1521-3773 SP - 1 EP - 11 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Veiko, V. P. A1 - Karlagina, J. J. A1 - Polyakov, D. S. A1 - Samokhvalov, A. A. T1 - Reverse deposition of TI-oxides under nanosecond laser ablation of TI N2 - Processes of laser induced oxidation of metals are typically studied in the framework of heterogeneous chemical reactions occurring on the irradiated surface, which lead to the formation of dense oxide films deposited on it. Such technology has many applications like color-laser marking technology and laser recording on thin metal films for creation of diffractive optical elements . Under the conditions of strong laser ablation, another oxidation mechanism becomes possible: evaporated atoms react with oxygen in a surrounding atmosphere and the products of such reaction are redeposited back onto the substrate. The chemical and phase composition of such deposited layer, its density, morphology and structure depend on the conditions of laser ablation. By varying these conditions, the main properties of such coating can be controlled that is important for some potential application (for example in biomedicine). In our report we present the study of the processes of redeposition of oxides structure under the conditions of multipulse nanosecond laser ablation of titanium (Grade 2) in air atmosphere at normal conditions. Our experiments show that titanium-implants with such deposited oxide layer have increased biocompatibility. Modelling of chemical reaction in laser-induced plasma coupled with experimental methods of plasma optical emission spectroscopy allows us to determine the types of main chemical reactions in laser plasma as well as it influences on the plume dynamics and vapor condensation kinetics. As a result, we propose the general physical picture of reverse deposition of oxides structure under the condition of strong nanosecond laser ablation. The formation of the titanium oxide precipitate is explained not only by collisions in the plasma, but also by the chemical interaction of titanium and oxygen, which leads to the formation of а low pressure area near the substrate and additionally stimulates the reverse deposition of oxides. We expect, similar processes are valid not only for titanium but also for other metals and, possibly, semiconductors. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Emission spectroscopy KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Dual-Fluorescent Nanoparticle Probes Consisting of a Carbon Nanodot Core and a Molecularly Imprinted Polymer Shell N2 - Dual-fluorescent molecularly imprinted nanoparticles with a red-emissive carbon nanodot-doped silica core and a chlorogenic acid-imprinted fluorescent polymer layer are prepared and their use in ratiometric fluorometric analysis is described. Nanoparticle probes consisting of a shielded and stably emitting core and a shell with embedded binding sites that indicates the presence of an analyte with a change in emission allow for internally referenced measurements potentially accounting for detrimental influences from instrument drifts, light source fluctuations or sensor materials-related inhomogeneities. KW - Molecular imprinting KW - Fluorescence KW - Core-shell particles KW - Chlorogenic acid KW - Ratiometric measurement PY - 2021 DO - https://doi.org/10.1007/978-1-0716-1629-1_17 VL - 2359 SP - 195 EP - 208 PB - Springer CY - Humana, New York, NY AN - OPUS4-53336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Tobias, Charlie A1 - Hülagü, Deniz A1 - Rurack, Knut A1 - Hodoroaba, Vasile-Dan T1 - Toward determination of the surface roughness of particles from a SEM image N2 - In this communication, we address the issue of roughness measurement by investigating if the grayscale values from SEM images can be used for surface roughness determination of spherical particles. KW - MamaLoCA KW - Core-shell particles KW - Electron microscopy KW - Image processing KW - Particle characterisation KW - Roughness PY - 2021 DO - https://doi.org/10.1017/S1431927621011375 SN - 1431-9276 SN - 1435-8115 VL - 27 IS - Suplement S1 SP - 3302 EP - 3305 PB - Cambridge University Press CY - New York, NY AN - OPUS4-53283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Riedel, Jens T1 - Laser-spark ionization mass spectrometry N2 - A versatile ionization scheme for atmospheric pressure MS is presented. It is based on a quasi-continuous laser-induced plasma (LIP), generated by a 26 kHz pulsed DPSS-laser, which is ignited in front of the MS inlet. Analytes are determined with different sampling regimes, comprising either an ambient desorption/ionization mechanism, a liquid-phase or gas-phase sample introduction. The MS signal closely resembles the ionization behavior of APCI-like plasma-based sources, such as DBD or DART. Though LIPs are known to efficiently atomize/ionize any sample material, mass spectra of intact molecular ions are recorded, exhibiting low fragment-ion content. To understand this contradictory behavior, the plasma properties are investigated that lead to the formation of molecular ions. Comprehensive studies include optical emission spectroscopy, shadowgraph imaging and mass spectrometry diagnostics. The results show that the ionization of analyte does not occur in the plasma itself, but in the cold adjacent gas layer. The pulsed character of LIPs induces an expanding shockwave, which concentrically expands around the plasma core and sweeps the molecules toward the plasma edges, where they are ionized either directly by the self-emission of the hot core or via interaction with secondary reactants. However, this unidirectional transport causes a rarefaction inside the plasma center, which leads to a decrease in plasma intensity and number density. Thus, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favorable. Besides gas replenishing, we demonstrate the beneficial use of an acoustical standing wave inside an ultrasonic resonator on the performance of the LIP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark ionization KW - Laser-induced plasma KW - Ambient mass spectrometry KW - DPSS laser PY - 2018 AN - OPUS4-44492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Volmer, D. A1 - Riedel, Jens T1 - Airborne laser-spark ion source for direct microfluidic coupling N2 - The development and improvement of new ionization techniques for mass spectrometry often requires dedicated, specific sampling approaches. Recently, a novel ionization scheme for ambient MS has been introduced based on a quasi-continuous laser-induced plasma, which was ignited directly before the MS inlet. This setup combines the general advantages of ambient ionization, provides electro neutrality, sufficient duty cycle and a ubiquitous plasma medium. A high repetition rate DPSS laser (Conqueror 3-LAMBDA, Nd:YVO4, 1 - 500 kHz, average output power: 12 W at 50 kHz, Compact Laser Solutions GmbH, Germany) and the corresponding optomechanical system were installed on an optical breadboard above the inlet of a LCQ DecaXP ion trap mass spectrometer. The quasi-continuous airborne plasma was ignited inside the sprayed sample in front of the inlet via focused laser irradiation. The introduction of liquid samples into laser-induced plasmas requires higher plasma power during solvent evaporation as compared to gaseous samples. This increased demand was approached via a two-fold strategy: Firstly, an alternative, more powerful, laser plasma driven by the fundamental instead of the second harmonic wavelength was implemented, which provided a 10-fold increase of signal intensity, while maintaining the same reagent ion pattern as the previous plasma. Protonated water clusters [(H2O]nH]+, NH4+ as well as charge transfer promoting ion O2+, dominated the reagent ion mass spectrum. Secondly, a miniaturized nebulizer was used to minimize the size of the plasma quenching solvent droplets. The result of these improvements was a new and very stable ion source for direct microfluidic coupling. A variety of samples demonstrated the performance of the ion source. A laser-driven plasma was shown to be a powerful ion source for gaseous and solid samples. For the first time, liquid samples were examined using the novel source. In addition to demonstrating an improved strategy for igniting the laser plasma, this contribution also covers the miniaturization of the spray source for enhanced ionization, while minimizing sample consumption via a microfluidic spray systems. T2 - International Mass Spectrometry Conference 2018 CY - Florence, Italy DA - 26.08.2018 KW - Airborne KW - Laser-spark KW - Laser-induced plasma KW - Microfluidic KW - Mass Spectrometry PY - 2018 AN - OPUS4-45839 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - van Wasen, Sebastian A1 - Bierstedt, Andreas A1 - Riedel, Jens T1 - Airborne laser-spark for ambient desorption/ionization of liquids N2 - The development and enhancement of new ionization techniques for mass spectrometry often needs to be custom-tailored for specific sampling approaches. Here, a direct sampling ionization technique is presented for ambient mass spectrometry. Ambient mass spectrometry based techniques are typically used to analyze samples in their native states without sample pretreatment. This new design is based on a quasi-continuous airborne plasma which is ignited inside the particulate air via a focused laser irradiation. Desorption and ionization of the analyte molecules are achieved by the laser plasma without reaching the plasma. The ionization process is induced by interaction with nascent ionic fragments, electrons and ultraviolet photons in the plasma vicinity. Previously, this method was solely used for the characterization of solid and gaseous analytes. The sample introduction was occurred via thermal desorption and headspace analysis. This study focuses on the potential applicability of liquid samples. In comparison to previous approaches, the usage of liquid samples has an impact on the stability of typically used plasma of 532 nm. It was necessary to realize an alternative plasma using light of the fundamental wavelength of 1064 nm. That new plasma resulted in a significant more stable and bright plasma and the first laser plasma ionization spectrum was recorded for an analyte in the condensed phase with a mass spectrometer of type LCQ DecaXP. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Laser-spark KW - Laser-induced plasma KW - Ambient mass spectrometry KW - Ambient desorption/ionization KW - DPSS laser PY - 2018 AN - OPUS4-44493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ashokkumar, Pichandi A1 - Bell, Jérémy A1 - Buurman, Merwe A1 - Rurack, Knut T1 - Analytical platform for sugar sensing in commercial beverages using a fluorescent BODIPY "light-up" probe N2 - Because of the globally increasing prevalence of diabetes, the need for accurate, efficient and at best miniaturized automated analytical systems for sugar detection in medical diagnostics and the food industry is still urgent. The development of molecular probes for sugars based on boronic acid receptors offers an excellent alternative to the kinetically slow enzyme-based sugar sensors. Moreover, by coupling such chelating units with dye scaffolds like BODIPYs (boron–dipyrromethenes), highly fluorescent sugar sensing schemes can be realized. In this work, a boronic acid-functionalized BODIPY probe was developed, which binds selectively to fructose’s adjacent diols to form cyclic boronate esters. Placement of an amino group in direct neighborhood of the boronic acid moiety allowed us to obtain a broad working range at neutral pH, which distinguishes the probe from the majority of systems working only at pH > 8, while still meeting the desired sensitivity in the micro-molar range due to a pronounced analyte-induced fluorescence increase. To enhance the applicability of the test in the sense described above, integration with a microfluidic chip was achieved. Here, fructose was selectively detected by fluorescence with similar sensitivity in real time on chip, and an assay for the straightforward detection of sugar in (colored) sodas without sample clean-up was established. KW - BODIPY dyes KW - Boronic acid KW - Fluorescence KW - Microfluidics KW - Sugars PY - 2018 DO - https://doi.org/10.1016/j.snb.2017.09.201 SN - 0925-4005 VL - 256 SP - 609 EP - 615 PB - Elsevier CY - Amsterdam AN - OPUS4-43102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Rurack, Knut A1 - Bartholmai, Matthias A1 - Bell, Jérémy T1 - On-Site Analytical Tool Based on Crude Oil Fluorescence and Chemometrics for the Rapid Determination of the Nature and Essential Properties of Oil Spills N2 - With the reduction of large oil spills because of stricter regulations and safety measures, the question of how to manage smaller oil spills arises. Few on-site analytical tools are available for first responders or other law enforcement personnel to rapidly test for crude oil in the early management of localized polluted areas. The approach reported here relies on well-described computer-assisted multivariate data analysis of the intrinsic fluorescence fingerprints of crude oils to build a multivariate model for the rapid classification of crude oils and the prediction of their properties. Thanks to a dedicated robust portable reader, the method allowed classification and accurate prediction of various properties of crude oil samples like density (according to API, the American Petroleum Institute and viscosity as well as composition parameters such as volume fractions of paraffins or aromatics. In this way, autonomous operation in on-site or in-the-field applications becomes possible based on the direct (undiluted and untreated) measurement of samples and a rapid, tablet-operated readout system to yield a robust and simple analytical test with superior performance. Testing in real-life scenarios allowed the successful classification and prediction of a number of oil spill samples as well as weathered samples that closely resemble samples collected by first responders. KW - Oil spills KW - Fluorescence KW - PCA KW - Petroleum KW - Rapid test KW - Portable PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595442 DO - https://doi.org/10.1021/acsestwater.3c00648 VL - 4 IS - 2 SP - 621 EP - 627 PB - American Chemical Society (ACS) AN - OPUS4-59544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wen, Keqing A1 - Gorbushina, Anna A. A1 - Schwibbert, Karin A1 - Bell, Jérémy T1 - A microfluidic platform for monitoring biofilm formation in flow under defined hydrodynamic conditions N2 - Bacterial adhesion on surfaces of medical, water and food applications may lead to infections, water or food spoilage and human illness. In comparison to traditional static and macro flow chamber assays for biofilm formation studies, microfluidic chips allow in situ monitoring of biofilm formation under various flow regimes, have better environment control and smaller sample requirements. In this work, a novel microfluidic platform is developed to investigate biofilm adhesion under precisely controlled bacteria concentration, temperature, and flow conditions. This platform central unit is a single-inlet microfluidic flow cell with a 5 mm wide chamber designed and tested to achieve ultra-homogenous flow in the central area of chamber. Within this area, defined microstructures are integrated that will disturb the homogeneity of the flow, thus changing bacterial adhesion pattern. Here we present the monitoring of bacterial biofilm formation in a microfluidic chip equipped with a microstructure known as micro-trap. This feature is based on a 3D bacteria trap designed by Di Giacomo et al. and successfully used to sequester motile bacteria. At first, fluorescent particles similar in size to Escherichia coli (E. coli) are used to simulate bacteria flow inside the flow cell and at the micro-trap. The turbulences induced by the trap are analyzed by imaging and particle tracking velocimetry (PTV). Secondly, the model strain E. coli TG1, ideal and well described for biofilm studies, is used to analyze biofilm formation in the micro-trap. Therefore, a stable fluorescent strain E. coli TG1-MRE-Tn7-141 is constructed by using Tn7 transposon mutagenesis according to the method described by Schlechter et al. Sequestering of E. coli cells within the micro-trap was followed using epifluorescence microscopy. The novel microfluidic platform shows great potential for assessment of bacterial adhesion under various flow regimes. The performance of structural feature with respect to the generation of turbulences that promote or reduce bacterial adhesion can be systematically examined. The combination of flow analysis and fluorescent strain injection into the microfluidic chip shows that the micro-trap is useful for capturing bacteria at defined positions and to study how flow conditions, especially micro-turbulences, can affect biofilm formation. It represents a powerful and versatile tool for studying the relation between topography and bacteria adhesion. T2 - International Conference on Miniaturized Systems for Chemistry and Life Sciences CY - Katowice, Poland DA - 15.10.2023 KW - Biofilm KW - E. coli KW - Microfluidics KW - Velocimetry KW - Fluorescence PY - 2023 AN - OPUS4-59593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - 2023 IEEE SENSORS Conference CY - Vienna, Austria DA - 29.10.2023 KW - Lab-on-a-Chip KW - Nerve agents KW - Hand-held KW - Fluorescence KW - Toxic industrial chemicals PY - 2023 UR - https://ieeexplore.ieee.org/document/10325263 SN - 979-8-3503-0387-2 DO - https://doi.org/10.1109/SENSORS56945.2023.10325263 SP - 1 EP - 4 PB - IEEE CY - New York AN - OPUS4-59367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez Garcia, Maria Amparo A1 - Bell, Jeremy A1 - Rurack, Knut T1 - Characterization and testing of commercial photo-resins for the fabrication of free-form optical elements with standard LCD 3D printer for advanced opto-biosensing applications N2 - Optical biosensors often show remarkable performance and can be configured in many ways for sensitive, selective, and rapid measurements. However, the high-quality and advanced optical assemblies required to read out the sensor signals, for example, Total Internal Reflection Fluorescence (TIRF) or Supercritical Angle Fluorescence (SAF) microscopy, which necessitate complex and expensive optical elements. Particularly in optical method development, researchers or developers are often confronted with limitations because conventional manufacturing processes for optical elements can be restrictive in terms of design, material, time, and cost. Modern and high-resolution 3D printing techniques make it possible to overcome these challenges and enable the fabrication of individualized and personalized free-form optical components, which can reduce costs and significantly shorten the prototyping timeline—from months to hours. In this work, we use a modern, high-resolution (< 22 µm) commercial Liquid Crystal Display (LCD)-based 3D printer, for which we spectroscopically and physically characterized commercial photo-resins printable with the LCD technique in the first step (Figure 1). The aim was not only to produce a printed element with a high surface quality that mitigates the inner filter effects caused by attenuation (high optical density (OD) due to reflection and scattering), but also to select a material with a high refractive index (RI>1.5) and high transmission values (>90% transmittance) in the visible to near-infrared spectral range (approx. 450 – 900 nm) that exhibits little or no autofluorescence. Using a selection of suitable resins, lenses and free-form optical elements were manufactured for comparison with standard glass or plastic counterparts. T2 - Europt(r)ode XVI CY - Birmingham, England DA - 24.03.2024 KW - 3D-printing KW - Optics KW - Photopolymerization KW - Sensors KW - Rapid prototyping PY - 2024 AN - OPUS4-59875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prakash, Swayam A1 - Bell, Jeremy A1 - Rurack, Knut T1 - Photophysical Understanding of Urobilin and its Zinc Complexes for Water Quality Testing N2 - Faecal contaminants in water are considered serious threats for human health, due to the presence of viruses, bacteria and other harmful microorganisms.1 Urobilin (UB) is a well-known faecal pigment and can be used as a marker for faecal matter in water.2 UB is commonly present in the urine of all mammals as the catabolic end product of bilirubin degradation.2 As the only simple chemical approach to its detection, Schlesinger’s test is usually used to enhance the weak fluorescence of UB in alcoholic media by complexation with Zinc.2, 3 The major limitation of this method is the only weak enhancement of the intrinsically weak UB fluorescence in aqueous media.3 This work presents an approach to introduce different Zn salts for improved fluorescence response, where we found a clear dependence of the fluorescence yield of UB-Zn(II) complexes on the counterion of the salt in water. By employing a combination of fluorescence parameters like transition energy, fluorescence intensity, and fluorescence lifetime, a photophysical understanding of the structure and conformation of the UB-Zn(II) complexes responsible for the fluorescence enhancement in water could be gained. The possibilities of developing a sensitive analytical method based on the acquired understanding are also discussed. T2 - Central European Conference on Photochemistry CECP 2024 CY - Bad Hofgastein, Austria DA - 18.02.2024 KW - Water analysis KW - Faecal contamination KW - Metal complexes KW - Fluorescence PY - 2024 AN - OPUS4-59874 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - Laser Metal Deposition (LMD) in ProMoAM N2 - During the last years Additive Manufacturing (AM) became increasingly important. That becomes clear, while looking at the advantages like a high degree of freedom concerning the geometry of the parts, low waste rates and a reduction of postprocessing, to name just three. Laser Metal Deposition (LMD) is one of those AM- methods. It can be used for different kinds of applications, e.g. repair weldings of used parts, coatings to increase the corrosion resistance or to build up new components. But for all applications, the production of defect free parts is crucial. Therefore, different kinds of non-destructive monitoring techniques were tested for the LMD-process to identify their potential to detect imperfections in-situ. T2 - Workshop on Additive Manufacturing: Process, materials, testing, simulation & implants CY - Berlin, Germany DA - 13.05.2019 KW - Acoustic Emission KW - LMD KW - Thermography KW - Optical Emission Spectroscopy PY - 2019 AN - OPUS4-49657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhe, L. A1 - Ickert, Stefanie A1 - Beck, S. A1 - Linscheid, M. W. T1 - A new strategy for metal labeling of glycan structures in antibodies N2 - Quantitative analysis of complex proteins is a challenging task in modern bioanalytical chemistry. Commonly available isotope labels are still suffering from limitations and drawbacks, whereas new metal labels open numerous possibilities in mass spectrometric analyses. In this work, we have developed a newmetal labeling strategy to tag glycan structures of proteins, more particularly antibodies. The oligosaccharide glycans were selectively trimmed to the last N-acetylglucosamine to which an artificial azide containing galactose residue was bound. This azide can be used for subsequent cycloaddition of an alkyne. Therefore, we developed a lanthanide-containing macrocyclic reagent to selectively connect to this azido galactose. In summary, the glycan structures of an antibody can be labeled with a metal functionality using this approach. Furthermore, the functionality of the antibodies can be fully maintained by labeling the Fc glycans instead of using labeling reagents that target amino or thiol groups. This approach enables the possibility of using elemental, besides molecular mass spectrometry, for quantitative analyses or imaging experiments of antibodies in complex biological samples. KW - Antibody KW - Metal labeling KW - Glycans KW - DOTA KW - Lanthanide PY - 2018 DO - https://doi.org/10.1007/s00216-017-0683-1 SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 1 SP - 21 EP - 25 PB - Springer AN - OPUS4-44000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Hofmann, J. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Charge-induced geometrical reorganization of DNA oligonucleotides studied by tandem mass spectrometry and ion mobility N2 - Mass spectrometry is applied as a tool for the elucidation of molecular structures. This premises that gas-phase structures reflect the original geometry of the analytes, while it requires a thorough understanding and investigation of the forces controlling and affecting the gas-phase structures. However, only little is known about conformational changes of oligonucleotides in the gas phase. In this study, a series of multiply charged DNA oligonucleotides (n¼15–40) has been subjected to a comprehensive tandem mass spectrometric study to unravel transitions between different ionic gas-phase structures. The nucleobase sequence and the chain length were varied to gain insights into their influence on the geometrical oligonucleotide organization. Altogether, 23 oligonucleotides were analyzed using collision-induced fragmentation. All sequences showed comparable correlation regarding the characteristic collision energy. This value that is also a measure for stability, strongly correlates with the net charge density of the precursor ions. With decreasing charge of the oligonucleotides, an increase in the fragmentation energy was observed. At a distinct charge density, a deviation from linearity was observed for all studied species, indicating a structural reorganization. To corroborate the proposed geometrical change, collisional cross-sections of the oligonucleotides at different charge states were determined using ion mobility-mass spectrometry. The results clearly indicate that an increase in charge density and thus Coulomb repulsion results in the transition from a folded, compact form to elongated structures of the precursor ions. Our data show this structural transition to depend mainly on the charge density, whereas sequence and size do not have an influence. KW - Ion mobility KW - Collision-induced dissociation KW - Mass spectrometry KW - Oligonucleotide KW - Fragmentation KW - Tandem-MS PY - 2018 DO - https://doi.org/10.1177/1469066717746896 SN - 1469-0667 SN - 1751-6838 VL - 24 IS - 2 SP - 225 EP - 230 PB - Sage AN - OPUS4-44429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Negative nucleotide ions as sensitive probes for energy specificity in collision‐induced fragmentation in mass spectrometry N2 - Rationale: The most commonly used fragmentation methods in tandem mass spectrometry (MS/MS) are collision‐induced dissociation (CID) and higher energy collisional dissociation (HCD). While in CID the preselected ions in the trap are resonantly (and m/z exclusively) excited, in HCD the entire m/z range experiences the dissociative acceleration. The different excitation is reflected in different fragment distributions. Methods: As a test‐bed for particularly pronounced fragmentation specificity, here MS/MS experiments on several 4‐mer oligonucleotides were conducted employing both collision methods and the results were thoroughly compared. Oligonucleotides are shown to be sensitive probes to subtle changes, especially in the negative ion mode. A detailed analysis of these differences reveals insight into the dissociation mechanics. Results: Thedifferencesarerepresentedinheat‐maps,whichallowforadirectvisualinspection oflargeamountsofdata.Inthesefalsecolourrepresentationsthe,sometimessubtle,changesinthe individual dissociation product distributions become distinct. Another advantage of these graphic plots can be found in the formation of systematic patterns. These patterns reflect trends in dissociation specificity which allow for the formulation of general rules in fragmentation behavior. Conclusions: Instruments equipped with two different excitation schemes for MS/MS are today widely available. Nonetheless, direct comparisons between the individual results are scarcely made. Such comparative studies bear a powerful analytical potential to elucidate fragmentation reaction mechanism. KW - DNA KW - Tandem MS KW - HCD KW - CID PY - 2018 DO - https://doi.org/10.1002/rcm.8062 SN - 0951-4198 SN - 1097-0231 VL - 32 IS - 7 SP - 597 EP - 603 PB - Wiley & Sons, Ltd. AN - OPUS4-44430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Die 3D-Mikrofluidik mit molekular geprägten Polymerpartikeln eröffnet neue Möglichkeiten der selektiven Pestizid-Bestimmung in Wasser N2 - 2,4-D ist ein in der Landwirtschaft weitverbreitetes Pflanzenschutzmittel, das Grundwasser kontaminiert, sich innerhalb der Nahrungskette anreichert und Umwelt- und Gesundheitsprobleme verursachen kann. Hier stellen die Autoren ein mikrofluidisches Nachweissystem für die Echtzeitdetektion von 2,4-D in Grund- oder Oberflächenwasser vor. Es basiert auf der Kombination 2,4-D-selektiver, fluoreszierender, molekular geprägter Polymer-(MIP-)Mikropartikel mit einem 3D-mikrofluidischen Extraktions- und Detektionssystem. Messungen vor Ort sollen damit künftig möglich sein. KW - 3D-Mikrofluidik KW - Sensorpartikel KW - MIP KW - Pestizid PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-444781 UR - https://www.labo.de/epaper/LA0318/index.html SN - 0344-5208 IS - 3 SP - 10 EP - 13 PB - WEKA Business Medien GmbH AN - OPUS4-44478 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS system using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - European Mass Spectrometry Conference CY - Saarbrücken, Germany DA - 10.03.2018 KW - Tandem MS KW - Vacuum Ultraviolet PY - 2018 AN - OPUS4-44484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kislenko, Evgeniia A1 - Wagner, Sabine A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Molecularly Imprinted Polymers for Fluorescence Sensing of the Herbecide 2,4-D N2 - Application of pesticides is ubiquitous to better manage agricultural production. However, most of these compounds are harmful or toxic for humans and highly persistent in the environment, even in the crops themselves. Therefore, the rapid and reliable monitoring of pesticide residues is a very important area of environmental analysis. If conducted directly in the field, the use of fluorescence sensing methods is particularly attractive, because they allow for sensitive and rapid analyses while being very versatile. Recently, molecularly imprinted polymers (MIPs) have emerged as promising candidates for the primary sensing phase. Their robustness, low price and tunability render them an attractive alternative to more conventional biosensors based on antibodies. At present, a number of MIP formats are available besides the initial bulk polymer monoliths. Core/shell micro- and nanoparticles are especially suitable for sensor applications. A thin shell provides many advantages compared to a bulk polymer, such as fast diffusion of analyte, homogeneity of binding cavities and a higher number of binding sites closer to the surface. A strategy for sensory MIP synthesis is to introduce the fluorophore covalently into the polymer layer. The fluorescent probe monomer may thus consist of a fluorophore unit, a polymerizable unit and a recognition unit. One of the issues in targeting acidic pesticides such as 2,4-D is the fact that usually their deprotonated form is used for imprinting in organic solvents, commonly as the tetraalkylammonium salt. This approach harbours drawbacks when it comes to analytical rebinding, because real samples seldom contain such counterions. In our group, we have thus developed a new fluorescent probe monomer containing the 2-aminopyridine moiety, which forms strong enough intermolecular hydrogen bonds with the carboxylic acid group of neat 2,4-D. During a titration of the probe monomer with the analyte, hydrogen bond formation is indicated by spectral shifts and fluorescence enhancement. Crystallography studies verified complex formation. The higher fluorometric response of the core-shell MIP compared to a non-imprinted control polymer proved successful imprinting. Here, we will discuss the pros and cons of neutral molecule vs. salt imprinting, potentially expanding the possibilities of fluorescent sensory MIPs. T2 - MIP2018 CY - Hebrew University, Jerusalem, Israel DA - 24.06.2018 KW - Molecularly imprinted polymers KW - 2,4-D KW - Fluorescence KW - Sensing PY - 2018 AN - OPUS4-45598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Johann, Sergei A1 - Neumann, Patrick P. A1 - Kohlhoff, Harald A1 - Rurack, Knut T1 - Embedded Fluorescence-Based Optical System for the Detection of Total Petroleum Hydrocarbons in Water and Soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil. The test is based on fluorescence emission of a 4-dimethylamino-4′-nitrostilbene derivative (4-DNS-OH). This fluorescent molecular rotor is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions with water and providing a robust support for use in test-strip fashion. For the fluorescence detection a portable sensor device was developed, featuring two excitation LEDs, a micro-spectrometer and Bluetooth control. A limit of detection of at least 6 ppm of TPH in water was demonstrated. T2 - Europtrode 2018 CY - Naples, Italy DA - 25.03.2018 KW - Water KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Oil PY - 2018 AN - OPUS4-45605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mansurova, Maria A1 - Bell, Jérémy A1 - Gotor, Raul A1 - Rurack, Knut T1 - Fluorescence-based optical system for the detection of total petroleum hydrocarbons in water and soil with smartphone read-out compatibility - Spectrocube, a sensor for rapid oil test in water and soil N2 - Contamination of natural bodies of water with oil and lubricants (or generally, hydrocarbon derivatives such as petrol, fuel and others) is a commonly found phenomenon around the world due to the extensive production, transfer and use of fossil fuels. The timely identification of these contaminants is of utmost importance, since they directly affect water quality and represent a risk for wildlife and human health even in trace amounts. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPH) in water and soil, the "Spectrocube". The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 4-DNS-OH dye. This dye is embedded in a hydrophobic polymeric matrix (PVDF), avoiding interactions of water with the dye and providing a robust support for use in test-strip fashion. The test-strip’s fluorescence intensity increases linearly at low concentrations of TPH, reaching a saturation value at higher concentrations. For excitation and evaluation of the test-strip fluorescence, a simple miniature optical system was designed. The system works semi-quantitatively as solvent-free TPH detection kit, as well as quantitatively when using a simple cyclopentane extraction step. To simplify the fluorescence read-out, the device is coupled to a tablet computer via Bluetooth, running a self-programmed software ("app"). T2 - Oil Spill India 2018 CY - New Delhi, India DA - 05.07.2018 KW - Oil analysis KW - Water analysis KW - Fluorescence KW - Spectrocube KW - Rapid test KW - Field test KW - Spectroscopy KW - Sensor PY - 2018 AN - OPUS4-45606 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela T1 - Design and synthesis of lateral flow tests containing antibody-gated materials N2 - Methods for the rapid and sensitive detection of target analytes are gaining importance in medical diagnostics and environmental monitoring, in the security, occupational health and safety as well as food sectors. Among all the methods employed for rapid tests, lateral flow assays (LFAs) are the most commonly used. However, some drawbacks are that most of these tests either indicate the analyte only indirectly, and in other cases the sensitivity is not high enough. Keeping in mind these limitations, the use of stimuli-responsive materials for small-molecule sensing relying on chemical signal amplification and utilizing specific interactions between biomolecules such as antibodies and the corresponding analytes are particularly attractive. Such materials can also be incorporated on paper strips for lateral-flow assays in a straightforward manner. These sensing materials comprise mesoporous silica nanoparticles loaded with indicator molecules and containing certain hapten derivative molecules covalently grafted at the surface, which bind to the respective antibody and inhibit the release of a dye as reporter (Scheme 1). In presence of the designated analyte, a displacement of the antibody from the material is observed, allowing the release of dye. Because a large number of indicator molecules can be released when a single analyte molecule binds to an antibody cap, a strong signal amplification is observed. Considering the modularity, high sensitivity and selectivity of these antibody-gated indicator delivery systems, the presentation discusses general aspects of system design as well as analytical performance and highlights the integration into a lateral-flow assay, showing as an example the determination of the explosives TATP, TNT and PETN with a fluorescence readout, in single-substance and multiplexing modes. T2 - International Webinar on Biosensors and Bioelectronics CY - Online meeting DA - 20.07.2020 KW - Multiplexing detection KW - Rapid testing methods KW - Gated hybrid materials KW - Lateral flow tests KW - Explosives detection PY - 2020 UR - https://europeanmeetings.net/conferences/biosensor-bioelectronics AN - OPUS4-51038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krahl, T. A1 - Beer, F. A1 - Relling, A. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Kemnitz, E. T1 - Toward Luminescent Composites by Phase Transfer of SrF2 :Eu3+ Nanoparticles Capped with Hydrophobic Antenna Ligands N2 - Transparent dispersions of hydrophobic SrF2 :Eu3+ nanoparticles in cyclohexane with up to 20% europium were obtained by fluorolytic sol-gel synthesis followed by Phase transfer into cyclohexane through capping with sodium dodecylbenzenesulfonate (SDBS). The particles were characterized by TEM, XRD and DLS as spherical objects with a diameter between 6 and 11 nm in dry state. 1H-13CP MAS NMR experiments revealed the binding of the anionic sulfonate head group to the particle surface. The particles show bright red luminescence upon excitation of the aromatic capping agents, acting as antennas for an Energy transfer from the benzenesulfonate unit to the Eu3+ centers in the particles. This synthesis method overcomes the current obstacle of the fluorolytic sol-gel synthesis that transparent dispersions can be obtained directly only in hydrophilic solvents. To demonstrate the potential of such hydrophobized alkaline-earth fluoride particles, transparent luminescent organic-inorganic composites with 10% SrF2 :Eu3+ embedded into polyTEGDMA, polyBMA, poly-BDDMA and polyD3MA, respectively, were prepared, endowing the polymers with the luminescence features of the nanoparticles. KW - Nanoparticles KW - Fluorides KW - Sol-gel process KW - Organic-inorganic hybrid composites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508668 DO - https://doi.org/10.1002/cnma.202000058 SP - 1 EP - 11 PB - Wiley AN - OPUS4-50866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Johann, Sergej A1 - Mansurova, M. A1 - Kohlhoff, Harald A1 - Tiebe, Carlo A1 - Bell, Jérémy A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Semi-automatic Measurement Device for Long-Term Monitoring of Ammonia in Gas Phase N2 - The present paper describes the development of a sensor material that changes its fluorescence in the presence of gaseous ammonia in a relevant concentration range. The implementation into a semi-automatic gas measurement device enables low-cost, precise, simple and fast monitoring of low con-centrations of harmful gases, like ammonia, and hence can help to improve the climate monitoring in livestock housing, barns or stables. T2 - SMSI 2020 CY - Meeting was canceled KW - Spectroscopy KW - Emmbedded sensor KW - Environment KW - Air quality PY - 2020 DO - https://doi.org/10.5162/SMSI2020/B5.4 SP - 133 EP - 134 AN - OPUS4-50867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pignatelli, Giuseppe A1 - Strasse, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Optical Sensor for Monitoring Quality of 3D Metal Printing N2 - Additive Manufacturing (AM) becomes widespread in many technological fields including the precise machining of steel. To assure quality of final products, thorough monitoring of online process is required. We test several monitoring techniques during the AM printing to quickly detect and possibly correct flaws while building a workpiece. Here we show how optical emission spectroscopy can be used to recognize defects that are artificially introduced on a steel printing substrate. T2 - Scix 2020 CY - Online meeting DA - 12.10.2020 KW - Additive manufacturing KW - Spectroscopy KW - Analytical chemistry PY - 2020 AN - OPUS4-51858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J T1 - Spatiotemporal spectroscopic characterization of plasmas induced by non-orthogonal laser ablation N2 - Ablation geometry significantly affects the plasma parameters and the consequent spectroscopic observations in laser-induced breakdown spectroscopy. Nevertheless, plasmas induced by laser ablation under inclined incidence angles are studied to a significantly lesser extent compared to plasmas induced by standard orthogonal ablation. However, inclined ablation is prominent in stand-off applications, such as the Curiosity Mars rover, where the orthogonality of the ablation laser pulse cannot be always secured. Thus, in this work, we characterize non-orthogonal ablation plasmas by applying plasma imaging, tomography, and spectral measurements. We confirm earlier observations according to which non-orthogonal ablation leads to a laser-induced plasma that consists of two distinct parts: one expanding primarily along the incident laser pulse and one expanding along the normal of the sample surface. Moreover, we confirm that the former emits mainly continuum radiation, while the latter emits mainly sample-specific characteristic radiation. We further investigate and compare the homogeneity of the plasmas and report that inclined ablation affects principally the ionic emissivity of laser-induced plasmas. Overall, our results imply that the decreased fluence resulting from inclined angle ablation and the resulting inhomogeneities of the plasmas must be considered for quantitative LIBS employing non-orthogonal ablation. KW - Radon transformation KW - Laser induced plasma KW - Plasma tomography PY - 2020 DO - https://doi.org/10.1039/d0an01996h VL - 146 IS - 3 SP - 920 EP - 929 PB - The Royal Society of Chemistry AN - OPUS4-51774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Ashokkumar, Pichandi A1 - Shen, Z. A1 - Rurack, Knut T1 - On the Aggregation Behaviour and Spectroscopic Properties of Alkylated and Annelated BoronDipyrromethene (BODIPY) Dyes in Aqueous Solution N2 - The tendency of boron-dipyrromethene (BODIPY) dyes to associate in water is well known, and usually a cause for inferior fluorescence properties. Synthetic efforts to chemically improve BODIPYs’ water solubility and minimize this problem have been numerous in the past. However, a deeper understanding of the phenomena responsible for fluorescence quenching is still required. Commonly, the spectroscopic behaviour in aqueous media has been attributed to aggregate or excimer formation, with such works often centring on a single BODIPY family. Herein, we provide an integrating discussion including very diverse types of BODIPY dyes. Our studies revealed that even subtle structural changes can distinctly affect the association behaviour of the fluorophores in water, involving different photophysical processes. The palette of behaviour found ranges from unperturbed emission, to the formation of H or J aggregates and excimers, to the involvement of tightly bound, preformed excimers. These results are a first step to a more generalized understanding of spectroscopic properties vs. structure, facilitating future molecular design of BODIPYs, especially as probes for biological applications. KW - Aggregates KW - BODIPY KW - Excimers KW - Fluorescence KW - Photophysics PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-497771 DO - https://doi.org/10.1002/cptc.201900235 SN - 2367-0932 VL - 4 IS - 2 SP - 120 EP - 131 PB - WILEY-VCH CY - Weinheim AN - OPUS4-49777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shabanov, Sergej V. A1 - Gornushkin, Igor B. T1 - Geometrical effects in data collection and processing for calibration-free laser-induced breakdown spectroscopy N2 - Data processing in the calibration-free laser-induced breakdown spectroscopy (LIBS) is usually based on the solution of the radiative transfer equation along a particular line of sight through a plasma plume. The LIBS data processing is generalized to the case when the spectral data are collected from large portions of the plume. It is shown that by adjusting the optical depth and width of the lines the spectra obtained by collecting light from an entire spherical homogeneous plasma plume can be least-square fitted to a spectrum obtained by collecting the radiation just along a plume diameter with a relative error of 10 −11 or smaller (for the optical depth not exceeding 0.3) so that a mismatch of geometries of data processing and data collection cannot be detected by fitting. Despite the existence of such a perfect least-square fit, the errors in the line optical depth and width found by a data processing with an inappropriate geometry can be large. It is shown with analytic and numerical examples that the corresponding relative errors in the found elemental number densities and concentrations may be as high as 50% and 20%, respectively. Safe for a few found exceptions, these errors are impossible to eliminate from LIBS data processing unless a proper solution of the radiative transfer equation corresponding to the ray tracing in the spectral data collection is used. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1016/j.jqsrt.2017.09.018 SN - 0022-4073 SN - 1879-1352 VL - 204 SP - 190 EP - 205 PB - Elsevier AN - OPUS4-43131 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Descalzo, Ana B. A1 - Xu, H.-J. A1 - Shen, Z. A1 - Rurack, Knut T1 - Influence of the meso-substituent on strongly red emitting phenanthrene-fused boron–dipyrromethene (BODIPY) fluorophores with a propeller-like conformation N2 - Highly emissive phenanthrene-fused boron–dipyrromethene (PBDP) dyes have been spectroscopically characterized in a series of solvents. The influence of different substituents (-H, -I, -CN, -DMA or a 15C5-crown ether) in the para-position of a phenyl ring attached to the meso-position of the BODIPY core is discussed. This family of dyes has an intense emission at lambda > 630 nm, with fluorescence quantum yields between 0.7 and 1.0 in all solvents studied, except in the case of the dimethylamino-substituted derivative, PBDP-DMA, which undergoes excited-state intramolecular charge transfer (CT), leading to broadband dual fluorescence in highly polar solvents. Introduction of a weaker electron donor such as a benzocrown to the meso-position is not able to trigger a second (charge or electron transfer) process and, interestingly, heavy atom (iodine, PBDP-I derivative) substitution at that moiety does also not have a relevant influence on the photophysics, i.e., enhanced intersystem crossing was not observed. Electrochemical studies of PBDP-DMA complement the data reported and stress the fact that the decrease in fluorescence of PBDP-DMA in highly polar solvents is due to an excited-state CT process rather than to a photoinduced electron transfer (PET). KW - BODIPY dyes KW - Charge transfer KW - Fluorescence KW - Ring fusion PY - 2018 DO - https://doi.org/10.1016/j.jphotochem.2017.10.034 SN - 1010-6030 VL - 352 SP - 98 EP - 105 PB - Elsevier CY - Amsterdam AN - OPUS4-43100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gawlitza, Kornelia A1 - Fischer, Tobias A1 - Rurack, Knut T1 - Chemical functionalization for quantitative spectroscopic labeling on macroscopically flat surfaces N2 - This chapter highlights the application of chemical derivatization (CD) to facilitate the quantification of surface functional groups being an important issue for a wide field of applications. The selective attachment of a chemical label to a surface functional group being afterwards exclusively detectable by a highly sensitive technique overcomes the problem of characterizing low amounts of functional groups on macroscopically flat surfaces. The most frequently employed methods include CD X-ray photoelectron spectroscopy, ultraviolet/visible absorption, and fluorescence spectroscopy, as well as time-of-flight secondary ion mass spectrometry. Herein, the basic conditions for the different techniques regarding the specific surface functional group which need to be quantified are discussed. Additionally, the substrate highly influences the compatibility of the corresponding method. Because not just the quantification but also the preparation of the desired application is important, a summary of different preparation methods for glass, polymer and gold substrates is presented. KW - Chemical derivatization KW - Fluorescence KW - Surface group quantification KW - Time-of-flight secondary ion mass spectrometry KW - UV/vis spectroscopy KW - X-ray photoelectron spectroscopy PY - 2018 SN - 978-0-12-409547-2 DO - https://doi.org/10.1016/B978-0-12-409547-2.13191-9 SP - 1 PB - Elsevier AN - OPUS4-43767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Developments Towards a fluorometric sensing device for multiple hazardous gases N2 - Fluorometric sensing is a versatile approach for trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them as superior active component for the preparation of optical sensor devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents,illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary approach presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic, which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. Further steps in the project include the assembly of instruments for test-atmosphere generation, the referencing of the sensor system, development and implementation of an optical setup, and the testing of the prototype device under laboratory conditions and in the field. In this presentation, we give an overview over the recent developments on this topic in our groups, including fluorophore designs investigated for the detection of benzene, ammonia, and hydrogen sulfide as well as approaches for the design of the sensing device. T2 - EUROPT(R)ODE XIV CY - Neapel, Italy DA - 25.03.2018 KW - Gas sensor KW - Fluorometric sensing KW - BODIPY dye PY - 2018 AN - OPUS4-45645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bartelmeß, Jürgen A1 - Gawlitza, Kornelia A1 - Kraus, Werner A1 - Chlvi-Iborra, Katherine A1 - Tiebe, Carlo A1 - Noske, Reinhard A1 - Bartholmai, Matthias A1 - Rurack, Knut T1 - Developments Towards a BODIPY-based fluorometric sensing device for multiple hazardous gases N2 - Fluorometric sensing is a versatile approach for trace analysis outside of the laboratory, requiring suitable sensor materials and their integration into sensing devices. The versatility of fluorophores as probes, especially in terms of the possibility to tailor their optical as well as their recognition properties by synthetic modifications in a wide range, renders them as superior active component for the preparation of optical sensing devices. Recent works at BAM in this field include, for example, the detection of nerve gas agents, illustrating impressively the aforementioned benefits of fluorophores in optical sensing applications. In the interdisciplinary project presented here, we target hazardous gases such as ammonia, benzene, and hydrogen sulfide, next to others, which pose a major threat to human health and environmental safety and for which the availability of a sensitive and reliable detection method is highly desirable. The dyes presented follow a “turn-on” fluorescence schematic, which allows for the selective and sensitive detection of the respective gaseous analyte. The immobilization of the probe in polymeric matrices is then the next step toward the fabrication of a prototype device for molecular sensing. Further steps in the project include the assembly of instruments for test-atmosphere generation, the referencing of the sensor system, development and implementation of an optical setup, and the testing of the prototype device under laboratory conditions and in the field. In this presentation, we give an overview over the recent developments on this topic in our groups. Highlights are hydrogen sulfide sensitive, BODIPY based transition metal complexes, which allow for a sensitive as well as selective detection of the toxic gas. In addition, we present a novel class of highly substituted BODIPY derivatives – pocket-BODIPYs – which are of a synthetically high versatility and can readily be modified to create pockets in the periphery of the molecule of defined geometries. This is illustrated on the successful encapsulation of benzene by a pocket-BODIPY derivative, confirmed by X-ray crystallographic analysis as well as by further spectroscopic and analytical methods. T2 - International Conference on Porphyrins and Phthalocyanins (ICPP-10) CY - Munich, Germany DA - 01.07.2018 KW - BODIPY dye KW - Fluorometric sensing KW - Gas sensing PY - 2018 AN - OPUS4-45646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heller, Benedikt A1 - Rurack, Knut A1 - Biyikal, Mustafa T1 - Reaction-based detection of cyanide anions using a non-fluorescent polymer via “turn-on” fluorescence N2 - Cyanide is known to be a very hazardous and toxic substance. Through the binding to cytochrome oxidase it inhibits the oxygen utilization in cells. The LD50 of cyanide is as low as 1.0 mg/kg. Therefore it is inalienable to develop sensing methods to detect cyanide with a very high selectivity and sensitivity. In our group we developed a non-fluorescent monomer which is able to detect cyanide-anions with very high selectivity and sensitivity based on a “turn-on” fluorescence method. As cyanide-source we used tetrabutylammoniumcyanide (TBAC). Using an excitation wavelength of 600 nm the increase in fluorescence at 642 nm is strictly selective with cyanide-anions. Different anions like fluoride, hydroxide or acetate show no increase at all. With this new detection system, concentrations as low as 1.6 nM can be detected. T2 - Europ(t)rode 2018 CY - Naples, FL, USA DA - 25.03.2018 KW - Cyanide detection KW - Fluorescence KW - Optical sensing PY - 2018 AN - OPUS4-45663 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ickert, Stefanie A1 - Riedel, Jens A1 - Beck, S. A1 - Linscheid, M. W. T1 - Vacuum ultraviolet light as a new Tandem MS method N2 - Tandem MS techniques are widely used for both, structure and sequence elucidation of biopolymers. Thereby, fragmentation activation is realized by various methods, for example with lasers or collisions with neutral gases. In this study, we present a new Tandem MS System using a commercially available vacuum ultraviolet lamp. On the one hand, this approach provides efficient fragmentation in both ionization modes, positive as well as negative. On the other hand, it enables an additional previously not achieved post ionization of the fragments. While the first results in atypical fragment patterns and, thus provides orthogonal information, the second is crucial especially to identify low abundant ions. T2 - EMSC 2018 CY - Saarbruecken, Germany DA - 4.3.2018 KW - Tandem MS PY - 2018 AN - OPUS4-45671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alnajjar, M. A. A1 - Bartelmeß, Jürgen A1 - Hein, R. A1 - Ashokkumar, Pichandi A1 - Nilam, M. A1 - Nau, W. M. A1 - Rurack, Knut A1 - Hennig, A. T1 - Rational design of boron-dipyrromethene (BODIPY) reporter dyes for cucurbit[7]uril N2 - We introduce herein boron-dipyrromethene (BODIPY) dyes as a new class of fluorophores for the design of reporter dyes for supramolecular host–guest complex formation with cucurbit[7]uril (CB7). The BODIPYs contain a protonatable aniline nitrogen in the meso-position of the BODIPY chromophore, which was functionalized with known binding motifs for CB7. The unprotonated dyes show low fluorescence due to photoinduced electron transfer (PET), whereas the protonated dyes are highly fluorescent. Encapsulation of the binding motif inside CB7 positions the aniline nitrogen at the carbonyl rim of CB7, which affects the pKa value, and leads to a host-induced protonation and thus to a fluorescence increase. The possibility to tune binding affinities and pKa values is demonstrated and it is shown that, in combination with the beneficial photophysical properties of BODIPYs, several new applications of host–dye reporter pairs can be implemented. This includes indicator displacement assays with favourable absorption and emission wavelengths in the visible spectral region, fluorescence correlation spectroscopy, and noncovalent surface functionalization with fluorophores. KW - BODIPY KW - Cucurbituril KW - Fluorescence KW - PH KW - Photoinduced Electron Transfer KW - Supramolecular Chemistry PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-456361 UR - https://www.beilstein-journals.org/bjoc/content/pdf/1860-5397-14-171.pdf DO - https://doi.org/10.3762/bjoc.14.171 SN - 1860-5397 VL - 14 SP - 1961 EP - 1971 PB - Beilstein-Institut CY - Frankfurt a. M. AN - OPUS4-45636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Combining Fluorescent Probes, Functionalized Surfaces, Tailored Particles and Device Embedding for Robust, Reliable and User-friendly Analytical Assays N2 - Supramolecular chemistry, fluorescence detection, hybrid (nano)materials and device miniaturization are in themselves highly interesting areas of research, yet especially their combination paves the way to (bio)chemical analysis systems that show outstanding performance. The lecture gives an overview of the toolbox of single components developed in BAM’s Chemical and Optical Sensing Division over the years, and how their combination can result in powerful sensors, quick tests and assays. While at the core of a development is the analytical problem, that is, the determination of a certain analyte in a sample of interest with the required sensitivity and selectivity by a specific end user in a given setting, signaling mechanisms, recognition elements, signal transduction modes, materials functionalization, device design and system integration are adequately chosen, tailored and adapted. Examples including molecularly imprinted polymers, hybrid mesoporous nanomaterials, gated indicator release systems, microfluidic devices, test strips and smartphone-based analysis will be presented. T2 - GDCh CY - Chemnitz, Germany DA - 21.06.2018 KW - Fluorescence KW - Particles KW - Rapid tests KW - Device embedding PY - 2018 AN - OPUS4-45640 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Molecularly Imprinted Polymers with Integrated Fluorescence as Versatile Biomimetic Sensing Matrices N2 - Molecularly imprinted polymers (MIPs) are an established, versatile and high-performance matrix for the selective separation or enrichment of (bio)chemical species, especially small molecules of biochemical or environmental relevance. MIPs are prepared through the polymerization of a mixture of functional monomers and cross-linkers in the presence of the template with subsequent extraction of the latter. Conceptionally, this process can be seen as mimicking in a strongly accelerated, though single-step manner a biological process such as antibody formation. Because the resulting MIPs contain cavities in their matrix that are complementary in size, shape and electronic/ electrostatic or hydrogen bonding demand to the imprinted target molecule or template, these polymers are frequently termed “artificial antibodies”. Compared to natural antibodies, they are chemically and physically much more robust. Regarding sensitivity and selectivity, however, there is still a gap to bridge before MIPs can fully compete with antibodies. Another favorable aspect that distinguishes MIPs from antibodies is that they can be endowed with an explicit function, allowing the use of MIPs in applications that require more than only an efficient binder. For instance, if specifically designed and polymerizable fluorescent indicators are integrated as functional monomers into a MIP, direct fluorescence sensing can be accomplished. Because MIPs can be prepared in a variety of different formats, their combination with miniaturized or other specific analytical techniques or sensory devices is possible, especially when the transduction mode is light. This presentation will introduce basic design considerations, challenges, limitations and the potential that lies with such sensor materials with some recent examples of our group, targeting various organic oxoanions as analytes. T2 - 8th International Symposium on Bioanalysis, Biomedical Engineering and Nanotechnology CY - Changsha, Hunan, China DA - 25.05.2018 KW - Molecularly imprinted polymers KW - Fluorescence KW - Anion recognition PY - 2018 AN - OPUS4-45641 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Integrating BODIPY Probes with Devices for On-site Sensing Applications N2 - The detection of potential contaminants as early as possible and as close to their point of emission as well as immission is becoming increasingly important in contemporary environmental analytical chemistry. In addition, real-time monitoring of important chemical parameters for process control is strongly gaining relevance within the context of Industry 4.0. Not only is the development of powerful optical probes thus necessary but also their integration into a matrix and/or device that allows for the application of such systems in realistic measurement scenarios. Integrating fluorescent probes with sensing matrices, however, presents a major challenge because usually, when confined in a rather rigid matrix, fluorophores tend to behave completely different than for instance in the molecular state in solution. The present contribution will highlight recent examples of successful integration of BODIPY (boron–dipyrromethene) based probes with devices that have been developed in our group. A simple system utilizing a test strip for direct readout with a conventional miniaturized camera as for instance routinely used in smartphones was recently devised by us for the determination of organophosphate nerve or chemical warfare agents (CWAs) Sarin (GB), Soman (GD), and Tabun (GA) in aqueous environments. Here, we coupled a reactive BODIPY to the inner and outer surface of mesoporous silica nanoparticles. In the presence of CWAs, the reactive BODIPY dye with an optimally positioned hydroxyl group undergoes an acylation reaction, yielding a bicyclic product that is non-emissive. The strong fluorescence quenching response allows reaching LODs in the pM range in natural waters. Steric embedding, again relying on test strip analysis in combination with a smartphone-based readout and data processing, was sufficient to create a reusable optical pH stick. The family of pH-responsive fluorescent BODIPY probes used for this purpose has been designed in a rational manner with the aid of quantum chemistry tools. All the probes display very similar spectroscopic properties with ON−OFF fluorescence switching responses, being retained after embedding of the probes into hydrogel sensor spots on a plastic strip. Dispensing with a matrix yet invoking microfluidic chips finally permits to use a highly sensitive boronic acid-functionalized BODIPY probe for in-line sugar analysis for instance in the beverage industry. Placement of an amino group in direct neighbourhood of the boronic acid moiety yielded a broad working range at neutral pH while meeting the desired sensitivity in the micro-molar range due to a pronounced analyte-induced fluorescence increase, guaranteeing the straightforward detection of sugar in (coloured) sodas without sample clean-up. T2 - 10th International Conference on Porphyrins & Phthalocyanines CY - Munich, Germany DA - 01.06.2018 KW - BODIPY dyes KW - Nerve agents KW - PH KW - Sugars KW - Devices KW - Fluorescence sensing PY - 2018 AN - OPUS4-45642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wagner, Sabine A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Integrating fluorescent molecularly imprinted polymer (MIP) sensor particles with a modular microfluidic platform for nanomolar smallmolecule detection directly in aqueous samples N2 - Fluorescent sensory MIP (molecularly imprinted polymer) particles were combined with a droplet-based 3D microfluidic system for the selective determination of a prototype small-molecule analyte of environmental concern, 2,4-dichlorophenoxyacetic acid or 2,4-D, at nanomolar concentration directly in water samples. A tailor-made fluorescent indicator cross-linker was thus designed that translates the binding event directly into an enhanced fluorescence signal. The phenoxazinone-type cross-linker was co-polymerized into a thin MIP layer grafted from the surface of silica microparticles following a RAFT (reversible addition-fragmentation chain transfer) polymerization protocol. While the indicator cross-linker outperformed its corresponding monomer twin, establishment of a phase-transfer protocol was essential to guarantee that the hydrogen bond-mediated signalling mechanism between the urea binding site on the indicator cross-linker and the carboxylate group of the analyte was still operative upon real sample analysis. The latter was achieved by integration of the fluorescent core-shell MIP sensor particles into a modular microfluidic platform that allows for an in-line phasetransfer assay, extracting the analyte from aqueous sample droplets into the organic phase that contains the sensor particles. Real-time fluorescence determination of 2,4-D down to 20 nM was realized with the system and applied for the analysis of various surface water samples collected from different parts of the world. KW - Molecular imprinting KW - Microfluidics KW - Fluorescence KW - Core-shell particles KW - Droplets PY - 2018 DO - https://doi.org/10.1016/j.bios.2017.07.053 SN - 0956-5663 VL - 99 IS - 1 SP - 244 EP - 250 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-42258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mit Tröpfchen Spielen N2 - Mikrofluidische Systeme sind leistungsstarke analytische Tools mit attraktiven Eigenschaften wie miniaturisierter Größe, geringem Reagenzien und Probenverbrauch, schneller Ansprech- und kurzer Messzeit. Der Bedarf solcher leistungsstarken, miniaturisierten und direkt vor Ort anwendbaren Sensorsysteme steigt kontinuierlich, hauptsächlich durch das Bedürfnis der Gesellschaft, schneller, besser und umfassender über kritische Faktoren im Lebens- und Arbeitsumfeld sowie der Umwelt informiert zu sein. KW - Mikrofluidik KW - Sensorpartikel PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459120 UR - https://www.git-labor.de/forschung/umwelt/mit-troepfchen-spielen VL - 8 IS - 8 SP - 2 EP - 4 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Deutschland AN - OPUS4-45912 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Playing with Droplets N2 - Microfluidic devices are powerful analytical tools with appealing features such as miniaturized size, low reagent and sample consumption, rapid response and short measurement times. As society wants to be ever better, earlier and more comprehensively informed about critical factors in life, work, and the environment, the demand for powerful measurement devices for use outside of the laboratory constantly increases. KW - Microfluidics KW - Sensory particles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-459131 UR - https://www.laboratory-journal.com/ VL - 4 SP - 2 EP - 4 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim, Deutschland AN - OPUS4-45913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Janicke, B. A1 - Gjörloff-Wingren, A. A1 - Alm, K. T1 - Holographic microscopy-Macrophage uptake of SA MIPs N2 - Sialic acid (SA) is a cell surface glycan, which has been found to be upregulated on more aggressive cancers. Therefore, there is a great interest in developing methods for detection of SA on a great interest in developing methods for detection of SA o on cancer cells. We are screening SA on cell lines by fluorescent molecularly imprinted polymers, SA fluorescent molecularly imprinted polymers, SA fluorescent molecularly imprinted polymers, SA fluorescent molecularly imprinted polymers, SA fluorescent molecularly imprinted polymers, SA fluorescent molecularly imprinted polymers, SA -MIPs. Quantitative phase imaging (QPI) is a digital holographic technique. Various cellular parameters can be visualized and calculated from the particular hologram, including individual cell area, thickness, volume and population confluence and cell counts. The aim was to investigate the possible uptake of SA in macrophage cell lines in in vitro cell cultures and check if they affected the cell. T2 - Biomarkers – methods and technologies CY - Malmö, Sweden DA - 25.10.2018 KW - Digital holographic microscopy KW - MIPs KW - Sialic acid PY - 2018 AN - OPUS4-46493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Verhassel, A. A1 - Shinde, S. A1 - Kimani, Martha Wamaitha A1 - Guedes, I. A1 - Sellegren, B. A1 - Rurack, Knut A1 - Tuomela, J. A1 - Härkönen, P. T1 - Application of novel tumor cell glycan-specific nanoprobes for detecting and targeting breast and prostate cancer N2 - Glycosylation is a post-translational modification that is involved in the regulation of many biological processes. The glycosylation pattern in cancer cells differs from that in normal cells. One of the main alterations that has been observed in several cancers is the increase of sialic acids at the end of the glycan. The increase of sialic acids and other alterations affect development and progression of tumors and are found to play an important role in cancer invasiveness and metastasis. Molecularly imprinted polymers (MIPs) are synthetic recognition elements that show high selectivity and affinity for their targets. These polymers show promising applications in detection methods for cancer cells. In this study newly synthesized MIPs, labelled with a nitrobenzoxadiazole (NBD) fluorophore, are investigated for their specificity and utility in the detection of cancer cell-related sialic acids. T2 - Biomarkers – methods and technologies CY - Malmö, Sweden DA - 25.10.2018 KW - Nanoparticles KW - MIPs KW - Cancer PY - 2018 AN - OPUS4-46490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhang, Y. A1 - El-Schich, Z. A1 - Shinde, S. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Sellegren, B. A1 - Rurack, Knut A1 - Gjörloff-Wingren, A. T1 - Fluorescent molecularly imprinted polymers (MIPs) as novel tools for detection of sialic acid on tumor cells N2 - Cancer is the second leading cause of death globally according to the WHO 2018. Lung, prostate, colorectal, stomach and liver cancer are the most common types of cancer in men, while breast, colorectal, lung, cervix and thyroid cancer are the most common among women. Sialic acid (SA) plays an important role in a variety of biological processes in cells. Tumor cells express high levels of SA, which is often associated with poor prognosis due to increased invasive potential. In this study, we have performed a screening of SA-MIPs binding to different cancer cell lines. The overall aim is to use the SA-MIPs for detection of tumor cells, analyzed by flow cytometry and fluorescence microscopy. To confirm the levels of SA expression on the investigated cell lines, we started out by analyzing the binding of the lectins MAL I and SNA. The staining pattern of the two lectins binding to either α-2,3 or α-2,6 linkage SA, respectively, was compared with the staining pattern of the SA-MIPs. We show that the different cell types analyzed have a varying pattern of SA-MIP binding. The comparison with lectin binding will be further evaluated. T2 - Biomarkers – methods and technologies CY - Malmö, Sweden DA - 25.10.2018 KW - Cancer KW - Sialic acid KW - MIPs PY - 2018 AN - OPUS4-46492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tiebe, Carlo A1 - Bartholmai, Matthias A1 - Gawlitza, Kornelia T1 - Two tasks in environmental monitoring - calibration and characterization of gas sensors and remote sensing with multicopter platforms - Part 2 N2 - Emissions of ammonia into the environment are mainly caused by agriculture, but also by combustion processes in waste and by road traffic. Even at low concentrations, this substance is not only an odour nuisance, but also a substance with ecological and climatic relevance. Therefore, BAM tested commercial electrochemical, and metal oxide based sensors, which have limited suitability for measuring in the environmental molar fraction range. Alternatively, own developments for the detection of ammonia in the trace range were implemented, wherein the analyte is measured by changing the fluorescence of a BODIPY dye at 550 nm by means of a portable fluorescence sensor directly from the gas phase. For the calibration of ammonia sensors and measuring instruments, a stationary system based on the mixture of certified test gases from pressure cylinders with calibrated mass flow controllers is available. A test gas generator was developed for on-site calibration and testing of sensors and measuring devices. The generation of ammonia-containing gases in the environmental relevant range of levels below 1000 nmol/mol is carried out by the permeation method according to ISO 6145-10. For the traceability of ammonia, standards are provided and further developed by the National Metrological Institutes and designated institutes. Metrological standards are based on SI units and are a basis for traceability of sensors or gas analysers. T2 - Aarhus University, Department of Environmental Science, External seminar with Matthias Bartholmai and Carlo Tiebe CY - Roskilde, Denmark DA - 29.08.2018 KW - Environmental monitoring KW - Test gas generation KW - Fluorescence sensor KW - Ammonia PY - 2018 AN - OPUS4-45842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Hecht, Mandy A1 - Witthuhn, Heike A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Mix‐&‐read determination of Mercury(II) at trace levels with hybrid mesoporous silica materials incorporating fluorescent probes by a simple mix‐&‐load technique N2 - The synthesis, characterization, and application of mesoporous materials containing boron–dipyrromethene (BODIPY) moieties that allow the sensitive and selective detection of HgII in aqueous environments by fluorescence enhancement is reported. For this purpose, BODIPY dye I containing a thia‐aza crown ether receptor as the fluorescent probe for the detection of HgII in aqueous environments is encapsulated into mesoporous materials to avoid self‐quenching or aggregation in water. Determination of HgII is accomplished within a few seconds with high selectivity and sensitivity, reaching a limit of detection of 12 ppt. The determination of trace amounts of HgII in natural waters and in fish extracts is demonstrated by using our sensing material. The incorporation of the material into several μ‐PAD strips yields a portable, cheap, quick, and easy‐to‐handle tool for trace HgII analysis in water. KW - Dyes/pigments KW - Test strips KW - Mesoporous materials KW - Mercury KW - Fluorescence PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-460138 DO - https://doi.org/10.1002/open.201800277 SN - 2191-1363 VL - 7 IS - 12 SP - 957 EP - 968 PB - Wiley-VCH CY - Weinheim AN - OPUS4-46013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. T1 - Digital Holographic Cytometry: Macrophage Uptake of Nanoprobes N2 - Digital holographic cytometry (DHC) is a state-of-the-art quantitative Phase imaging (QPI) method that permits time-lapse imaging of cells without induced cellular toxicity. DHC platforms equipped with semi-automated image segmentation and analysis software packages for assessing cell behavior are commercially available. In this study we investigate the possible uptake of nanoprobes in macrophages in vitro over time. KW - Macrophages KW - MIPs KW - Holographic microscopy KW - Sialic acid PY - 2019 VL - 21 SP - 21 EP - 23 PB - Wiley CY - Imaging and Microscopy AN - OPUS4-47793 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Ast, Sandra A1 - Weller, Michael G. A1 - Rurack, Knut A1 - Canning, John T1 - Development of a lateral flow test for rapid pyrethroid detection N2 - Type-I pyrethroids are frequently used for disinfection purposes on airplanes from and to tropical areas as a preventive health measure to control or kill the insect vectors of human diseases including dengue, yellow fever and malaria. The aim of the presented work was the development of such a simple, rapid and effective method for pyrethroid analysis T2 - Biosensors2020 CY - Online meeting DA - 06.05.2020 KW - Nomaterials KW - Lateral flow test KW - Pyrethroids KW - Antibodies KW - Gated delivery systems KW - Biosensors PY - 2020 AN - OPUS4-50755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Costa, Elena A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Antibody-gated indicator releasing mesoporous materials: a potential biosensor platform to be used in the development of rapid tests N2 - The urgent necessity to carry out reliable and relevant analytical measurements directly at a point-of-need is one of the current drivers for the development of miniaturised analytical systems, quick tests and wearables. Despite their simplicity, this type of tests must guarantee analytical relevance and reliability like laboratory-based analysis, e.g., in terms of sensitivity, selectivity, immunity against false positives and false negatives as well as robustness and repeatability. Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we performed several optimisations to develop a potential biosensor platform for use in rapid tests. Conceptually, these gated materials are closely related to drug delivery systems, consisting of high porous materials usually closed with macromolecular “caps” and loaded with indicator molecules that are released in presence of a target analyte. However, the key difference between the two types of functional materials is that many drug delivery systems should deliver their cargo over a longer period, often many hours, whereas the gated materials prepared for sensing should show fast release kinetics, on the order of <5 min. With the aim to optimise and adapt gated materials for sensing purposes, we prepared in this work several antibody-gated materials for small-molecule sensing. The materials consisted of porous silica particles containing indicator molecules in the pores and certain hapten molecules grafted to the particle surface close to the pore openings. The pores were then capped with antibodies binding to these haptens, thus inhibiting the escape of the indicators from inside of the pores. In presence of the corresponding analyte, the antibody is displaced from the surface of the material, allowing the escape of the indicators. This allows the detection of the analyte indirectly through an inherent signal amplification. In this work, the insecticide permethrin, a type-I pyrethroid, was selected as target model, because type-I pyrethroids play an important role in airplane disinfection. A first in-depth study of the various chemical tuning options of such antibody gated systems was performed. Different mesoporous silica supports, different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material’s pore openings, the better the closing/opening mechanism can be controlled. Because such materials can be used in various different formats from suspension assays[1] via microfluidic chips[2] to test strip-based lateral flow assays,[3] such materials present a powerful analytical particle platform for the sensitive analytics and diagnostics outside of a laboratory, realising sensitivities down to the µg kg–1 range in less analysis times of less than 5 min as we have recently demonstrated.[4] T2 - Biosensors for Pandemics CY - Online conference DA - 06.05.2020 KW - Hybrid materials KW - Pyrethroids KW - Signal amplification PY - 2020 UR - http://www.confstreaming.com/Biosensors2020/ AN - OPUS4-50746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Costa, Elena A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Antibody-gated indicator releasing mesoporous materials: a potential biosensor platform to be used in the development of rapid tests N2 - The urgent necessity to carry out reliable and relevant analytical measurements directly at a point-of-need is one of the current drivers for the development of miniaturised analytical systems, quick tests and wearables. Despite their simplicity, this type of tests must guarantee analytical relevance and reliability like laboratory-based analysis, e.g., in terms of sensitivity, selectivity, immunity against false positives and false negatives as well as robustness and repeatability. Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we performed several optimisations to develop a potential biosensor platform for use in rapid tests. Conceptually, these gated materials are closely related to drug delivery systems, consisting of high porous materials usually closed with macromolecular “caps” and loaded with indicator molecules that are released in presence of a target analyte. However, the key difference between the two types of functional materials is that many drug delivery systems should deliver their cargo over a longer period, often many hours, whereas the gated materials prepared for sensing should show fast release kinetics, on the order of <5 min. With the aim to optimise and adapt gated materials for sensing purposes, we prepared in this work several antibody-gated materials for small-molecule sensing. The materials consisted of porous silica particles containing indicator molecules in the pores and certain hapten molecules grafted to the particle surface close to the pore openings. The pores were then capped with antibodies binding to these haptens, thus inhibiting the escape of the indicators from inside of the pores. In presence of the corresponding analyte, the antibody is displaced from the surface of the material, allowing the escape of the indicators. This allows the detection of the analyte indirectly through an inherent signal amplification. In this work, the insecticide permethrin, a type-I pyrethroid, was selected as target model, because type-I pyrethroids play an important role in airplane disinfection. A first in-depth study of the various chemical tuning options of such antibody gated systems was performed. Different mesoporous silica supports, different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material’s pore openings, the better the closing/opening mechanism can be controlled. Because such materials can be used in various different formats from suspension assays[1] via microfluidic chips[2] to test strip-based lateral flow assays,[3] such materials present a powerful analytical particle platform for the sensitive analytics and diagnostics outside of a laboratory, realising sensitivities down to the µg kg–1 range in less analysis times of less than 5 min as we have recently demonstrated.[4] T2 - Biosensors for Pandemics CY - Online conference DA - 06.05.2020 KW - Hybrid materials KW - Pyrethroids KW - Signal amplification PY - 2020 UR - http://www.confstreaming.com/Biosensors2020/ AN - OPUS4-50744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - You, Yi A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. T1 - Airborne Laser-Induced Plasma as an Ambient Desorption/Ionization Source for Mass Spectrometry and its Characterization N2 - Laser-induced plasma (LIP) has drawn significant amount of attentions in the past decades, particular in elemental analyses for solid or liquid samples. Through proper focusing of the highly energetic laser beam, the plasma can also be ignited in the ambient air, where airborne analytes can be ionized. Such an effect enabled the use of airborne LIP as an ambient ionization source for mass spectrometric analyses. In contrast to other ambient desorption/ionization sources, airborne LIP does not require a specific discharge medium or expensive gas stream. Meanwhile, the airborne LIP produces reagent ion species for both proton-transfer and charge-transfer reactions in addition to the vacuum ultraviolent photons that are capable of promoting single photon ionization, which can be utilized to ionize polar and non-polar analytes. In order to gauge the analytical performance of airborne LIP, it is critical to understand the undergoing chemistry and physics during and after the plasma formation. Due to the ambient nature of airborne LIP, the variations of air composition and flow strongly affect the plasma behaviors. Preliminary result suggested the addition of a laminar flow of nitrogen gas favored the formation of protonated species (MH+) against the molecular ones (M+). Although the gas addition approach cannot fully tune the ionization process towards the specific production of pseudo-molecular species versus molecular ones, the alternation of molecular ion formation can be used for analyte recognitions through post processing of the ion patterns. The pulsed character of the used lasers makes the reagent ion equilibrium both transient- and highly fluid-dynamically controlled. The acoustic shock-waves induced by the airborne LIP get affected by an applied gas streams towards the plasma center, influencing the molecular-ion and ion-ion interactions in the near proximity of the plasma. To understand the airborne LIP formation, the temporally and spatially resolved optical emission spectra were recorded. The results will be correlated to time-resolved mass-spectrometric investigations of the ion profile during different stages of the plasma formation. As one example, the formation of pyrylium ion originating from aromatic compounds will be highlighted. T2 - SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Laser-Induced Plasma KW - Ambient Desorption/Ionization KW - Mass Spectrometry KW - Characterization PY - 2018 AN - OPUS4-46376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Ast, S. A1 - Weller, Michael G. A1 - Canning, J. A1 - Rurack, Knut T1 - Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials N2 - The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes. KW - Lateral flow test KW - Gated hybrid material KW - Fluorescence KW - Smartphone readout device KW - Pyrethroid KW - Pesticide KW - Insecticide KW - SBA-15 KW - Permethrin PY - 2020 DO - https://doi.org/10.1039/d0an00319k SN - 0003-2654 SN - 1364-5528 VL - 145 IS - 10 SP - 3490 EP - 3494 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut ED - Climent Terol, Estela T1 - Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles N2 - Rapid testing methods for the use directly at apointof need are expected to unfold their true potential especiallywhen offering adequate capabilities for the simultaneousmeasurement of multiple analytes of interest. Considering theunique modularity,high sensitivity,and selectivity of antibody-gated indicator delivery (gAID) systems,amultiplexed assayfor three small-molecule explosives (TATP, TNT,PETN) wasthus developed, allowing to detect the analytes simultaneouslywith asingle test strip at lower ppb concentrations in the liquidphase in < 5min using afluorescence reader or asmartphonefor readout. While the TNT and PETN systems were newlydeveloped here,all the three systems also tolerated harshermatrices than buffered aqueous model solutions.Besidesasingle-track strip,the outstanding modularity of the hybridbiosensor materials in combination with strip-patterningtechnologies allowed us to obtain amultichannel strip inastraightforwardmanner,offering comparable analyticalperformance while allowing to be tailored even more to theusersneed. KW - Multiplexing KW - Explosives detection KW - Gated materials KW - Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518424 DO - https://doi.org/10.1002/anie.202009000 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 52 SP - 23862 EP - 23869 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Panne, Ulrich A1 - Braun, Ulrike A1 - Schartel, Bernhard A1 - Weidner, Steffen A1 - Rurack, Knut A1 - Thünemann, Andreas A1 - Sturm, Heinz T1 - Polymerwissenschaften@BAM - Sicherheit macht Märkte N2 - Die Bundesanstalt für Materialforschung und -prüfung (BAM) ist eine Ressortforschungseinrichtung, die zum Schutz von Mensch, Umwelt und Sachgüter, forscht, prüft und berät. Im Fokus aller Tätigkeiten in der Materialwissenschaft, der Werkstofftechnik und der Chemie steht dabei die technische Sicherheit von Produkten und Prozessen. Dazu werden Substanzen, Werkstoffe, Bauteile, Komponenten und Anlagen sowie natürliche und technische Systeme erforscht und auf sicheren Umgang oder Betrieb geprüft und bewertet. Schwerpunkt des Vortrages sind multimodale Polymeranalytik, nanoskalige Sensormaterialien und die Charakterisierung von technischen Eigenschaften von Polymeren sowie ihre Alterung und Umweltrelevanz. T2 - Institutsvortrag CY - Fraunhofer IAP, Potsdam, Germany DA - 18.05.2018 KW - Polymerwissenschaften PY - 2018 AN - OPUS4-45243 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle A1 - Gawlitza, Kornelia A1 - Gersdorf, Anna A1 - Gradzielksi, Michael A1 - Rurack, Knut T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia A1 - Pérez-Padilla, Víctor A1 - Sun, Yijuan A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - On-Site Detection of PFAAs with Dual Fluorescent MIPs Coupled to a Miniaturized Microfluidics Platform N2 - Per- and polyfluoroalkyl substances (PFAS) represent a class of synthetic organofluorine chemicals extensively utilized in the manufacturing of various materials such as firefighting foams, adhesives, and stain- and oil-resistant coatings. In recent years, PFAS have been considered as emerging environmental contaminants, with particular focus on perfluoroalkyl carboxylic acids (PFCAs), the most prevalent type among PFAS. PFCAs are characterized by a fully fluorinated carbon backbone and a charged carboxylic acid headgroup. Notably, they have been designated as Substances of Very High Concern and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects. Conventional techniques for the analysis of PFCA, such as GC-MS, HRMS and HPLC-based methods, are laborious, not portable, costly and require skilled personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response, especially when analyte binding leads to a specific increase of a probe’s emission. Integration of such probes with a carrier platform and a miniaturized optofluidic device affords a promising alternative for PFCA monitoring. Here, a novel guanidine BODIPY fluorescent indicator monomer has been synthesized, characterized, and incorporated into a molecularly imprinted polymer (MIP) for the specific detection of perfluorooctanoic acid (PFOA). The MIP layer was formed on tris(bipyridine)ruthenium(II) chloride doped silica core particles for optical internal reference and calibration-free assays. Such system allows selective and reliable detection of PFCA from surface water samples, with minimum interference by competitors, matrix effects and other factors. Integration of the assay into an opto-microfluidic setup resulted in a miniaturized and easy-to-operate detection system allowing for micromolar detection of PFOA in less than 15 minutes from surface water sample. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - PFAS KW - Molecularly imprinted polymers KW - Guanidine receptor KW - BODIPY PY - 2024 AN - OPUS4-60438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagli, L. A1 - Gaft, M. A1 - Raichlin, Y. A1 - Gornushkin, Igor B. T1 - Cascade generation in Al laser induced plasma N2 - We found cascade IR generation in Al laser induced plasma. This generation includes doublet transitions 3s25s 2S1∕2→ 3s24p 2P1∕2,3∕2 → 3s24s 2S1∕2; corresponding to strong lines at 2110 and 2117 nm, and much weaker lines at 1312–1315 nm. The 3s25s2S 1∕2 starting IR generation level is directly pumped from the 3s23p 2P3∕2 ground level. The starting level for UV generation at 396.2 nm (transitions 3s24s 2S1∕2 → 4p 2P3∕2) is populated due to the fast collisional processes in the plasma plume. These differences led to different time and special dependences on the lasing in the IR and UV spectral range within the aluminum laser induced plasma. KW - Plasma diagnostics KW - Laser induced plasma KW - LIBS KW - Plasma modeling PY - 2018 DO - https://doi.org/10.1016/j.optcom.2018.01.041 VL - 415 SP - 127 EP - 129 PB - Elsevier B.V. AN - OPUS4-44274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. G. A1 - Kornev, R. A. A1 - Polyakov, V. S. T1 - Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials N2 - The composition of hydrogen and hydrogen-methane plasmas containing ~10% of BX₃, SiX₄, GeX₄ (X = F, Cl), SF₆, MoF₆ and WF₆ is calculated for the temperature range ~300-4000 K using the equilibrium chemical model. The calculations provide valuable information about thermodynamic parameters (pressure, temperature) needed for condensation of pure elements (in H₂ plasma) and their carbides (in H₂ + CH₄ plasma) and about intermediate reaction products. Using volatile fluorides for plasma chemical deposition alleviates obtaining monoisotopic elements and their isotopic compounds because fluorine is monoisotopic. PECVD is promising method for one-step conversion of fluorides to elemental isotopes and their carbides. For fluorides, further insight is needed into properties of plasmas supported by different types of discharges. KW - Plasma chemistry KW - Modeling chemical reactions KW - Plasma enhanced chemical vapor deposition KW - Reduction of volatile chlorides and fluorides by hydrogen PY - 2020 DO - https://doi.org/10.1007/s10967-020-07295-2 VL - 326 IS - 1 SP - 407 EP - 421 PB - Springer CY - Dordrecht AN - OPUS4-51144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Sennikov, P. T1 - Laser induced gas breakdown in reactive mixtures containing halides of boron and silicon: diagnostics and modeling N2 - We run two pilot LIP experiments in reactive gas mixtures. First, LIP is excited in BCl3 or BF3 plus H2 or CH4 to evaluate the efficiency of deposition of solid boron and boron carbide, materials that are largely used for refractory coatings. Second, we investigate a possibility of synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3) by LIP induced in SiF4+SiCl4 gas mixtures. Using fluorochlorosilanes with different combinations of F and Cl in the SiFxCly molecule may add flexibility in processes of silicon deposition and etching. The gases used and solid deposits are analyzed by optical emission spectroscopy (OES) and IR and mass spectrometry (MS). We also model the laser induced plasma by performing static equilibrium chemistry calculations to see whether desired reaction products are thermodynamically favorable and dynamic calculations of the expanding plasma plume to see how and where the products form. T2 - International Workshop on Laser Induced breakdown Spectroscopy CY - Online meeting DA - 01.12.2020 KW - Silicon halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown KW - Hydrogen reduction PY - 2020 AN - OPUS4-51725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut T1 - Multiplex‐Nachweis von Analyten auf einem einzelnen Teststreifen mit Antikörper‐gesteuerten und Indikator freisetzenden mesoporösen Nanopartikeln N2 - Vor dem Hintergrund der einzigartigen Modularität, hohen Empfindlichkeit und Selektivität von Antikörper‐gesteuerten Indikatorfreisetzungssystemen (gAID‐Systemen) wurde hier ein Multiplex‐Assay für drei organische Explosivstoffmoleküle (TATP, TNT, PETN) entwickelt, der es erlaubt, die Analyten gleichzeitig in flüssiger Phase mit einem einzelnen Teststreifen und einem Fluoreszenzlesegerät bzw. Smartphone als Detektor in Konzentrationen bis in den unteren ppb‐Bereich in <5 min nachzuweisen. Alle drei Systeme, darunter die hier neu entwickelten Systeme für TNT und PETN, tolerieren zudem nicht nur gepufferte wässrige Modelllösungen, sondern auch komplexere Matrices. Neben einem konventionellen Teststreifen mit einem Kanal erlaubte uns die Anwendung von Wachsdrucktechnologie das Herstellen von mehrkanaligen Streifen mit vergleichbarer analytischer Leistungsfähigkeit, was das enorme Potenzial der modular aufgebauten, hybriden Biosensormaterialien im Hinblick auf eine für den Endanwender maßgeschneiderte Vor‐Ort‐Analytik unterstreicht. KW - Multiplex KW - Gesteuerten Nanopartikeln KW - Explosiven PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518431 DO - https://doi.org/10.1002/ange.202009000 SN - 1521-3757 SN - 0044-8249 VL - 132 IS - 52 SP - 24071 EP - 24078 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernández García, María Amparo A1 - Rurack, Knut A1 - Bell, Jérémy A1 - Weller, Michael G. T1 - SAF-based optical biosensor with 3D-printed free-form optics for targeted explosives immuno-detection N2 - Guaranteeing safety and security of citizens requires a significant effort and innovative tools from national and international agencies and governments, especially when it comes to the field of explosives detection. The need to detect Improvised Explosive Devices (IEDs) and Home-made Explosives (HMEs) at a point of suspicion, has grown rapidly due to the ease with which the precursors can be obtained and the reagents synthesised. The limited availability of immunoanalytical tools for HME detection presents an opportunity for the development of new devices, which enable a rapid detection and recognise the target analyte with high specificity and sensitivity. In this work, we introduce an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is placed in a hydrogel environment permeable to the analyte and transparent to light interrogating the fluorescently labelled antibodies. The readout of the immunoanalytical system is realized with Supercritical Angle Fluorescence (SAF), an advanced microscopy technique. To accomplish this, we made use of recent, commercial high resolution (< 22 µm) Liquid Crystal Display 3D printers to fabricate a parabolic optical element with high refractive index (RI>1.5) and transmission values (>90%) from photo-resin. Aiming at a new generation of sensors, which not only can meet the requirements of trace detection, but can also be used for substance identification, the combination of immunoanalytical recognition with SAF detection offers a modularity and versatility that is principally well suitable for the measurements of target analytes at trace levels. T2 - 8th International conference in Biosensing Technology CY - Seville, Spain DA - 12.05.2024 KW - 3D printing KW - Biosensor KW - Fluorescence KW - Explosives PY - 2024 AN - OPUS4-60561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. T1 - Laser Induced Plasma for Chemical Vapor Deposition: Theory and Experiment N2 - A possibility of deposition from laser-induced plasma (LIP) is investigated in search for an economic and simple method to obtain isotopic compounds from enriched gaseous precursors. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Calculations of expanding plasma of different composition are performed with the use of the fluid dynamic code coupled to the equilibrium chemistry solver. Condensed phases of boron, boron carbide, and graphite are predicted showing maximum concentrations in peripheral zones of the plasma. In experiment LIP is induced in mixtures BCl3, Н2+BCl3, H2+Ar+BCl3, H2+BCl3+CH4, BF3, Н2+BF3, H2+Ar+BF3, and H2+Ar+BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectroscopic methods. The composition of reaction products is found to be close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all the reaction mixtures. FTIR analysis of BCl3+H2+CH4 deposits points to a presence of condensed boron and boron carbide that are also predicted by the model. Both calculations and preliminary experimental results suggest the chemical vapor deposition by LIP is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. T2 - International Online Meeting on Laser Induced Breakdown Spectroscopy (IIOMLIBS) CY - Online meeting DA - 06.07.2020 KW - Chemical vapor deposition KW - Laser induced plasma PY - 2020 AN - OPUS4-50994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yuan, Huan A1 - Gornushkin, Igor B. A1 - Gojani, Ardian A1 - Wang, X. H. A1 - Rong, Ming Zhe T1 - Laser-induced plasma imaging for low-pressure detection N2 - A novel technique based on laser induced plasma imaging is proposed to measure residual pressure in sealed containers with transparent walls, e.g. high voltage vacuum interrupter in this paper. The images of plasma plumes induced on a copper target at pressure of ambient air between 10−2Pa and 105Pa were acquired at delay times of 200ns, 400ns, 600ns and 800ns. All the plasma images at specific pressures and delay times showed a good repeatability. It was found that ambient gas pressure significantly affects plasma shape, plasma integral intensities and expansion dynamics. A subsection characteristic method was proposed to extract pressure values from plasma images. The method employed three metrics for identification of high, intermediate and low pressures: the distance between the target and plume center, the integral intensity of the plume, and the lateral size of the plume, correspondingly. The accuracy of the method was estimated to be within 15% of nominal values in the entire pressure range between 10−2Pa and 105Pa. The pressure values can be easily extracted from plasma images in the whole pressure range, thus making laser induced plasma imaging a promising technique for gauge-free pressure detection. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 DO - https://doi.org/10.1364/OE.26.015962 SN - 1094-4087 VL - 26 IS - 12 SP - 15962 EP - 15971 PB - Optical Society of America under the terms of the OSA Open Access Publishing Agreement AN - OPUS4-45219 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Völker, Tobias A1 - Kazakov, Alexander Ya. T1 - Extension and investigation by numerical simulations of algorithm for calibration-free laser induced breakdown spectroscopy N2 - Accuracy of calibration-free (CF) methods in laser-induced breakdown spectroscopy (LIBS) depends on experimental conditions and instrumental parameters that must match a CF LIBS model. Here, the numerical study is performed to investigate effects of various factors, such as the optical density, plasma uniformity, line overlap, noise, spectral resolution, electron density and path length on the results of CF-LIBS analyses. The effects are examined one-by-one using synthetic spectra of steel slag samples that fully comply with the mathematical model of the method. Also, the algorithm includes several new features in comparison with previously proposed CF algorithms. In particular, it removes limits on the optical thickness of spectral lines that are used for the construction of the Saha-Boltzmann plot; it retrieves the absorption path length (Plasma diameter) directly from spectral lines; it uses the more realistic Voigt line profile function instead of the Lorentzian function; and it employs the pre-calculated and tabulated thin-to-thick line ratios instead of approximating functions for selfabsorption correction. KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 DO - https://doi.org/10.1016/j.sab.2018.06.011 SN - 0584-8547 VL - 147 SP - 149 EP - 163 PB - Elsevier B.V. AN - OPUS4-45340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Improved algorithm for calibration-free laser induced breakdown spectroscopy N2 - An improved algorithm for calibration-free laser induced breakdown spectroscopy (CF LIBS) is presented which includes several novel features in comparison with previously proposed similar algorithms. In particular, it allows using spectral lines with arbitrary optical thickness for the construction of Saha-Boltzmann plots, retrieves the absorption path length (plasma diameter) directly from a spectrum, replaces the Lorentzian line profile function by the Voigt function, and allows for self-absorption correction using pre-calculated and tabulated data rather than approximating functions. The tabulated data embody the solutions of the radiative transfer equation for numerous combinations of optical thicknesses and line widths. The algorithm is thoroughly verified with synthetic spectra. T2 - 14TH European Workshop on Laser Ablation 2018 (EWLA2018) CY - Pau, France DA - June 26 - 29, 2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics KW - Calibration free LIBS PY - 2018 AN - OPUS4-45343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basis of plasma computer modeling will be presented. T2 - Winter Plasma Conference CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Plasma diagnostics KW - Plasma physics PY - 2018 AN - OPUS4-44497 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasma: Modeling, diagnostics, and applications N2 - Laser-induced plasmas are widely used in many areas of science and technology; examples include spectrochemical analysis, thin film deposition, material processing, and even jet propulsion. Several topics will be addressed. First, general phenomenology of laser-induced plasmas will be discussed. Then, a chemical model will be presented based on a coupled solution of Navier-Stokes, state, radiative transfer, material transport, and chemical (Guldberg-Waage) equations. Results of computer simulations for several chemical systems will be shown and compared to experimental observations obtained by optical imaging, spectroscopy, and tomography. The latter diagnostic tools will also be briefly discussed. Finally, a prospective application of laser-induced plasma and plasma modeling will be illustrated on the example of calibration-free MC LIBS (Monte Carlo Laser Induced Breakdown Spectroscopy), in which concentrations of elements in materials are found by fitting model-generated and experimental spectra. T2 - Invited talk at Yeshiva University, New York, USA CY - Yeshiva University, New York, USA DA - 4.24.2018 KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2018 AN - OPUS4-45344 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemical reactions in laser-induced plasmas at local thermodynamic equilibrium N2 - Laser induced plasma (LIP) is a dynamic, short living event which presents significant difficulty for modeling. In this report, a collisional-dominated chemical model developed earlier* is expanded by the inclusion of a new method for calculation of chemical reactions. The model consists of the coupled Navier-Stokes, state, radiative transfer, material transport, and chemical equations. The latter are written in terms of atomic and molecular partition functions rather than reaction rates. Typically, a solution of such the system of chemical equations is difficult for the entire range of plasma temperatures and densities because reaction constants may vary by hundreds orders of magnitude owing to extreme plasma conditions. No numerical solver of non-linear systems of equations handles this situation with ease. We resolve the problem by using a hierarchical approach. First, we rank the reactions according to their ascendancy. Second, we exploit either the contraction or Newton-Raphson algorithms to solve the system of chemical equations. We illustrate the approach by performing a series of calculations for reacting species Si, C, N, Ca, Cl and their molecules in laser induced plasmas. T2 - Winter Plasma Conference CY - Amelia Island, FL, USA DA - 08.01.2018 KW - Plasma physics KW - Plasma diagnostics PY - 2018 AN - OPUS4-44499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. G. T1 - Equilibrium Chemistry in BCl3–H2–Ar Plasma N2 - The approach, which was developed earlier for modeling chemical reactions in laser induced plasmas, is applied to radio-frequency discharge plasmas. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of an argon-hydrogen plasma with an Addition of boron trichloride is studied as a function of plasma temperature and mole ratio H2∕BCl3. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained earlier by means of another equilibrium model that uses ab-initio quantum chemical computations of thermochemical and kinetic data and a 0D thermochemical quilibrium solver. KW - Modeling chemical reactions KW - Plasma physics KW - Plasma enhanced chemical vapor deposition PY - 2019 DO - https://doi.org/10.1007/s11090-019-09985-6 VL - 39 IS - 4 SP - 1087 EP - 1102 PB - Springer AN - OPUS4-47817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Palásti, David J. A1 - Galbacs, G. T1 - Quantitative and qualitative analysis of liquid samples N2 - Spatial heterodyne spectroscopy (SHS) is an optical setup that combines both dispersive and interference based methods to obtain spectroscopic information. It has the high light throughput characteristic for interference based methods, but at the same time it has the high resolution typical of grated spectrometers. The basic SHS optical setup is similar to that of the Michelson interferometer, with the mirrors replaced by diffraction gratings positioned at fixed, equal distances from the beamsplitter and are slightly tilted. The resulting interference pattern is recorded by a digital camera and the spectrum is recovered by using Fourier Transformation. Although initially SHS was developed for astronomical and satellite-based atmospheric measurements, where spectroscopy of faint but large light sources are investigated, but in recent years the application of SHS spectroscopy is gaining popularity. Our research group is active both in Raman-SHS and LIBS-SHS, due to the fact that there are many overlapping challenges for the two spectroscopies in terms of optical and optoelectronic optimization. In the present study, we investigated the possibility of using SH detection for the qualitative and quantitative Raman spectroscopy of liquid samples. We constructed our own compact spatial heterodyne spectrometer using 300 mm-1 gratings (Newport), a 50:50 cube beamsplitter (Thorlabs), dischroic mirrors, bandpass and notch filters (Semrock), a Tamron telelens and a Retiga R1 CCD camera. A DPSS laser (532 nm, 20 ns) with variable energy and repetition rate (up to 100 µJ and 80 kHz) was used for excitation, with its beam driven through a 10x microscope objective (Thorlabs) to focus the laser light inside the liquid samples. The evaluation of the recorded interference patterns was carried out by self-developed software written in Octave. In the qualitative experiments, we investigated several oils and additives and employed principal component analysis (PCA) for their classification. It was found that the recorded spectra could be separated well in the subspace of just two principal components. The quantitative experiments were conducted with two sets of binary solvent mixtures (isopropanol-cyclohexane, glycerol-water). The simple univariate method based on the net intensity of one spectral peak did not give good results, but principal component regression (PCR) gave rise to fairly good and robust calibrations. Our results therefore show that a relatively simple and robust SHS setup can be advantageously used for both quantitative and qualitative Raman spectroscopy. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - SHS KW - Raman spectroscopy KW - Spatial Heterodyne Spectrometer PY - 2019 AN - OPUS4-47542 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Sergei, S. A1 - Kornev, R.A. A1 - Sennikov, P. G. T1 - Equilibrium chemistry of boron halides in plasma chemical reactors N2 - High purity halides of III-VI group elements, especially chloride and fluorides, are used in gas phase technologies for obtaining high purity materials and coatings. The reduction of halides in hydrogen-halide mixtures can be achieved in various discharge plasmas, e.g. inductively coupled, ark, and even laser-induced plasmas. Existing models of such plasmas are not sufficiently accurate to predict a yield of the targeted compounds and to describe the plasma processes involved in formation of these compounds. Besides, a construction of costly plasma-chemical reactors can be alleviated by the prior modeling of plasma processes that may occur in such reactors. A goal of this work is to extend the model, which was initially developed for laser induced Plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge Plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. It is found that the desired components B and B2 appear at appreciable concentrations of >0.1% and ~0.01% respectively only at temperatures above 3000 K. It is also established that the effect of charged species on the reaction products is miniscule for temperatures below 5000 K. The expected yield of boron as a function of the original mole fraction H2/BCl3 and H2/BF3 is calculated. The mole fractions are varied in the range 0.1-1000 and the temperature in the range 1000-10000 K. It is shown that the yield of boron increases with increasing the molar ratio H2/BCl3 and H2/BF3 up to ~100 in the temperature range 2000-5000 K. At higher temperatures, T>5000 K, the boron concentration reaches its maximum and does not depend on the concentration of hydrogen; all molecules dissociate and chemical reactions proceed only between charged particles (mostly elemental ions) and electrons. The calculated plasma parameters and composition are compared with experimental data obtained by optical emission spectroscopy. The calculated plasma temperature and electron density are shown to be in good agreement with the measured ones. T2 - European Winter Conference on Plasma Spectrochemistry (EWSPS-2019) CY - Pau, France DA - 03.02.2019 KW - Chemical reactors KW - Laser induced plasma KW - LIBS KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-47541 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. T1 - Modeling chemistry in laser-induced and other types of plasmas N2 - A goal of this work is to extend the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. It is found that the desired components B and B2 appear at appreciable concentrations of >0.1% and ~0.01% respectively only at temperatures above 3000 K. It is also established that the effect of charged species on the reaction products is miniscule for temperatures below 5000 K. The expected yield of boron as a function of the original mole fraction H2/BCl3 and H2/BF3 is calculated. The mole fractions are varied in the range 0.1-1000 and the temperature in the range 1000-10000 K. It is shown that the yield of boron increases with increasing the molar ratio H2/BCl3 and H2/BF3 up to ~100 in the temperature range 2000-5000 K. At higher temperatures, T>5000 K, the boron concentration reaches its maximum and does not depend on the concentration of hydrogen; all molecules dissociate and chemical reactions proceed only between charged particles (mostly elemental ions) and electrons. The calculated plasma parameters and composition are compared with experimental data obtained by optical emission spectroscopy. The calculated plasma temperature and electron density are shown to be in good agreement with the measured ones. T2 - Workshop on Laser and Plasmas Applications CY - Bari, Italy DA - 04.03.2019 KW - Plasma KW - LIBS KW - Plasma modeling PY - 2019 AN - OPUS4-47545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Strasse, Anne T1 - Optical detection of defects during laser metal deposition: Simulations and experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. KW - Additive manufacturing KW - Laser metal deposition (LMD) KW - Thermal model KW - Optical sensor KW - Process control PY - 2021 DO - https://doi.org/10.1016/j.apsusc.2021.151214 SN - 0169-4332 VL - 570 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Palásti, David J. A1 - Himics, L. A1 - Vaczi, T. A1 - Veres, M. A1 - Gornushkin, Igor B. A1 - Galbacs, G. T1 - Optical modelling of spectroscopiccharacteristics of a dual-grating tunablespatial heterodyne LIBS spectrometer N2 - The spatial heterodyne spectrometer (SHS) concept, which is based on an interferometricoptical setup, boasts both the Fellgett and Jacquinot advantages. Theoretically it can provideboosted sensitivity and spectral resolution with respect to dispersion spectrometers in acompact, reasonably cheap arrangement without any moving components – this set ofcharacteristics can be attractive to a number of industrial, space and other field applications. The potential of SHS has already been demonstrated in IR and Raman spectroscopies(e.g.), and more recently also in LIBS. The scientific goal of our present project is toapply the SHS concept to the development of an optimized, but practical dual-grating,tunable SH-LIBS setup, which would possess appealing spectroscopic characteristics.During this development, we extensively rely on the computer-based simulation of theoptical setup, which is an efficient approach that we found to have been missing from earlierSHS efforts published. It can provide application-specific optimization of the SHS systemand predict the performance of the final system. In particular, we use optical simulation tostudy the effect of various important parameters on the relevant spectroscopic figures ofmerits of the system. We used the non-sequential ray-tracing mode of the Zemax/OpticStudio software for optical modelling of the SH-LIBS setup (Optical distortions were studiedin sequential mode). Characteristics of the setup and interferograms were calculated with atleast one million rays. All calculations were carried out for the visible spectral range(400-700 nm), using stepwise extension of monochromatic simulations with 5 nm steps.Wherever applicable, characteristic discrete visible wavelengths from the emissionspectrum of Hg discharge lamps (404.7 nm, 435.8 nm, 546.1 nm, 579.0 nm) were used for thecalculation of spectroscopy figures of merit and for the validation of simulation. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - Spatial Heterodyne Spectroscopy KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - LIBS KW - Modeling PY - 2019 AN - OPUS4-49772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Porizka, P. A1 - Kaiser, J. T1 - Tomography of asymmetrical laser-induced plasmas N2 - Asymmetrical laser-induced plasmas were investigated by a tomography approach based onthe inverse Radon transform. Two distinct sources of asymmetricity were investigated:double-pulsed laser-induced plasmas in the orthogonal configuration and single-pulsedlaser-induced plasmas under an inclined incidence angle. Both cases were observed atvarious delay times. The optical thinness of the laser-induced plasmas was achieved byappropriately adjusting the pulse energies. High temporal resolution was achieved by agated intensified charge-coupled-device camera. The asymmetrical laser-induced plasmaswere investigated in terms of their total emissivity, spectrally resolved emissivity, andtemperature. The latter was obtained by the Saha–Boltzmann plot method. The imagesrequired for the inverse Radon transform technique were obtained with a high angularaccuracy and reproducibility provided by mounting the spectrometer on a high-precisionnano-positioning rotary stage. The plasmas were induced in the center of rotation of thestage. This arrangement enabled the reconstruction of emissivity which was integrated overthe full spectral range (200–800 nm) or over a desired spectral range selected by a bandpassfilter (~10 nm). It also allowed for the reconstruction of spectrally-resolved emissivity ineach cross-sectional plasma slice by scanning the plasma across a spectrometer slit. The 3Dmaps of the temperature and electron density were thus obtained for different types ofasymmetric plasmas. The work will provide a more detailed description of the twoasymmetrical laser-induced plasmas. This might help with the development of LIBSinstrumentation using the orthogonal double-pulse geometry, or remote LIBS applicationswhich inherently rely on inclined-angle ablation. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics PY - 2019 AN - OPUS4-49771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Xue, Boyang A1 - Riedel, Jens A1 - Gornushkin, Igor B. A1 - Zheng, Ronger A1 - You, Yi T1 - Ultrasound-Assisted Underwater Laser-induced Breakdown Spectroscopy with HighRepetition-Rate μJ-DPSS laser N2 - The elemental analysis of seawater is often critical to the understanding of marinechemistry, marine geochemistry, and the deep-sea ecosystems. Laser-induced breakdownspectroscopy (LIBS) with the advantage of rapid multi-elements detection, has a greatpotential for in-situ elemental analysis of seawater. In practice, it is crucial to create acompact, low cost and power saving instrument for the long-term deep-sea observation. Arecently appeared diode-pumped solid-state (DPSS) laser seems to be a promising candidateas it is both compact and robust. Additionally, its high repetition rate up to hundreds of kHzcan provide a considerable throughput for LIBS analysis. However, the DPSS lasers operateat moderate pulse energies, usually less than one mJ, which cannot sustain stablebreakdowns in bulk water. To ensure stable laser-induced plasmas underwater with such aμJ-DPSS laser, we introduced an ultrasound source to assist the breakdown process. Thephase interface and mass flow generated by the near-field ultrasound can greatly reduce thebreakdown threshold and enhance element-specific emissions. Meanwhile, the highrepetition-rate pulses can also improve the breakdown probability and generate uniqueemission lines originated from the water molecule. We further demonstrate that the highrepetition-rate DPSS laser combined with the Echelle spectrometer can provide effectivequantitative analysis for metal elements in bulk water. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brno, Czech Republic DA - 08.09.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma diagnostics KW - Underwater LIBS PY - 2019 AN - OPUS4-49769 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced plasma as a chemical reactor: how feasible? N2 - A goal of this work is to apply the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. Also, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - 1st workshop on Tandem LIBS/LA-ICP-MS CY - BAM, Berlin, Adlershof DA - 18.11.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling KW - Plasma chemical reactor PY - 2019 AN - OPUS4-49776 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Völker, Tobias A1 - Kepes, Erik A1 - Wolsch, Gerd A1 - Baudelet, M. T1 - Molecule formation in calcium carbonate and calcium hydroxide libs plasmas: model and experiment N2 - Analysis of calcium hydrate and calcium carbonate samples and their mixtures is important for archeology, anthropology, and geology. Laser-induced plasma spectroscopy (LIBS) is a suitable tool for such the analysis as it allows for in- and on-line real time chemical assays. LIBS is inherently a technique for atomic analysis; however, since recently, it is also used for molecular analysis. The information attained by the latter is mainly related to “secondary” chemistry that deals with re-association of atoms and ions into molecules at long delay times (≥10 μs) after the initial breakdown. Even though the direct information about the initial molecular content in the target may be lost, the molecular analysis by LIBS can still be useful to assess the composition of samples. In this work, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled and compared to experiment. The model is based on the assumption that all ionization processes and chemical reactions are at local thermodynamic equilibrium. A chemical composition of argon-calcium-oxygen and argon-calcium-hydrogen plasmas is studied as a function of plasma temperature and pressure. It is established that more than twenty simple and composite molecules and ions can be formed in the course of chemical reactions. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - SciX 2019 CY - Palm Springs, USA DA - 13.10.2019 KW - Plasma diagnostics KW - LIBS KW - Laser induced plasma KW - Plasma modeling PY - 2019 AN - OPUS4-49775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Shabanov, Sergej V. A1 - Sennikov, P. T1 - Modeling equilibrium chemistry in laser induced plasmas and plasma chemical reactors N2 - A goal of this work is to apply the model, which was initially developed for laser induced plasmas, to plasmas used in chemical reactors, in particular, the inductively-coupled-RF discharge plasma. The model predicts equilibrium chemical compositions of reaction mixtures as functions of plasma temperature and stoichiometry of reactants. The mixtures investigated are BCl3/H2/Ar and BF3/H2/Ar where Ar serves as the plasma-forming gas and H2 as a binding agent which binds the active species Cl and F and Cl- and F-containing intermediates to produce gaseous B and its condensate. An additional goal is to obtain information about intermediate reaction products for different ratios of BCl3/H2 and BF3/H2 and at different temperatures and different Ar flow rates. Also, chemical reactions in laser induced plasmas (LIPs) created on calcium hydrate and calcium carbonate targets in argon are modeled. The results are compared with those obtained by means of the equilibrium model based on the minimization of Gibbs free energy. T2 - SciX 2019 CY - Palm Springs, USA DA - 13.10.2019 KW - LIBS KW - Laser induced plasma KW - Plasma modeling PY - 2019 AN - OPUS4-49774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Képeš, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J. T1 - Tomography of double-pulse laser-induced plasmas in the orthogonal geometry N2 - The temporal evolution of laser-induced plasmas is studied in the orthogonal double-pulse arrangement. Both the pre-ablation mode (an air spark is induced above the sample surface prior to the ablation pulse) and the re-heating mode (additional energy is delivered into the plasma created by the ablation pulse) is considered. The plasmas are investigated in terms of the temporal evolution of their electron density, temperature, and volume. The plasma volumes are determined using a time-resolved tomography technique based on the Radon transformation. The reconstruction is carried out for both white-light and band-pass filtered emissivities. The white-light reconstruction corresponds to the overall size of the plasmas. On the other hand, the band-pass emissivity reconstruction shows the distribution of the atomic sample species (Cu I). Moreover, through spectrally resolved tomographic reconstruction, the spatial homogeneity of the electron density and temperature of the plasmas is also investigated at various horizontal slices of the plasmas. Our results show that the pre-ablation geometry yields a more temporally stable and spatially uniform plasma, which could be beneficial for calibration-free laser-induced breakdown spectroscopy (LIBS) approaches. On the contrary, the plasma generated in the re-heating geometry exhibits significant variations in electron density and temperature along its vertical axis. Overall, our results shed further light on the mechanisms involved in the LIBS signal enhancement using double-pulse ablation. KW - Laser-induced plasma KW - Laser-induced breakdown spectroscopy KW - Double-pulse laserinduced breakdown spectroscopy KW - Plasma tomography KW - Radon reconstruction PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.06.078 SN - 0003-2670 SN - 0378-4304 VL - 1135 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-51142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. A1 - Polyakov, V. T1 - Laser induced dielectric breakdown for synthesis of chlorofluorosilanes N2 - Tetrafluorosilane (SF4) and tetrachlorosilane (SiCl4) plasmas have been widely used as a source of either F or Cl for etching silicon or as a source of silicon for deposition of Si-based materials. Using different combinations of F and Cl in molecules of chlorofluorosilane SiFxCly adds additional flexibility in realization of these processes. Direct synthesis of SiFxCl4-x (x=1, 2, 3) from SiF4 and SiCl4 is thermodynamically forbidden under standard conditions. This restriction is removed in low-temperature plasmas studied in this work: a laser induced dielectric breakdown (LIDB) plasma and steady-state inductively-coupled plasma (ICP). The plasmas differ in many respects including energy content, temperature, and electron density that lead to different ionization/excitation states of plasma species, which are observed from plasma optical emission spectra. IR spectroscopy and mass-spectrometry confirm the formation of three chlorofluorosilanes, SiF3Cl, SiF2Cl2, and SiFCl3 that constitute ~60% in products of LIDB plasma and split 50/50 between SiF3Cl, SiFCl3 and SiF2Cl2. Experimental observations are verified by equilibrium static calculations via the minimization of Gibbs free energy and by dynamic calculations via the chemical-hydrodynamic plasma model of a spherically expanding plasma plume. The both types of calculations qualitatively agree with the results of spectroscopic analysis and reproduce dominant presence of SiF2Cl2 as the temperature of the gas approaches the room temperature. KW - Chemical-hydrodynamic modeling KW - Chlorofluorosilanes KW - Laser induced dielectric breakdown KW - Inductively coupled plasma KW - Equilibrium chemical modeling PY - 2020 DO - https://doi.org/10.1016/j.jfluchem.2020.109692 VL - 241 SP - 109692 PB - Elsevier B.V. AN - OPUS4-51646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Yan A1 - Yu, H. A1 - Gornushkin, Igor B. A1 - Li, J. A1 - Wu, Q. A1 - Zhang, Z. A1 - Li, X. T1 - Measurement of trace chromium on structural steel surface from a nuclear power plant using dual-pulse fiber-optic laser-induced breakdown spectroscopy N2 - Remote and on-line measurement of chromium on structural steel surface in nuclear power plants is critical for protection against fluid accelerated corrosion. To improve the insufficient sensitivity of fiber-optic laser-induced breakdown spectroscopy toward trace element detection, a dual-pulse spectral enhancement system is set up. In an iron matrix, for the purpose of improving sensitivity of trace chromium analysis and reducing the self-absorption of iron, the effects of key parameters are investigated. The optimal values of the parameters are found to be: 450 ns inter-pulse delay, 700 ns gate delay, 30 mJ/6 mJ pulse energy ratio, and 19.8 mm lens-to-sample distance (corresponding to a 799 μm laser focused spot size). Compared to the single-pulse system, the shot number of dual-pulse ablation is limited for reducing surface damage. After the optimization of the dual-pulse system, the signal-to-noise ratio of the trace chromium emission line has been improved by 3.5 times in comparison with the single-pulse system, and the self-absorption coefficient of matrix iron has been significantly reduced with self-reversal eliminated. The number of detectable lines for trace elements has more than doubled thus increasing the input for spectral calibration without significantly increasing the ablation mass. Three calibration methods including internal standardization, partial least squares regression and random forest regression are employed to determine the chromium and manganese concentrations in standard samples of low alloy steel, and the limit of detection is respectively calculated as 36 and 515 ppm. The leave-one-out cross validation method is utilized to evaluate the accuracy of chromium quantification, and the concentration mapping of chromium is performed on the surface of a steel sample (16MND5) with a relative error of 0.02 wt.% KW - Fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) KW - Dual-pulse KW - Parameter optimization KW - Spectral enhancement KW - Self-absorption coefficient KW - Concentration mapping PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2020.147497 SN - 0169-4332 VL - 533 IS - 147497 SP - 1 EP - 29 PB - Elsevier CY - Amsterdam AN - OPUS4-51143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maher, C. A1 - Schazmann, B. A1 - Gornushkin, Igor B. A1 - Rurack, Knut A1 - Gojani, Ardian T1 - Exploring an Application of Principal Component Analysis to LaserInduced Breakdown Spectroscopy of Stainless-Steel Standard Samples as a Research Project N2 - Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) are frequently used for analytical purposes in research and industry, but they seldom are part of the chemistry Curriculum or laboratory exercises. This case study paper describes the combined application of LIBS and PCA during a research internship for an undergraduate student. The instructional method applied was based on a one-on-one mentorship, in which case the learner was engaged in a Research work. The learning activities included theoretical introductions to the LIBS and PCA methods, numerical simulation, experiments, and data analysis. The study covered three main topics: analysis of LIBS spectra, application of PCA for clustering, and use of PCA for experimental design. The realization of the study was instructive for all parties involved: from the mentorship point of view, it is concluded that the topics can be covered during an internship or developed into a one semester long research-based module of a chemistry program or a final year project. The student, on the other hand, developed profound technical skills in performing experiments and using PCA software for data analysis. KW - LIBS KW - PCA PY - 2021 DO - https://doi.org/10.1021/acs.jchemed.1c00563 VL - 98 SP - 3237 EP - 3244 PB - American Chemical Society Publications CY - USA AN - OPUS4-53515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pignatelli, Giuseppe A1 - Strasse, Anne A1 - Gornushkin, Igor B. A1 - Altenburg, Simon A1 - Scheuschner, Nils T1 - Optical emission spectroscopy as monitoring tool for ded N2 - This presentstion explains how optical emission spectroscopy can be exploited to on line monitor a DED printing production. This technique is tested printing on a substrate with artificial defects. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 10.12.2020 KW - Monitoring KW - Spectroscopy KW - Analytical chemistry KW - Additive manufacturing PY - 2020 AN - OPUS4-51877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bierstedt, Andreas A1 - Panne, Ulrich A1 - Riedel, Jens T1 - Confinement and enhancement of an airborne atmospheric laser-induced plasma using an ultrasonic acoustic resonator N2 - Optical elemental analysis in the gas phase typically relies on electrically driven plasmas. As an alternative approach, laser-induced plasmas (LIPs) have been suggested but have so far been only scarcely used. Here, a novel signal enhancement strategy for laser-based airborne plasma optical Emission spectroscopy for gas phase analytics is presented. In contrast to an electrically driven plasma, in the laser-induced analogue dynamic matter transport equilibrium builds up. The latter results in a rarefied density regime in the plasma core itself, surrounded by an area of compressed matter. The central rarefaction leads to a decrease in plasma intensity and analyte number density, both of which are detrimental for analytical purposes. Since the repetitive ignition of LIPs is a transient process, a restoration of the former gaseous medium by other dynamically equilibrated diffusion processes would be favourable. The presented combination of an airborne LIP and an ultrasonic acoustic resonator yields a fourfold signal enhancement while the Background contribution of ubiquitous air is at the same time effectively suppressed. Since the entire enhancement effect occurs without contact, no additional sources for abrasive sample contamination are introduced. KW - DPSS laser KW - Laser-induced plasma KW - High repetition rate KW - Ultrasonic acoustic resonator KW - Optical emission spectroscopy PY - 2018 DO - https://doi.org/10.1039/C7JA00297A SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 1 SP - 135 EP - 140 PB - Royal Society of Chemistry CY - London AN - OPUS4-43619 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sjöberg, T. A1 - El-Schich, Z. A1 - Rurack, Knut A1 - Gjörloff Wingren, A. T1 - Colorectal Cancer Cell Spheroids Co-Cultured with Molecularly Imprinted Fluorescent Particles Targeting Sialic Acid Show Preserved Cell Viability N2 - In vitro cultured 3D models of CRC have been demonstrated to hold considerable worth in drug discovery, drug resistance analysis, and in studying cell-cell and cell-matrix interactions that occur in the tumor microenvironment. The 3D models resemble the in vivo physiological microenvironment by replicating the cell type composition and tissue architecture. Molecularly imprinted polymers (MIPs) have been investigated for use instead of antibodies against small nonimmunogenic structures, such as sialic acid (SA). Glyco-conjugates including SA are present on all cells, and often deregulated on cancer cells. Here, we present a novel approach for targeting and detecting colorectal cancer cells (CRC) by using in vitro cultured HT29 3D spheroids co-cultured in vitro with either fluorescent MIPs targeting SA, SA-MIPs, or the two lectins targeting SA, MAL I, and SNA. Both formaldehyde-fixed and viable HT29 3D spheroids with or without SA-MIPs were imaged in 3D by confocal microscopy. The results revealed a preserved cell morphology and viability of the HT29 3D spheroids co-cultured in vitro with SA-MIPs. However, the lectins MAL I and SNA targeting the alpha-2,3 or alpha-2,6 SA glycosidic linkages, respectively, affected the cell viability when co-cultured with the viable HT29 3D spheroids, and no living cells could be detected. Here, we have shown that the SA-MIPs could be used as a safe and low-cost diagnostic tool for targeting and detecting cancer cells in a physiologically relevant 3D cancer model in vitro. KW - Molecularly Imprinted Polymers KW - Durchflusszytometrie KW - Zellanalytik KW - Fluoreszenz KW - Mikroskopie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573840 DO - https://doi.org/10.3390/app13095330 VL - 13 IS - 9 SP - 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-57384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kislenko, Evgeniia A1 - Incel, A. A1 - Gawlitza, Kornelia A1 - Sellergren, B. A1 - Rurack, Knut T1 - Towards molecularly imprinted polymers that respond to and capture phosphorylated tyrosine epitopes using fluorescent bis-urea and bis-imidazolium receptors N2 - Early detection of cancer is essential for successful treatment and improvement in patient prognosis. Deregulation of post-translational modifications (PTMs) of proteins, especially phosphorylation, is present in many types of cancer. Therefore, the development of materials for the rapid sensing of low abundant phosphorylated peptides in biological samples can be of great therapeutic value. In this work, we have synthesised fluorescent molecularly imprinted polymers (fMIPs) for the detection of the phosphorylated tyrosine epitope of ZAP70, a cancer biomarker. The polymers were grafted as nanometer-thin shells from functionalised submicron-sized silica particles using a reversible addition-fragmentation chain-transfer (RAFT) polymerisation. Employing the combination of fluorescent urea and intrinsically cationic bis-imidazolium receptor cross-linkers, we have developed fluorescent sensory particles, showing an imprinting factor (IF) of 5.0. The imprinted polymer can successfully distinguish between phosphorylated and non-phosphorylated tripeptides, reaching lower micromolar sensitivity in organic solvents and specifically capture unprotected peptide complements in a neutral buffer. Additionally, we have shown the importance of assessing the influence of counterions present in the MIP system on the imprinting process and final material performance. The potential drawbacks of using epitopes with protective groups, which can co-imprint with targeted functionality, are also discussed. KW - Functional monomers KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588089 DO - https://doi.org/10.1039/d3tb01474f SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-58808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut A1 - Biyikal, Mustafa T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - IEEE Sensors Conference CY - Vienna, Austria DA - 29.10.2023 KW - Chemical warfare agents KW - Lab-on-a-chip KW - Handheld sensors KW - Toxic industrial chemicals KW - Fluorescence PY - 2023 AN - OPUS4-58815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Bell, Jérémy A1 - Schneider, Rudolf T1 - A three-dimensional microfluidic flow cell and system integration for improved electrochemical substrate detection in HRP/TMB-based immunoassays N2 - Immunoassays, based on the recognition and capture of analytes by highly selective antibodies, are now used extensively in all areas of diagnostics, but the challenge is to further integrate them into online sensors. To improve the transition from laboratory immunoassays to immunosensors, we have developed a complete flow system, based on a microfluidic core flow cell to enable automated detection of one of the most commonly used immunoassay substrates, TMB, by chronoamperometry. The architecture and fluidic optimisation of the system showed that a specially designed 3D flow cell allows higher flow rates (500 μL min−1) than a standard enlarged microfluidic channel (50 μL min−1) resulting in a significantly shorter detection time of 30 seconds per sample and making the system more robust against interferences due to bubble formation in the chip. The electrochemical measurements showed an improved signal-to-noise ratio (SNR) and thus higher sensitivity for a model immunoassay for diclofenac (SNR = 59), compared to the analytical performance of a conventional laboratory microplate-based assay with optical detection (SNR = 19). In general, this system facilitates the conversion of any conventional immunoassay into an immunosensor with automatic and continuous detection. KW - Microfluidic KW - Immunoassay KW - Electrochemical KW - Mikrofluidik KW - Immunassay KW - Elektrochemie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580159 DO - https://doi.org/10.1039/d3sd00095h VL - 2 SP - 887 EP - 892 PB - Royal Society of Chemistry CY - London, United Kingdom AN - OPUS4-58015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -