TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. T1 - Laser Induced Dielectric Breakdown for Chemical Vapor Deposition by Hydrogen Reduction of Volatile Boron Halides BCl3 and  BF3 N2 - A possibility of deposition from laser-induced plasma is investigated in search for an economic and simple method for obtaining isotopic compounds from enriched gaseous precursors although no isotopic compounds are used in this the proof-of-principle work. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Equilibrium chemistry calculations show the deposition of boron, boron carbide, and carbon is thermodynamically favorable in BCl3 systems and only carbon in BF3 systems. Dynamic calculation of expanding plasma is performed using fluid dynamics coupled with equilibrium chemistry. Condensed phases of boron, boron carbide, and graphite are predicted with maximum concentrations in peripheral zones of the plasma. In experiment, plasma is induced in mixtures BCl3, H2 + BCl3, H2 + Ar + BCl3, H2 + BCl3 + CH4, BF3, H2 + BF3, H2 + Ar + BF3, and H2 + Ar + BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectrometry methods. The results show the composition of reaction products close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all reaction mixtures. Due to technical reasons only FTIR characterization of the BCl3 + H2 + CH4 deposit is done. It points to presence of condensed boron and boron carbide predicted by the model. Overall, the calculations and preliminary experimental results imply the chemical vapor deposition with laser induced plasma is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. KW - Boron halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown, Hydrogen reduction PY - 2020 DO - https://doi.org/10.1007/s11090-020-10096-w VL - 40 IS - 5 SP - 1145 EP - 1162 PB - Springer AN - OPUS4-50968 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. A1 - Sennikov, P. T1 - Laser Induced Plasma for Chemical Vapor Deposition: Theory and Experiment N2 - A possibility of deposition from laser-induced plasma (LIP) is investigated in search for an economic and simple method to obtain isotopic compounds from enriched gaseous precursors. A breakdown in mixtures of BCl3 and BCl3 with hydrogen, argon, and methane are studied both theoretically and experimentally. Calculations of expanding plasma of different composition are performed with the use of the fluid dynamic code coupled to the equilibrium chemistry solver. Condensed phases of boron, boron carbide, and graphite are predicted showing maximum concentrations in peripheral zones of the plasma. In experiment LIP is induced in mixtures BCl3, Н2+BCl3, H2+Ar+BCl3, H2+BCl3+CH4, BF3, Н2+BF3, H2+Ar+BF3, and H2+Ar+BF3. The gases are analyzed before, during, and after laser irradiation by optical and mass spectroscopic methods. The composition of reaction products is found to be close to that predicted theoretically. The conversion of precursor gases BCl3 and BF3 into gaseous and condensed products is 100% for BCl3 and 80% for BF3. Solid deposits of up to 30 mg are obtained from all the reaction mixtures. FTIR analysis of BCl3+H2+CH4 deposits points to a presence of condensed boron and boron carbide that are also predicted by the model. Both calculations and preliminary experimental results suggest the chemical vapor deposition by LIP is promising for conversion of gaseous enriched precursors into elemental isotopes and their isotopic compounds. T2 - International Online Meeting on Laser Induced Breakdown Spectroscopy (IIOMLIBS) CY - Online meeting DA - 06.07.2020 KW - Chemical vapor deposition KW - Laser induced plasma PY - 2020 AN - OPUS4-50994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Gaft, M. A1 - Nagli, L. A1 - Raichlin, Y. T1 - Laser-induced breakdown spectroscopy (LIBS) of BaF2-Tm3+ N2 - Our recent study was focused on the emission from Laser Induced Plasma (LIP) at the delay times of tenths of microseconds after the laser pulse. At these long delays, the spectrum is dominated by the broadband molecular emission and plasma induced luminescence (PIL) produced by a luminescent matrix; only solitary atomic emission lines can be seen. Barium fluoride BaF2 activated by thulium (Tm) is a famous scintillator that presents the promising object for LIP in terms of both the potential for BaF molecular emission and Tm3+ PIL. The detection of molecular and PIL bands presents a new opportunity for analysis of halogens and rare-earth elements, which are the difficult objects for LIBS. In this paper, we show that the UV, Green, Extreme Red, and Infrared molecular bands from BaF and blue luminescence from Tm3+ are present in the LIP emission spectra while the detection of atomic Emission from F I and Tm I was impossible with the same experimental setup. Thus, the detection of molecular emission and PIL can be more sensitive than the traditional detection of Emission from atoms and ions. KW - BaF KW - Laser-Induced Breakdown Spectroscopy (LIBS) KW - Rare-Earth elements (Tm3+) KW - Plasma-induced luminescence PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105767 VL - 164 SP - 105767 PB - Elsevier B.V. AN - OPUS4-50360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Plasma Fundamentals and Diagnostics N2 - This course will provide an introduction to plasma diagnostic techniques. The major focus of the course will be on the discussions of the practical procedures as well as the underlying physical principles for the measurements of plasma fundamental characteristics (e.g., temperatures, thermodynamic properties, and electron number density). Particular emphasis will be placed on inductively coupled plasma–atomic emission spectrometry, but other analytical plasmas will also be used as examples when appropriate. Selected examples on how one can manipulate the operating conditions of the plasma source, based on the results of plasma diagnostic measurements, to improve its performance used for spectrochemical analysis will also be covered. Topics to be covered include thermal equilibrium, line profiles, temperatures, electron densities, excitation processes, microreactions, pump and probe diagnostics, tomography, temporal and spatial resolution. Basis of plasma computer modeling will be presented. T2 - Winter Plasma Conference CY - Tucson, AZ, USA DA - 10.01.2020 KW - Plasma modeling KW - Thermal equilibrium KW - Plasma processes KW - Electron number density KW - Temperatures KW - Emission line profiles KW - Spatial information PY - 2020 AN - OPUS4-50324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian T1 - Combined Raman and LIBS using Spatial Heterodyne Spectrometer with High Repetition Rate Laser N2 - Spatial heterodyne spectroscopy is used for Raman and laser-induced breakdown spectroscopy of six rocks with various mineral content, using high repetition rate diode-pumped solid state lasers. While LIBS data are obtained for all samples, Raman signal was determined only for half of those. This work shows that it is possible to combine LIBS and Raman spectrometry into a single instrument consisting of a DPSS laser for excitation and SHS for spectral recording. For better results and gain from complementary spectrochemical information that the system provides, it is necessary to optimize light collection. T2 - 2020 Winter Conference on Plasma Spectrochemistry CY - Tucson, Arizona, USA DA - 13.01.2020 KW - Laser-Induced Background Spectroscopy KW - Spatial heterodyne spectroscopy KW - Raman spectroscopy PY - 2020 AN - OPUS4-50265 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Galbacs, G. A1 - Keri, A. A1 - Kalomista, I. A1 - Kovacs-Szeles, E. A1 - Gornushkin, Igor B. T1 - Deuterium analysis by inductively coupled plasma mass spectrometry using polyatomic species: An experimental study supported by plasma chemistry modeling N2 - based on the use of the signal from hydrogen-containing polyatomic ions formed in the inductively coupled plasma. Prior to analytical experiments, a theoretical study was performed to assess the concentration of polyatomic species present in an equilibrium Ar-O-D-H plasma, as a function of temperature and stoichiometric composition. It was established that the highest sensitivity and linearity measurement of D concentration in a wide range can be achieved by monitoring the ions of D2 and ArD, at masses 4 and 42, respectively. Results of the calculations are in good agreement with the experiments. Signal stability, spectral interferences, as well as the effect of plasma parameters were also assessed. Under optimized conditions, the limit of detection (LOD) was found to be 3 ppm atom fraction for deuterium when measured as ArD (in calcium and potassium free water), or 78 ppm when measured as D2. The achieved LOD values and the 4 to 5 orders of magnitude dynamic range easily allow the measurement of deuterium concentrations at around or above the natural level, up to nearly 100% (or 1 Mio ppm) in a standard quadrupole ICP-MS instrument. An even better performance is expected from the method in high resolution ICP-MS instruments equipped with low dead volume sample introduction systems KW - ICP MS KW - Deuterium KW - Deuterium enriched water PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.01.011 VL - 1104 SP - 28 EP - 37 PB - Elsevier B.V. AN - OPUS4-50777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela T1 - Design and synthesis of lateral flow tests containing antibody-gated materials N2 - Methods for the rapid and sensitive detection of target analytes are gaining importance in medical diagnostics and environmental monitoring, in the security, occupational health and safety as well as food sectors. Among all the methods employed for rapid tests, lateral flow assays (LFAs) are the most commonly used. However, some drawbacks are that most of these tests either indicate the analyte only indirectly, and in other cases the sensitivity is not high enough. Keeping in mind these limitations, the use of stimuli-responsive materials for small-molecule sensing relying on chemical signal amplification and utilizing specific interactions between biomolecules such as antibodies and the corresponding analytes are particularly attractive. Such materials can also be incorporated on paper strips for lateral-flow assays in a straightforward manner. These sensing materials comprise mesoporous silica nanoparticles loaded with indicator molecules and containing certain hapten derivative molecules covalently grafted at the surface, which bind to the respective antibody and inhibit the release of a dye as reporter (Scheme 1). In presence of the designated analyte, a displacement of the antibody from the material is observed, allowing the release of dye. Because a large number of indicator molecules can be released when a single analyte molecule binds to an antibody cap, a strong signal amplification is observed. Considering the modularity, high sensitivity and selectivity of these antibody-gated indicator delivery systems, the presentation discusses general aspects of system design as well as analytical performance and highlights the integration into a lateral-flow assay, showing as an example the determination of the explosives TATP, TNT and PETN with a fluorescence readout, in single-substance and multiplexing modes. T2 - International Webinar on Biosensors and Bioelectronics CY - Online meeting DA - 20.07.2020 KW - Multiplexing detection KW - Rapid testing methods KW - Gated hybrid materials KW - Lateral flow tests KW - Explosives detection PY - 2020 UR - https://europeanmeetings.net/conferences/biosensor-bioelectronics AN - OPUS4-51038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sennikov, P. A1 - Gornushkin, Igor B. A1 - Kornev, R. A1 - Nazarov, V. A1 - Polyakov, V. A1 - Shkrunin, V. T1 - Hydrogen Reduction of MoF6 and Molybdenum Carbide Formation in RF Inductively Coupled Low‑Pressure Discharge: Experiment and Equilibrium Thermodynamics Consideration N2 - The physical plasma parameters, temperature and electron number density, are studied in the RF-IC (RF inductively coupled) discharge at a reduced pressure of 3 Torr in mixtures of MoF6 with Ar, H2 and CH4. The emission spectra of mixtures are investigated. It is shown that in the presence of argon, the concentration of free electrons in plasma and dissociation rate of MoF6 increase. A main role of molecular hydrogen is the generation of atomic hydrogen that binds atomic fuorine and leads to the formation of gaseous and solid products. Exhaust gas mixtures exiting the reactor are analyzed by mass spectrometry. It is shown that for all cases, the conversion of MoF6 into reaction products is close to 100%. A thermodynamic analysis of the equilibrium composition of MoF6 systems with Ar, H2 and CH4 was carried out and the obtained results are in good agreement with experimentally observed composition of the solid and gas phases. Analysis of solid deposits from mixture MoF6/H2/Ar revealed the presence of molybdenum powder and large amount of amorphous MoFx. The deposit obtained from mixtures with methane, MoF6/H2/Ar/CH4, contained crystalline molybdenum carbide, Mo3C2. KW - Molybdenum carbide KW - RF ICP discharge KW - Reduction of MoF6 KW - Thermodynamic KW - Molybdenum PY - 2020 DO - https://doi.org/10.1007/s11090-020-10138-3 SN - 0272-4324 VL - 41 IS - 2 SP - 673 EP - 690 PB - Springer AN - OPUS4-51569 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gaft, M. A1 - Nagli, L. A1 - Gornushkin, Igor B. A1 - Raichlin, Y. T1 - Review on recent advances in analytical applications of molecular emission and modelling N2 - The review mainly deals with two topics that became important in applications of laser-induced breakdown spectroscopy (LIBS) in recent years: the emission of halogen- and rare-earth-containing molecules and selective excitation of molecules by molecular laser-induced fluorescence (MLIF). The first topic is related to the emission of alkaline-earth diatomic halides MX, M = Ca, Mg, Ba, Sr and X = F, Cl, Br, and I and rare-earth element (REE) oxides LaO, YO, and ScO. These molecules form in laser-induced plasma (LIP) soon after its ignition and persist for a long time, emitting broad bands in a visible part of the spectrum. They are best detected after relatively long delay times when emission from interfering plasma species (atoms and ions) has already been quenched. Such behavior of molecular spectra allows of using, for their detection, inexpensive CCD detectors equipped with simple electronic or mechanical shutters and low-resolution spectrometers. A main target for analysis by molecular spectroscopy is halogens; these elements are difficult to detect by atomic spectroscopy because their most intense atomic lines lie in the vacuum UV. Therefore, in many situations, emission from CaF and CaCl may provide a substantially more sensitive detection of F and Cl than emission from elemental F and Cl and their ions. This proved to be important in mining and concrete industries and even Mars exploration. A similar situation is observed for REEs; their detection by atomic spectroscopy sometimes fails even despite the abundance of atomic and ionic REEs' lines in the UV-VIS. For example, in minerals and rocks with low concentrations of REEs, emission from major and minor mineral elements hinders the weak emission from REEs. Many REEs do not form molecules that show strong emission bands in LIP but can still be detected with the aid of LIP. All REEs except La, Y, and Sc exhibit long-lived luminescence in solid matrices that is easily excited by LIP. The luminescence can be detected simultaneously with molecular emission of species in LIP within the same time and spectral window. The second topic is related to the combination of MLIF and LIBS, which is a technique that was proved to be efficient for analysis of isotopic molecules in LIP. For example, the characteristic spectral signals from isotopic molecules containing 10B and 11B are easier to detect with MLIF-LIBS than with laser ablation molecular isotopic spectrometry (LAMIS) because MLIF provides strong resonance excitation of only targeted isotopes. The technique is also very efficient in detection of halogen molecules although it requires an additional tunable laser that makes the experimental setup bulky and more expensive. KW - Plasma induced luminescence KW - Molecular emission KW - Laser induced plasma KW - Plasma modeling KW - Molecular analysis KW - LIBS PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105989 VL - 173 SP - 105989 PB - Elsevier B. V. AN - OPUS4-51420 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gojani, Ardian A1 - Gornushkin, Igor B. T1 - Räumlich aufgelöste Heterodyne-Spektroskopie N2 - Die räumlich aufgelöste Heterodyn-Spektroskopie (SHS) kombiniert dispersive und interferometrische Techniken zur Gewinnung spektroskopischer Informationen und kann in einem anpassbaren Instrument realisiert werden. SHS wird für die chemische Analyse von verschiedenen Materialien mit Hilfe der Laser-induzierten Plasmaspektroskopie (LIBS) und der Raman-Spektroskopie eingesetzt. KW - Raman spectroscopy KW - Spatial heterodyne spectroscopy KW - Laser-induced breakdown spectroscopy PY - 2020 UR - https://analyticalscience.wiley.com/do/10.1002/was.00080118/full VL - 5 SP - 2 EP - 4 PB - Wiley CY - Weinheim AN - OPUS4-51397 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Képeš, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J. T1 - Tomography of double-pulse laser-induced plasmas in the orthogonal geometry N2 - The temporal evolution of laser-induced plasmas is studied in the orthogonal double-pulse arrangement. Both the pre-ablation mode (an air spark is induced above the sample surface prior to the ablation pulse) and the re-heating mode (additional energy is delivered into the plasma created by the ablation pulse) is considered. The plasmas are investigated in terms of the temporal evolution of their electron density, temperature, and volume. The plasma volumes are determined using a time-resolved tomography technique based on the Radon transformation. The reconstruction is carried out for both white-light and band-pass filtered emissivities. The white-light reconstruction corresponds to the overall size of the plasmas. On the other hand, the band-pass emissivity reconstruction shows the distribution of the atomic sample species (Cu I). Moreover, through spectrally resolved tomographic reconstruction, the spatial homogeneity of the electron density and temperature of the plasmas is also investigated at various horizontal slices of the plasmas. Our results show that the pre-ablation geometry yields a more temporally stable and spatially uniform plasma, which could be beneficial for calibration-free laser-induced breakdown spectroscopy (LIBS) approaches. On the contrary, the plasma generated in the re-heating geometry exhibits significant variations in electron density and temperature along its vertical axis. Overall, our results shed further light on the mechanisms involved in the LIBS signal enhancement using double-pulse ablation. KW - Laser-induced plasma KW - Laser-induced breakdown spectroscopy KW - Double-pulse laserinduced breakdown spectroscopy KW - Plasma tomography KW - Radon reconstruction PY - 2020 DO - https://doi.org/10.1016/j.aca.2020.06.078 SN - 0003-2670 SN - 0378-4304 VL - 1135 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-51142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qiu, Yan A1 - Yu, H. A1 - Gornushkin, Igor B. A1 - Li, J. A1 - Wu, Q. A1 - Zhang, Z. A1 - Li, X. T1 - Measurement of trace chromium on structural steel surface from a nuclear power plant using dual-pulse fiber-optic laser-induced breakdown spectroscopy N2 - Remote and on-line measurement of chromium on structural steel surface in nuclear power plants is critical for protection against fluid accelerated corrosion. To improve the insufficient sensitivity of fiber-optic laser-induced breakdown spectroscopy toward trace element detection, a dual-pulse spectral enhancement system is set up. In an iron matrix, for the purpose of improving sensitivity of trace chromium analysis and reducing the self-absorption of iron, the effects of key parameters are investigated. The optimal values of the parameters are found to be: 450 ns inter-pulse delay, 700 ns gate delay, 30 mJ/6 mJ pulse energy ratio, and 19.8 mm lens-to-sample distance (corresponding to a 799 μm laser focused spot size). Compared to the single-pulse system, the shot number of dual-pulse ablation is limited for reducing surface damage. After the optimization of the dual-pulse system, the signal-to-noise ratio of the trace chromium emission line has been improved by 3.5 times in comparison with the single-pulse system, and the self-absorption coefficient of matrix iron has been significantly reduced with self-reversal eliminated. The number of detectable lines for trace elements has more than doubled thus increasing the input for spectral calibration without significantly increasing the ablation mass. Three calibration methods including internal standardization, partial least squares regression and random forest regression are employed to determine the chromium and manganese concentrations in standard samples of low alloy steel, and the limit of detection is respectively calculated as 36 and 515 ppm. The leave-one-out cross validation method is utilized to evaluate the accuracy of chromium quantification, and the concentration mapping of chromium is performed on the surface of a steel sample (16MND5) with a relative error of 0.02 wt.% KW - Fiber-optic laser-induced breakdown spectroscopy (FO-LIBS) KW - Dual-pulse KW - Parameter optimization KW - Spectral enhancement KW - Self-absorption coefficient KW - Concentration mapping PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2020.147497 SN - 0169-4332 VL - 533 IS - 147497 SP - 1 EP - 29 PB - Elsevier CY - Amsterdam AN - OPUS4-51143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. G. A1 - Kornev, R. A. A1 - Polyakov, V. S. T1 - Equilibrium calculations for plasmas of volatile halides of III, IV and VI group elements mixed with H2 and H2 + CX4 (X = H, Cl, F) relevant to PECVD of isotopic materials N2 - The composition of hydrogen and hydrogen-methane plasmas containing ~10% of BX₃, SiX₄, GeX₄ (X = F, Cl), SF₆, MoF₆ and WF₆ is calculated for the temperature range ~300-4000 K using the equilibrium chemical model. The calculations provide valuable information about thermodynamic parameters (pressure, temperature) needed for condensation of pure elements (in H₂ plasma) and their carbides (in H₂ + CH₄ plasma) and about intermediate reaction products. Using volatile fluorides for plasma chemical deposition alleviates obtaining monoisotopic elements and their isotopic compounds because fluorine is monoisotopic. PECVD is promising method for one-step conversion of fluorides to elemental isotopes and their carbides. For fluorides, further insight is needed into properties of plasmas supported by different types of discharges. KW - Plasma chemistry KW - Modeling chemical reactions KW - Plasma enhanced chemical vapor deposition KW - Reduction of volatile chlorides and fluorides by hydrogen PY - 2020 DO - https://doi.org/10.1007/s10967-020-07295-2 VL - 326 IS - 1 SP - 407 EP - 421 PB - Springer CY - Dordrecht AN - OPUS4-51144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Laser induced gas breakdown in reactive mixtures containing halides of boron and silicon: diagnostics and modeling N2 - We run two pilot LIP experiments in reactive gas mixtures. First, LIP is excited in BCl3 or BF3 plus H2 or CH4 to evaluate the efficiency of deposition of solid boron and boron carbide, materials that are largely used for refractory coatings. Second, we investigate a possibility of synthesis of fluorochlorosilanes SiFxCl4-x (x = 1, 2, 3) by LIP induced in SiF4+SiCl4 gas mixtures. Using fluorochlorosilanes with different combinations of F and Cl in the SiFxCly molecule may add flexibility in processes of silicon deposition and etching. The gases used and solid deposits are analyzed by optical emission spectroscopy (OES) and IR and mass spectrometry (MS). We also model the laser induced plasma by performing static equilibrium chemistry calculations to see whether desired reaction products are thermodynamically favorable and dynamic calculations of the expanding plasma plume to see how and where the products form. T2 - International Workshop on Laser Induced breakdown Spectroscopy CY - Online meeting DA - 01.12.2020 KW - Silicon halides KW - Chemical vapor deposition KW - Laser induced dielectric breakdown KW - Hydrogen reduction PY - 2020 AN - OPUS4-51725 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kepes, E. A1 - Gornushkin, Igor B. A1 - Pořízka, P. A1 - Kaiser, J T1 - Spatiotemporal spectroscopic characterization of plasmas induced by non-orthogonal laser ablation N2 - Ablation geometry significantly affects the plasma parameters and the consequent spectroscopic observations in laser-induced breakdown spectroscopy. Nevertheless, plasmas induced by laser ablation under inclined incidence angles are studied to a significantly lesser extent compared to plasmas induced by standard orthogonal ablation. However, inclined ablation is prominent in stand-off applications, such as the Curiosity Mars rover, where the orthogonality of the ablation laser pulse cannot be always secured. Thus, in this work, we characterize non-orthogonal ablation plasmas by applying plasma imaging, tomography, and spectral measurements. We confirm earlier observations according to which non-orthogonal ablation leads to a laser-induced plasma that consists of two distinct parts: one expanding primarily along the incident laser pulse and one expanding along the normal of the sample surface. Moreover, we confirm that the former emits mainly continuum radiation, while the latter emits mainly sample-specific characteristic radiation. We further investigate and compare the homogeneity of the plasmas and report that inclined ablation affects principally the ionic emissivity of laser-induced plasmas. Overall, our results imply that the decreased fluence resulting from inclined angle ablation and the resulting inhomogeneities of the plasmas must be considered for quantitative LIBS employing non-orthogonal ablation. KW - Radon transformation KW - Laser induced plasma KW - Plasma tomography PY - 2020 DO - https://doi.org/10.1039/d0an01996h VL - 146 IS - 3 SP - 920 EP - 929 PB - The Royal Society of Chemistry AN - OPUS4-51774 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pignatelli, Giuseppe T1 - Optical Sensor for Monitoring Quality of 3D Metal Printing N2 - Additive Manufacturing (AM) becomes widespread in many technological fields including the precise machining of steel. To assure quality of final products, thorough monitoring of online process is required. We test several monitoring techniques during the AM printing to quickly detect and possibly correct flaws while building a workpiece. Here we show how optical emission spectroscopy can be used to recognize defects that are artificially introduced on a steel printing substrate. T2 - Scix 2020 CY - Online meeting DA - 12.10.2020 KW - Additive manufacturing KW - Spectroscopy KW - Analytical chemistry PY - 2020 AN - OPUS4-51858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Sennikov, P. A1 - Kornev, R. A1 - Ermakov, A. A1 - Shkrunin, V. A1 - Polyakov, V. T1 - Laser induced dielectric breakdown for synthesis of chlorofluorosilanes N2 - Tetrafluorosilane (SF4) and tetrachlorosilane (SiCl4) plasmas have been widely used as a source of either F or Cl for etching silicon or as a source of silicon for deposition of Si-based materials. Using different combinations of F and Cl in molecules of chlorofluorosilane SiFxCly adds additional flexibility in realization of these processes. Direct synthesis of SiFxCl4-x (x=1, 2, 3) from SiF4 and SiCl4 is thermodynamically forbidden under standard conditions. This restriction is removed in low-temperature plasmas studied in this work: a laser induced dielectric breakdown (LIDB) plasma and steady-state inductively-coupled plasma (ICP). The plasmas differ in many respects including energy content, temperature, and electron density that lead to different ionization/excitation states of plasma species, which are observed from plasma optical emission spectra. IR spectroscopy and mass-spectrometry confirm the formation of three chlorofluorosilanes, SiF3Cl, SiF2Cl2, and SiFCl3 that constitute ~60% in products of LIDB plasma and split 50/50 between SiF3Cl, SiFCl3 and SiF2Cl2. Experimental observations are verified by equilibrium static calculations via the minimization of Gibbs free energy and by dynamic calculations via the chemical-hydrodynamic plasma model of a spherically expanding plasma plume. The both types of calculations qualitatively agree with the results of spectroscopic analysis and reproduce dominant presence of SiF2Cl2 as the temperature of the gas approaches the room temperature. KW - Chemical-hydrodynamic modeling KW - Chlorofluorosilanes KW - Laser induced dielectric breakdown KW - Inductively coupled plasma KW - Equilibrium chemical modeling PY - 2020 DO - https://doi.org/10.1016/j.jfluchem.2020.109692 VL - 241 SP - 109692 PB - Elsevier B.V. AN - OPUS4-51646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Reverse deposition of TI-oxides under nanosecond laser ablation of TI N2 - Processes of laser induced oxidation of metals are typically studied in the framework of heterogeneous chemical reactions occurring on the irradiated surface, which lead to the formation of dense oxide films deposited on it. Such technology has many applications like color-laser marking technology and laser recording on thin metal films for creation of diffractive optical elements . Under the conditions of strong laser ablation, another oxidation mechanism becomes possible: evaporated atoms react with oxygen in a surrounding atmosphere and the products of such reaction are redeposited back onto the substrate. The chemical and phase composition of such deposited layer, its density, morphology and structure depend on the conditions of laser ablation. By varying these conditions, the main properties of such coating can be controlled that is important for some potential application (for example in biomedicine). In our report we present the study of the processes of redeposition of oxides structure under the conditions of multipulse nanosecond laser ablation of titanium (Grade 2) in air atmosphere at normal conditions. Our experiments show that titanium-implants with such deposited oxide layer have increased biocompatibility. Modelling of chemical reaction in laser-induced plasma coupled with experimental methods of plasma optical emission spectroscopy allows us to determine the types of main chemical reactions in laser plasma as well as it influences on the plume dynamics and vapor condensation kinetics. As a result, we propose the general physical picture of reverse deposition of oxides structure under the condition of strong nanosecond laser ablation. The formation of the titanium oxide precipitate is explained not only by collisions in the plasma, but also by the chemical interaction of titanium and oxygen, which leads to the formation of а low pressure area near the substrate and additionally stimulates the reverse deposition of oxides. We expect, similar processes are valid not only for titanium but also for other metals and, possibly, semiconductors. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Laser ablation KW - Laser induced plasma deposition KW - Surface coating KW - Emission spectroscopy KW - Titanium dioxide KW - Hydrodynamic model KW - Plasma chemistry PY - 2021 AN - OPUS4-53245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gornushkin, Igor B. T1 - Optical Detection of Defects during Laser Metal Deposition - Simulations and Experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. T2 - 28th International Conference on Advanced Laser Technologies CY - Online meeting DA - 06.09.2021 KW - Additive manufacturing KW - Laser metal deposition KW - Optical sensor KW - Optical emission spectroscopy KW - Process control PY - 2021 AN - OPUS4-53246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gornushkin, Igor B. A1 - Pignatelli, Giuseppe A1 - Straße, Anne T1 - Optical detection of defects during laser metal deposition: Simulations and experiment N2 - Laser metal deposition is a rapidly evolving method for additive manufacturing that combines high performance and simplified production routine. Quality of production depends on instrumental design and operational parameters that require constant control during the process. In this work, feasibility of using optical spectroscopy as a control method is studied via modeling and experimentally. A simplified thermal model is developed based on the time-dependent diffusion-conduction heat equation and geometrical light collection into detection optics. Intense light emitted by a laser-heated spot moving across a sample surface is collected and processed to yield the temperature and other temperature-related parameters. In a presence of surface defects the temperature field is distorted in a specific manner that depends on a shape and size of the defect. Optical signals produced by such the distorted temperature fields are simulated and verified experimentally using a 3D metal printer and a sample with artificially carved defects. Three quantities are tested as possible metrics for process monitoring: temperature, integral intensity, and correlation coefficient. The shapes of the simulated signals qualitatively agree with the experimental signals; this allows a cautious inference that optical spectroscopy is capable of detecting a defect and, possibly, predicting its character, e.g. inner or protruding. KW - Additive manufacturing KW - Laser metal deposition (LMD) KW - Thermal model KW - Optical sensor KW - Process control PY - 2021 DO - https://doi.org/10.1016/j.apsusc.2021.151214 SN - 0169-4332 VL - 570 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-53292 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huan, Y. A1 - Gojani, Ardian A1 - Gornushkin, Igor B. A1 - Wang, X. A1 - Liu, D. A1 - Rong, M. T1 - Dynamics of laser-induced plasma splitting N2 - The dynamics of laser-induced plasma plume splitting is investigated using spatiotemporal plasma imaging and spectrometry in this paper. Plasma plume splitting into fast and slow components is clearly observed using plasma optical emission as time evolves. The spatial resolved plasma spectra are used to investigate the plasma species distribution, which reveals that the charged copper ions, which radiate at wavelength range 485 nm - 504 nm, are merely present in the fast component. In order to further interpret the mechanism, the pressure-dependent and laser energy-dependent plume splitting are analyzed. Based on the results, the charge separation field is proposed to explain this phenomenon. This work can be of importance for such areas as laser induced breakdown spectroscopy, laser-induced ion source formation, pulse laser deposition, film growth, and nanoscale synthesis. KW - Spectroscopy KW - Laser induced plasma KW - Splitting KW - Imaging PY - 2020 DO - https://doi.org/10.1016/j.optlaseng.2019.105832 SN - 0143-8166 VL - 124 SP - 1 EP - 5 PB - Elsevier CY - Amsterdam AN - OPUS4-48746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gojani, Ardian T1 - Motion of an ensemble of magnetic microbeads in a microfluidic system N2 - This study describes the motion of magnetizable particles of spherical shape with radius at most of 1 μm, also referred to as microbeads, immersed in a liquid under laminar flow conditions in a microfluidic channel. An external magnetic field is applied in part of the system such that it permeates the channel and is characterized by a spatially varying magnetic field, i.e., the gradient of the magnetic field is nonzero. The beads are superparamagnetic; hence they can reach high level of magnetization in the presence of a magnetic field, and this magnetization disappears when the field is zero. Therein lies the attractiveness of these microbeads and the potential for applications because their motion can be controlled using an external magnetic field. The motion is governed by several factors, including the magnetic force acting on microbeads (particles), the drag force due to viscosity, the interaction between particles and the fluid, as well as the interaction between particles themselves. For a single particle case, the trajectory of the motion is determined by balancing the drag and magnetic forces acting on the particle, a calculation that in general requires numerical integration. For a system consisting of an ensemble of interacting particles, several regimes of motion dominated by one of the factors are identified. Of particular interest are the systems dominated by the large number of particles in the ensemble, i.e., high particle concentration, in which cases the wake influences the flow downstream. This effect is qualitatively investigated by considering the Navier-Stokes equation with and without the magnetic force contribution. T2 - 1st NIP Conference National Institute of Physics (IKF), the Albanian Academy of Sciences CY - Tirana, Albania DA - 10.02.2022 KW - MamaLoCA KW - Microfluidics KW - Magnetophoresis PY - 2022 AN - OPUS4-54366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giuseppe, Pignatelli A1 - Anne, Strasse A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. T1 - Online monitoring of 3D printing of steel via optical emission spectroscopy N2 - Additive manufacturing by laser metal deposition (LMD) requires continuous online monitoring to ensure quality of printed parts. Optical emission spectroscopy (OES) is proposed for the online detection of printing defects by monitoring minute variations in the temperature of a printed spot during laser scan. A two-lens optical system is attached to a moving laser head and focused on a molten pool created on a substrate during LMD. The light emitted by the pool is collected by an ultraviolet–visible (UV–vis) spectrometer and processed. Two metrics are used to monitor variations in the surface temperature: the spectrally integrated emission intensity and correlation coefficient. The variations in the temperature are introduced by artificial defects, shallow grooves, and holes of various widths and diameters carved on a substrate surface. The metrics show sufficient sensitivity for revealing the surface defects, except for the smallest holes with an under-millimeter diameter. Additionally, numeric simulations are carried out for the detection of emission in the UV–vis and near-infrared (NIR) spectral ranges at various surface temperatures. It is concluded that both the metrics perform better in the NIR range. In general, this work demonstrates that spectrally resolved OES suits well for monitoring surface defects during 3D metal printing. KW - Process control KW - Additive manufacturing KW - Laser metal deposition KW - Optical emission spectroscopy KW - Optical sensor PY - 2022 DO - https://doi.org/10.1515/mt-2021-2082 VL - 64 IS - 1 SP - 24 EP - 32 PB - De Gruyter AN - OPUS4-54413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dhull, N. A1 - Kaur, Gurpreet A1 - Jindal, K. A1 - Verma, M. A1 - Tomar, M. T1 - Microfluidics integrated NiO based electrolyte-gated FETs for the detection of cortisol N2 - A microfluidics integrated EGFET has been devised using NiO for the detection of cortisol. A low detection limit of 0.5 fg mL−1 has been achieved and human salivary cortisol has been successfully assessed. KW - Microfluidic system KW - Field effect transistor (FET) KW - Electrolyte gating PY - 2022 DO - https://doi.org/10.1039/d2tb01652d SN - 2050-7518 VL - 10 IS - 44 SP - 9226 EP - 9234 PB - Royal Society of Chemistry (RSC) CY - London AN - OPUS4-61772 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ecke, Alexander A1 - Bell, Jérémy A1 - Schneider, Rudolf T1 - A three-dimensional microfluidic flow cell and system integration for improved electrochemical substrate detection in HRP/TMB-based immunoassays N2 - Immunoassays, based on the recognition and capture of analytes by highly selective antibodies, are now used extensively in all areas of diagnostics, but the challenge is to further integrate them into online sensors. To improve the transition from laboratory immunoassays to immunosensors, we have developed a complete flow system, based on a microfluidic core flow cell to enable automated detection of one of the most commonly used immunoassay substrates, TMB, by chronoamperometry. The architecture and fluidic optimisation of the system showed that a specially designed 3D flow cell allows higher flow rates (500 μL min−1) than a standard enlarged microfluidic channel (50 μL min−1) resulting in a significantly shorter detection time of 30 seconds per sample and making the system more robust against interferences due to bubble formation in the chip. The electrochemical measurements showed an improved signal-to-noise ratio (SNR) and thus higher sensitivity for a model immunoassay for diclofenac (SNR = 59), compared to the analytical performance of a conventional laboratory microplate-based assay with optical detection (SNR = 19). In general, this system facilitates the conversion of any conventional immunoassay into an immunosensor with automatic and continuous detection. KW - Microfluidic KW - Immunoassay KW - Electrochemical KW - Mikrofluidik KW - Immunassay KW - Elektrochemie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580159 DO - https://doi.org/10.1039/d3sd00095h VL - 2 SP - 887 EP - 892 PB - Royal Society of Chemistry CY - London, United Kingdom AN - OPUS4-58015 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vinot, Romane T1 - A terpyridine-based fluorescent chemosensor for the selective detection of glyphosate and AMPA in water N2 - Detection of pesticide residues, anthropogenic and persistent environmental contaminants is a public health concern due to their association with various pathologies. Studies have shown a correlation between exposure to these residues in drinking water or food and neurodegenerative disorders, autoimmune conditions, and cancers. In this context, detecting organic molecules such as glyphosate and its primary degradation product: AMPA, presents a significant challenge in sensor development. This is due to factors such as the molecules’ small size, pronounced polarity, and their variable ionic charge. However, fluorescent molecular sensors offer several advantages in terms of versatility, sensitivity, selectivity, response time and low cost. Terpyridine zinc complex derivatives show promise as selective detectors of glyphosate and AMPA due to their inherent specificity towards phosphate moieties4. These complexes are designed to modulate intramolecular charge transfer processes upon interaction with the phosphate moiety of AMPA or glyphosate. A novel series of terpyridine derivatives incorporating complexing moieties for both the phosphate and amine groups of AMPA and carboxylate group of Glyphosate were synthesised to target AMPA and Glyphosate (Figure 1). The absorbance and fluorescence signatures of the probe were investigated upon complexation with the analytes in MeOH/HEPES buffer (10 mM, pH 7.4, 9/1 v/v). The fluorescent sensor displayed high selectivity and sensitivity for glyphosate and AMPA, thanks to two measurements taken a few minutes apart. The detection limit of the sensor for Glyphosate in fluorescence was calculated at 0.14 μM. T2 - Journées Annuelles 2025 de la Subdivision Photochimie, Photophysique et Photosciences (SP2P) CY - Toulouse, France DA - 19.05.2025 KW - Glyphosate KW - AMPA KW - Sensor PY - 2025 AN - OPUS4-63262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ecke, Alexander T1 - An Immunosensor for Pharmaceutical Contaminants in Water Supply N2 - Contamination of drinking water with pharmaceuticals is an emerging problem and a potential health threat. Immunochemical methods based on the binding of the analyte to specific antibodies enable fast & cost-effective on-site analyses. Magnetic bead-based immunoassays (MBBAs) allow for implementation into an immunosensor for online testing. Particles are prepared by either coupling the analyte molecule (diclofenac) or the respective antibody (amoxicillin) to the surface. For miniaturization, detection is performed electrochemically (chronoamperometry) on a microfluidic chip. The developed immunosensor will enable detection of pharmaceuticals directly in water supply pipes. T2 - Analytica Conference CY - München, Germany DA - 21.06.2022 KW - Immunosensor KW - Magnetic Particles KW - Microfluidics KW - Amperometry KW - Diclofenac KW - Amoxicillin PY - 2022 AN - OPUS4-55381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zettner, Alina A1 - Gojani, Ardian A1 - Schmid, Thomas A1 - Gornushkin, Igor B. T1 - Evaluation of a Spatial Heterodyne Spectrometer for Raman Spectroscopy of Minerals N2 - Spatial heterodyne spectroscopy (SHS) is a novel spectral analysis technique that is being applied for Raman spectroscopy of minerals. This paper presents the theoretical basis of SHS and its application for Raman measurements of calcite, quartz and forsterite in marble, copper ore and nickel ore, respectively. The SHS measurements are done using a broadband (518–686 nm) and resolving power R ≈ 3000 instrument. The spectra obtained using SHS are compared to those obtained by benchtop and modular dispersive spectrometers. It is found that SHRS performance in terms of resolution is comparable to that of the benchtop spectrometer and better than the modular dispersive spectrometer, while the sensitivity of SHRS is worse than that of a benchtop spectrometer, but better than that of a modular dispersive spectrometer. When considered that SHS components are small and can be packaged into a handheld device, there is interest in developing an SHS-based Instrument for mobile Raman spectroscopy. This paper evaluates the possibility of such an application. KW - Forsterite KW - Spatial heterodyne spectrometer KW - Interferometric spectroscopy KW - Fourier transform spectroscopy KW - Raman spectroscopy KW - Calcite KW - Quartz PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504624 DO - https://doi.org/10.3390/min10020202 VL - 10 IS - 2 SP - 202 PB - MDPI CY - Basel, Switzerland AN - OPUS4-50462 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ Monitoring der Additiven Fertigung von Metallen im LPA Prozess mittels Optischer Emissionsspektrometrie (OES) und Thermografie (TT) N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Viele wichtige Prozessgrößen bei der additiven Fertigung sind thermischer Natur, wie z.B. die Temperatur des Schmelzbades. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zur Temperaturbestimmung an. Für die Thermografie und Optische Emissionsspektrometrie im IR-Bereich, welche für die in-situ Anwendung prinzipiell als geeignet angesehen werden können, gibt es allerdings noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird der Fokus auf eine Versuchsserie gelegt, bei der Aufbau von Probekörpern aus dem austenitischen Edelstahl 316L mittels Laser-Pulver-Auftragschweißen (LPA) durch od. mit Hilfe von IR-Spektrometrie und Thermografie in-situ überwacht wurde. Hierbei stellen u.a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen des Metalls große experimentelle Herausforderungen dar, wobei jede Methode individuelle Vor- und Nachteile aufweist, welche verglichen werden. T2 - DGZfP-Jahrestagung 2021 CY - Online meeting DA - 10.05.2021 KW - Additive Manufacturing KW - Thermography KW - Direct Energy Deposition KW - Additive Fertigung KW - Thermografie KW - Laserauftragschweißen PY - 2021 AN - OPUS4-52744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 DO - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scheuschner, Nils T1 - In-situ temperature measurements of the LMD process by IR-spectroscopy and Thermography N2 - Temperature measurements of the LMD process by IR-spectroscopy and Thermography are presenet and compared. T2 - 2st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 19.04.2021 KW - Additive Manufacturing KW - Thermography PY - 2021 AN - OPUS4-52565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pignatelli, Giuseppe T1 - Optical emission spectroscopy as monitoring tool for ded N2 - This presentstion explains how optical emission spectroscopy can be exploited to on line monitor a DED printing production. This technique is tested printing on a substrate with artificial defects. T2 - 1st Workshop on In-situ Monitoring and Microstructure Development in Additive Manufacturing CY - Online meeting DA - 10.12.2020 KW - Monitoring KW - Spectroscopy KW - Analytical chemistry KW - Additive manufacturing PY - 2020 AN - OPUS4-51877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Ecke, Alexander A1 - Bell, Jérémy A1 - Schneider, Rudolf T1 - From Laboratory Immunoassays to Immunosensors with an Integrated Microfluidic Flow System N2 - This research summary describe efforts to the development of a three-dimensional microfluidic flow cell for improved electrochemical substrate detection in HRP/TMB-based immunoassays. This work provides a valuable advancement in the sensitivity and integration of immunoassay technologies, aiding in the refinement of diagnostic tools. KW - Antikörper KW - Immunoassay KW - Microfluidics KW - Electrochemical detection KW - Biosensor PY - 2025 UR - https://www.elveflow.com/microfluidics-research-summaries/from-laboratory-immunoassays-to-immunosensors-with-an-integrated-microfluidic-flow-system/ SP - 1 EP - 4 CY - Paris AN - OPUS4-62674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermographie, optischer Emissionsspektroskopie (OES) und Schallemission (AE) N2 - In diesem Vortrag wird ein Überblick über die in-situ Messverfahren gegeben, die im Rahmen des Projektes ProMoAM an der LPA- Anlage eingesetzt wurden. Im Speziellen sind das die Thermographie, die optische Emissionsspektroskopie (OES) und die Akustische Emission (AE). T2 - 41. Assistentenseminar der WGF e.V. CY - Online meeting DA - 02.09.2020 KW - Schallemission KW - Laser-Pulver-Auftragschweißen KW - Thermographie KW - Optische Emissionsspektroskopie PY - 2020 AN - OPUS4-51273 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for glyphosate detection using phase transfer agents N2 - In this work, molecular imprinting was combined with direct fluorescence detection of the pesticide Glyphosate (GPS). Firstly, the solubility of highly polar GPS in organic solvents was improved by using lipophilic tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) counterions. Secondly, to achieve fluorescence detection, a fluorescent crosslinker containing urea-binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm fluorescent molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles using chloroform as porogen. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+ in a biphasic assay, enabling the direct fluorescence detection and quantification of GPS in water. A limit of detection of 1.45 μM and a linear range of 5–55 μM were obtained, which match well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 μM). KW - Glyphosate KW - Molecular imprinting KW - Core-shell particles KW - Fluorescent sensors PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555281 DO - https://doi.org/10.1038/s41598-022-16825-9 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 15 PB - Macmillan Publishers Limited CY - London AN - OPUS4-55528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Gornushkin, Igor B. A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermografie, optischer Emissionsspektroskopie (OES) und Schallemissionsanalyse (SEA) N2 - Vor allem in den letzten Jahren ist das Interesse der Industrie an der additiven Fertigung deutlich gestiegen. Die Vorteile dieser Verfahren sind zahlreich und ermöglichen eine ressourcenschonende, kundenorientierte Fertigung von Bauteilen, welche zur stetigen Entwicklung neue Anwendungsbereiche und Werkstoffe führen. Aufgrund der steigenden Anwendungsfälle, nimmt auch der Wunsch nach Betriebssicherheit unabhängig von anschließenden kostenintensiven zerstörenden und zerstörungsfreien Prüfverfahren zu. Zu diesem Zweck werden im Rahmen des von der BAM durchgeführten Themenfeldprojektes „Prozessmonitoring in Additive Manufacturing“ verschiedenste Verfahren auf ihre Tauglichkeit für den in-situ Einsatz bei der Prozessüberwachung in der additiven Fertigung untersucht. Hier werden drei dieser in-situ Verfahren, die Thermografie, die optische Emissionsspektroskopie und die Schallmissionsanalyse für den Einsatz beim Laser-Pulver-Auftragschweißen betrachtet. T2 - 41. Assistentenseminar der Füge- und Schweißtechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - Laser-Pulver-Auftragschweißen (LPA) KW - Thermographie KW - Optische Emissionsspektroskopie (OES) KW - Schallemissionsanalyse (SEA) PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 132 EP - 140 PB - DVS MEdia CY - Düsseldorf AN - OPUS4-53967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Pérez-Padilla, Victor A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Red-Emitting Polymerizable Guanidinium Dyes as Fluorescent Probes in Molecularly Imprinted Polymers for Glyphosate Detection N2 - The development of methodologies to sense glyphosate has gained momentum due to its toxicological and ecotoxicological effects. In this work, a red-emitting and polymerizable guanidinium benzoxadiazole probe was developed for the fluorescence detection of glyphosate. The interaction of the fluorescent probe and the tetrabutylammonium salt of glyphosate was studied via UV/vis absorption and fluorescence spectroscopy in chloroform and acetonitrile. The selective recognition of glyphosate was achieved by preparing molecularly imprinted polymers, able to discriminate against other common herbicides such as 2,4-dichlorophenoxyacetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (dicamba), as thin layers on submicron silica particles. The limits of detection of 4.8 µM and 0.6 µM were obtained for the sensing of glyphosate in chloroform and acetonitrile, respectively. The reported system shows promise for future application in the sensing of glyphosate through further optimization of the dye and the implementation of a biphasic assay with water/organic solvent mixtures for sensing in aqueous environmental samples. KW - Glyphosate KW - Guanidinium receptors KW - Fluorescent probes KW - Molecularly imprinted polymers KW - Core-shell particles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-544441 DO - https://doi.org/10.3390/chemosensors10030099 SN - 2227-9040 VL - 10 IS - 3 SP - 1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-54444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Valderrey, Virginia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Thiourea- and Amino-Substituted Benzoxadiazole Dyes with Large Stokes Shifts as Red-Emitting Probe Monomers for Imprinted Polymer Layers Targeting Carboxylate-Containing Antibiotics N2 - Bifunctional fluorescent molecular oxoanion probes based on the benzoxadiazole (BD) chromophore are described which integrate a thiourea binding motif and a polymerizable 2-aminoethyl methacrylate unit in the 4,7-positions of the BD core. Concerted charge transfer in this electron donor-acceptor-donor architecture endows the dyes with strongly Stokes shifted (up to >250 nm) absorption and fluorescence. Binding of electron-rich carboxylate guests at the thiourea receptor leads to further analyte-induced red-shifts of the emission, shifting the fluorescence maximum of the complexes to ≥700 nm. Association constants for acetate are ranging from 1–5×105 M−1 in acetonitrile. Integration of one of the fluorescent probes through its polymerizable moiety into molecularly imprinted polymers (MIPs) grafted from the surface of submicron silica cores yielded fluorescent MIP-coated particle probes for the selective detection of antibiotics containing aliphatic carboxylate groups such as enoxacin (ENOX) at micromolar concentrations in highly polar solvents like acetonitrile. KW - Molecular imprinting KW - Anion recognition KW - Antibiotics KW - Benzoxadiazole dyes KW - Charge transfer KW - Fluorescence PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545027 DO - https://doi.org/10.1002/chem.202104525 SN - 1521-3765 SP - 1 EP - 9 PB - Wiley-VCH AN - OPUS4-54502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Beyer, S. A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Verhassel, A. A1 - Sternbæk, L. A1 - Wang, T. A1 - Persson, J. L. A1 - Härkönen, P. A1 - Johansson, E. A1 - Caraballo, R. A1 - Elofsson, M. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Ohlsson, L. A1 - El-Schich, Z. A1 - Gjörloff Wingren, A. A1 - Stollenwerk, M. M. T1 - Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-coated Polystyrene Cores - Assessment of the Binding Behavior to Cancer Cells N2 - Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the alpha-2,3- and alpha-2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, alpha-2,3-SA) and Sambucus Nigra Lectin (SNA, alpha-2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells. KW - Cancer KW - Imprinting KW - Molecularly imprinted polymers KW - SA conjugates KW - Sialic acid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546625 DO - https://doi.org/110.3390/cancers14081875 SN - 2072-6694 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-54662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sternbaek, L. A1 - Kimani, Martha Wamaitha A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Janicke, B. A1 - Alm, K. A1 - Gjörloff-Wingren, A. A1 - Eriksson, H. T1 - Molecularly Imprinted Polymers Exhibit Low Cytotoxic and Inflammatory Properties in Macrophages In Vitro N2 - Molecularly imprinted polymers (MIPs) against sialic acid (SA) have been developed as a detection tool to target cancer cells. Before proceeding to in vivo studies, a better knowledge of the overall effects of MIPs on the innate immune system is needed. The aim of this study thus was to exemplarily assess whether SA-MIPs lead to inflammatory and/or cytotoxic responses when administered to phagocytosing cells in the innate immune system. The response of monocytic/macrophage cell lines to two different reference particles, Alhydrogel and PLGA, was compared to their response to SA-MIPs. In vitro culture showed a cellular association of SA-MIPs and Alhydrogel, as analyzed by flow cytometry. The reference particle Alhydrogel induced secretion of IL-1b from the monocytic cell line THP-1, whereas almost no secretion was provoked for SA-MIPs. A reduced number of both THP-1 and RAW 264.7 cells were observed after incubation with SA-MIPs and this was not caused by cytotoxicity. Digital holographic cytometry showed that SA-MIP treatment affected cell division, with much fewer cells dividing. Thus, the reduced number of cells after SA-MIP treatment was not linked to SA-MIPs cytotoxicity. In conclusion, SA-MIPs have a low degree of inflammatory properties, are not cytotoxic, and can be applicable for future in vivo studies. KW - Molecularly imprinted polymers KW - Digital holographic cytometry KW - Cytotoxicity KW - Proinflammatory cytokines PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-552250 DO - https://doi.org/10.3390/app12126091 SN - 2076-3417 VL - 12 IS - 12 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-55225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Wan, Wei A1 - Rurack, Knut T1 - Toward Label-Free Optical Multiplexing of Analytes in Indicator Release Lateral Flow Assays via Detection Zones Containing Tailored Capture Materials N2 - The use of macromolecules and materials immobilized in the detection zone of test strips for indicator capture and focusing in label-free lateral flow assays (LFAs) is described, with emphasis on its future use in low number multiplexing. Several materials such as polyelectrolytes, functionalized mesoporous silica micro- and nanoparticles, chemically modified cellulose or glass fibre (GF) membranes and molecularly imprinted polymer gels coated onto membranes were studied in model assays, before the most promising materials were combined with antibody-gated indicator delivering (gAID) sensor materials. Cellulose, nitrocellulose and GF membranes were used as supports and highly fluorescent dyes of different charge states as model indicators. Combination of the best performing capture materials with gAID systems made it possible to distinctly increase the sensitivity and reduce the measurement uncertainty in the LFA testing of pentaerythritol tetranitrate (PETN) in aqueous samples. In addition, dual-plexing of PETN and 2,4,6-trinitrotoluene (TNT) was realized on a single test strip containing two dedicated capture zones. KW - Rapid tests KW - Vor-Ort-Analytik KW - Multiplexing KW - Teststreifen KW - Molecularly imprinted polymers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557873 DO - https://doi.org/10.1002/anse.202100062 VL - 2 IS - 4 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiang, Shan A1 - Wang, T. A1 - Behren, S. A1 - Westerlind, U. A1 - Gawlitza, Kornelia A1 - Persson, J. L. A1 - Rurack, Knut T1 - Sialyl-Tn Antigen-Imprinted Dual Fluorescent Core–Shell Nanoparticles for Ratiometric Sialyl-Tn Antigen Detection and Dual-Color Labeling of Cancer Cells N2 - Sialyl-Tn (STn or sialyl-Thomsen-nouveau) is a carbohydrate antigen expressed by more than 80% of human carcinomas. We here report a strategy for ratiometric STn detection and dual-color cancer cell labeling, particularly, by molecularly imprinted polymers (MIPs). Imprinting was based on spectroscopic studies of a urea-containing green-fluorescent monomer 1 and STn-Thr-Na (sodium salt of Neu5Acα2-6GalNAcα-O-Thr). A few-nanometer-thin green-fluorescent polymer shell, in which STn-Thr-Na was imprinted with 1, other comonomers, and a cross-linker, was synthesized from the surface of red-emissive carbon nanodot (R-CND)-doped silica nanoparticles, resulting in dual fluorescent STn-MIPs. Dual-color labeling of cancer cells was achieved since both red and green emissions were detected in two separate channels of the microscope and an improved accuracy was obtained in comparison with single-signal MIPs. The flow cytometric cell analysis showed that the binding of STn-MIPs was significantly higher (p < 0.001) than that of non-imprinted polymer (NIP) control particles within the same cell line, allowing to distinguish populations. Based on the modularity of the luminescent core–fluorescent MIP shell architecture, the concept can be transferred in a straightforward manner to other target analytes. KW - Cancer KW - Core−shell particles KW - Dual-color labeling glycan KW - Molecular imprinting PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563106 DO - https://doi.org/10.1021/acsanm.2c03252 SP - 1 EP - 14 PB - ACS Publications AN - OPUS4-56310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kubheka, G. A1 - Climent, Estela A1 - Tobias, Charlie A1 - Rurack, Knut A1 - Mack, J. A1 - Nyokong, T. T1 - Multiplexed Detection of Human Papillomavirus Based on AzaBODIPY-Doped Silica-Coated Polystyrene Microparticles N2 - Human papillomavirus (HPV) DNA detection can enable the early diagnosis of high-risk HPV types responsible for cervical cancer. HPV detection is also essential for investigating the clinical behavior and epidemiology of particular HPV types, characterization of study populations in HPV vaccination trials and monitoring the efficacy of HPV vaccines. In this study, two azaBODIPY dyes (1 and 2) were used as references and were doped into polystyrene particles (PS40), while a short HPV DNA single strand was used as a target molecule and was covalently bound to the silica shell. These particles were employed as optical probes in 1:1 hybridization assays, and their potential applicability as a tool for multiplex assays for the detection of different strands of HPV was evaluated using flow cytometry. A good separation in the fluorescence of the four different voncentrations prepared for each dye was observed. To perform the hybridization assays, HPV18, HPV16, HPV11 and HPV6 single strands were attached to the particles through EDC-mediated coupling. The c-DNA-1-PS40 and c-DNA-2-PS40 particles exhibited low limit of detection (LOD) and quantification (LOQ) values for HPV11, and a narrow detection range was obtained. Multiplexed assay experiments were successfully performed for both particles, and the results proved that c-DNA-1-PS40 could potentially be used as a tool for multiplexing assays and merits further in-depth study in this context. KW - Flow cytometry KW - BODIPY dyes KW - Core-shell particles KW - Multiplexed assay KW - Human papillomavirus PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567358 DO - https://doi.org/10.3390/chemosensors11010001 SN - 2227-9040 VL - 11 IS - 1 SP - 1 EP - 21 PB - MDPI CY - Basel AN - OPUS4-56735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-569204 DO - https://doi.org/10.1039/d2lc00955b SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garrido, E. A1 - Hernández-Sigüenza, G. A1 - Climent, Estela A1 - Marcos, M. D. A1 - Rurack, Knut A1 - Gaviña, P. A1 - Parra, M. A1 - Sancenón, F. A1 - Martí-Centelles, V. A1 - Martínez-Máñez, R. T1 - Strip-based lateral flow-type indicator displacement assay for γ-hydroxybutyric acid (GHB) detection in beverages N2 - The use of gamma-hydroxybutyric acid (GHB) in drug-facilitated sexual assault has increased due to its availability and high solubility in aqueous solutions and alcoholic beverages, necessitating the development of rapid methods for GHB detection. In this respect, portable testing methods for use in the field, based on lateral flow assays (LFAs) and capable of detecting trace concentrations of target analytes, are particularly attractive and hold enormous potential for the detection of illicit drugs. Using this strategy, here we report a rapid, low cost, easy-to-handle strip-based LFA for GHB analysis employing a smartphone for fluorescence readout. At molecular signalling level, the ensemble is based on a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343, which indicate GHB through an indicator displacement assay (IDA) in aqueous solution. When incorporated in a LFA-based strip test this system shows a detection limit as low as 0.03 μM for GHB in MES buffer solution and is able to detect GHB at concentrations of 0.1 μM in soft drinks and alcoholic beverages in only 1 min. KW - Indicator displacement assay KW - Gamma-hydroxybutyric acid KW - Lateral flow assay KW - Test strip KW - Fluorescent dyes KW - Smartphone readout PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564631 DO - https://doi.org/10.1016/j.snb.2022.133043 SN - 0925-4005 VL - 377 SP - 1 EP - 7 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-56463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Ast, S. A1 - Weller, Michael G. A1 - Canning, J. A1 - Rurack, Knut T1 - Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials N2 - The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes. KW - Lateral flow test KW - Gated hybrid material KW - Fluorescence KW - Smartphone readout device KW - Pyrethroid KW - Pesticide KW - Insecticide KW - SBA-15 KW - Permethrin PY - 2020 DO - https://doi.org/10.1039/d0an00319k SN - 0003-2654 SN - 1364-5528 VL - 145 IS - 10 SP - 3490 EP - 3494 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sjöberg, T. A1 - El-Schich, Z. A1 - Rurack, Knut A1 - Gjörloff Wingren, A. T1 - Colorectal Cancer Cell Spheroids Co-Cultured with Molecularly Imprinted Fluorescent Particles Targeting Sialic Acid Show Preserved Cell Viability N2 - In vitro cultured 3D models of CRC have been demonstrated to hold considerable worth in drug discovery, drug resistance analysis, and in studying cell-cell and cell-matrix interactions that occur in the tumor microenvironment. The 3D models resemble the in vivo physiological microenvironment by replicating the cell type composition and tissue architecture. Molecularly imprinted polymers (MIPs) have been investigated for use instead of antibodies against small nonimmunogenic structures, such as sialic acid (SA). Glyco-conjugates including SA are present on all cells, and often deregulated on cancer cells. Here, we present a novel approach for targeting and detecting colorectal cancer cells (CRC) by using in vitro cultured HT29 3D spheroids co-cultured in vitro with either fluorescent MIPs targeting SA, SA-MIPs, or the two lectins targeting SA, MAL I, and SNA. Both formaldehyde-fixed and viable HT29 3D spheroids with or without SA-MIPs were imaged in 3D by confocal microscopy. The results revealed a preserved cell morphology and viability of the HT29 3D spheroids co-cultured in vitro with SA-MIPs. However, the lectins MAL I and SNA targeting the alpha-2,3 or alpha-2,6 SA glycosidic linkages, respectively, affected the cell viability when co-cultured with the viable HT29 3D spheroids, and no living cells could be detected. Here, we have shown that the SA-MIPs could be used as a safe and low-cost diagnostic tool for targeting and detecting cancer cells in a physiologically relevant 3D cancer model in vitro. KW - Molecularly Imprinted Polymers KW - Durchflusszytometrie KW - Zellanalytik KW - Fluoreszenz KW - Mikroskopie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573840 DO - https://doi.org/10.3390/app13095330 VL - 13 IS - 9 SP - 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-57384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517053 DO - https://doi.org/10.1039/d0tb00371a VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Rurack, Knut A1 - Hecht, Mandy T1 - Loading and Release of Charged and Neutral Fluorescent Dyes into and from Mesoporous Materials: A Key Role for Sensing Applications N2 - The aim of this study is to determine the efficiency of loading and release of several zwitterionic, neutral, anionic and cationic dyes into/from mesoporous nanoparticles to find the optimum loading and release conditions for their application in detection protocols. The loading is carried out for MCM-41 type silica supports suspended in phosphate-buffered saline (PBS) buffer (pH 7.4) or in acetonitrile, involving the dyes (rhodamine B chloride, rhodamine 101 chloride, rhodamine 101 perchlorate, rhodamine 101 inner salt, meso-(4-hydroxyphenyl)-boron–dipyrromethene (BODIPY), sulforhodamine B sodium salt and fluorescein 27). As a general trend, rhodamine-based dyes are loaded with higher efficiency, when compared with BODIPY and fluorescein dyes. Between the rhodamine-based dyes, their charge and the solvent in which the loading process is carried out play important roles for the amount of cargo that can be loaded into the materials. The delivery experiments carried out in PBS buffer at pH 7.4 reveal for all the materials that anionic dyes are more efficiently released compared to their neutral or cationic counterparts. The overall best performance is achieved with the negatively charged sulforhodamine B dye in acetonitrile. This material also shows a high delivery degree in PBS buffer. KW - Mesoporous materials KW - Charged dyes KW - Neutral dyes KW - Dye loading optimisation KW - Dye release PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-522596 UR - https://www.mdpi.com/2072-666X/12/3/249 DO - https://doi.org/10.3390/mi12030249 VL - 12 IS - 3 SP - 249 PB - MDPI AN - OPUS4-52259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Beyer, S. A1 - El-Schich, Z. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Gjörloff-Wingren, A. T1 - Imprinted Particles for Direct Fluorescence Detection of Sialic Acid in Polar Media and on Cancer Cells with Enhanced Control of Nonspecific Binding N2 - Glycoproteins are abundant on the cell surface of mammals, providing structural support, modulating cell Membrane properties, and acting as signaling agents. Variation of glycosylation patterns has been found to indicate various disease states, including cell malignancy. Sialic acid (SA) is present as a terminating group on cell-surface glycans, and its overexpression has been linked to several types of cancer. Detection of SA on the cell surface is therefore critical for detection of cancer in its early stages. In this work, a fluorescent molecularly imprinted polymer layer targeting SA was synthesized on the surface of silica-coated polystyrene (PS) particles. Compared to previous works, a PS core supplies a lighter, lower-density support for improved suspension stability and scattering properties. Moreover, their smaller size provides a higher surface-area-to-volume ratio for binding. The incorporation of a fluorescent monomer in the MIP shell allowed for simple and rapid determination of binding specificity in polar media due to a deprotonation−reprotonation interaction mechanism between the fluorescent monomer and SA, which led to spectral changes. Upon titration of the MIP particles with SA in suspension, an increase in fluorescence emission of the particles was observed, with the MIP particles binding SA more selectively compared to the nonimprinted polymer (NIP) control particles. In cell staining experiments performed by flow cytometry, the binding behavior of the MIP particles compared favorably with that of SA-binding lectins. NIPs prepared with a “dummy” template served as a better negative control in cell binding assays due to the favorable inward orientation of template-binding functional groups in the polymer shell, which reduced nonspecific binding. The results show that fluorescent MIPs targeting SA are a promising tool for in vitro fluorescence staining of cancerous cells and for future diagnosis of cancer at early stages. KW - Flow cytometry KW - Sialic acid KW - Fluorescence KW - Molecularly imprinted polymers KW - Cancer cells PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525216 DO - https://doi.org/10.1021/acsapm.0c01353 VL - 3 IS - 5 SP - 2363 EP - 2373 PB - American Chemical Society AN - OPUS4-52521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut T1 - Multiplex‐Nachweis von Analyten auf einem einzelnen Teststreifen mit Antikörper‐gesteuerten und Indikator freisetzenden mesoporösen Nanopartikeln N2 - Vor dem Hintergrund der einzigartigen Modularität, hohen Empfindlichkeit und Selektivität von Antikörper‐gesteuerten Indikatorfreisetzungssystemen (gAID‐Systemen) wurde hier ein Multiplex‐Assay für drei organische Explosivstoffmoleküle (TATP, TNT, PETN) entwickelt, der es erlaubt, die Analyten gleichzeitig in flüssiger Phase mit einem einzelnen Teststreifen und einem Fluoreszenzlesegerät bzw. Smartphone als Detektor in Konzentrationen bis in den unteren ppb‐Bereich in <5 min nachzuweisen. Alle drei Systeme, darunter die hier neu entwickelten Systeme für TNT und PETN, tolerieren zudem nicht nur gepufferte wässrige Modelllösungen, sondern auch komplexere Matrices. Neben einem konventionellen Teststreifen mit einem Kanal erlaubte uns die Anwendung von Wachsdrucktechnologie das Herstellen von mehrkanaligen Streifen mit vergleichbarer analytischer Leistungsfähigkeit, was das enorme Potenzial der modular aufgebauten, hybriden Biosensormaterialien im Hinblick auf eine für den Endanwender maßgeschneiderte Vor‐Ort‐Analytik unterstreicht. KW - Multiplex KW - Gesteuerten Nanopartikeln KW - Explosiven PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518431 DO - https://doi.org/10.1002/ange.202009000 SN - 1521-3757 SN - 0044-8249 VL - 132 IS - 52 SP - 24071 EP - 24078 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, Q. A1 - Shinde, S. A1 - Grasso, G. A1 - Caroli, A. A1 - Abouhany, R. A1 - Lanzillotta, M. A1 - Pan, G. A1 - Wan, Wei A1 - Rurack, Knut A1 - Sellergren, B. T1 - Selective detection of phospholipids using molecularly imprinted fluorescent sensory core-shell particles N2 - Sphingosine-1-phosphate (S1P) is a bioactive sphingo-lipid with a broad range of activities coupled to its role in G-protein coupled receptor signalling. Monitoring of both intra and extra cellular levels of this lipid is challenging due to its low abundance and lack of robust affinity assays or sensors. We here report on fluorescent sensory core-shell molecularly imprinted polymer (MIP) particles responsive to near physiologically relevant levels of S1P and the S1P receptor modulator fingolimod phosphate (FP) in spiked human serum samples. Imprinting was achieved using the tetrabutylammonium (TBA) salt of FP or phosphatidic acid (DPPA·Na) as templates in combination with a polymerizable nitrobenzoxadiazole (NBD)-urea monomer with the dual role of capturing the phospho-anion and signalling its presence. The monomers were grafted from ca 300 nm RAFT-modified silica core particles using ethyleneglycol dimethacrylate (EGDMA) as crosslinker resulting in 10–20 nm thick shells displaying selective fluorescence response to the targeted lipids S1P and DPPA in aqueous buffered media. Potential use of the sensory particles for monitoring S1P in serum was demonstrated on spiked serum samples, proving a linear range of 18–60 μM and a detection limit of 5.6 μM, a value in the same range as the plasma concentration of the biomarker. KW - Molecularly imprinted polymers KW - Phospholipids KW - Fluorescence KW - Dye monomers PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-509485 DO - https://doi.org/10.1038/s41598-020-66802-3 SN - 2045-2322 VL - 10 IS - 1 SP - 9924 PB - Nature Research CY - London AN - OPUS4-50948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bhattacharya, Biswajit A1 - Rurack, Knut T1 - Ratiometric Molecularly Imprinted Particle Probes for Reliable Fluorescence Signaling of Carboxylate-Containing Molecules N2 - In addition to sensitivity, selectivity, and portability, chemical sensing systems must generate reliable signals and offer modular configurability to address various small molecule targets, particularly in environmental applications. We present a versatile, modular strategy utilizing ratiometric molecularly imprinted particle probes based on BODIPY indicators and dyes for recognition and internal referencing. Our approach employs polystyrene core particles doped with a red fluorescent BODIPY as an internal standard, providing built-in reference for environmental influences. A molecularly imprinted polymer (MIP) recognition shell, incorporating a green-fluorescent BODIPY indicator monomer with a thiourea binding site for carboxylate containing analytes, is grafted from the core particles in the presence of the analyte as the template. The dual-fluorescent MIP probe detects fexofenadine as the model analyte with a change in green emission signal referenced against a stable red signal, achieving a detection limit of 0.13 μM and a broad dynamic range from 0.16 μM to 1.2 mM, with good discrimination against other antibiotics in acetonitrile. By selecting a versatile dye scaffold and recognition element, this approach can be extended to other carboxylate-containing analytes and/or wavelength combinations, potentially serving as a robust multiplexing platform. KW - Core-shell particles KW - Molecular imprinting KW - Pharmaceutical contaminants KW - Self-referenced measurements KW - Fluorescence PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-609385 DO - https://doi.org/10.1021/acsami.4c09990 SP - 1 EP - 13 PB - American Chemical Society (ACS) AN - OPUS4-60938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tobias, Charlie A1 - López-Puertollano, Daniel A1 - Abad-Somovilla, Antonio A1 - Mercader, J. V. A1 - Abad-Fuentes, A. A1 - Rurack, Knut T1 - Development of Simple and Rapid Bead-Based Cytometric Immunoassays Using Superparamagnetic Hybrid Core−Shell Microparticles N2 - Flow cytometry-based immunoassays are valuable in biomedical research and clinical applications due to their high throughput and multianalyte capability, but their adoption in areas such as food safety and environmental monitoring is limited by long assay times and complex workflows. Rapid, simplified bead-based cytometric immunoassays are needed to make these methods viable for point-of-need applications, especially with the increasing accessibility of miniaturized cytometers. This work introduces superparamagnetic hybrid polystyrene-silica core−shell microparticles as promising alternatives to conventional polymer beads in competitive cytometric immunoassays. These beads, featuring high specificity, sensitivity, and excellent handling capabilities via magnetic separation, were evaluated with three different antibodies and binding methods, showing variations in signal intensity based on the antibody and its attachment method. The optimal performance was achieved through a secondary antibody binding approach, providing strong and consistent signals with minimal uncertainty. The optimized protocol made it possible to achieve a detection limit of 0.025 nM in a total assay time of only 15 min and was successfully used to detect ochratoxin A (OTA) in raw flour samples. This work highlights the potential of these beads as versatile tools for flow cytometry-based immunoassays, with significant implications for food safety, animal health, environmental monitoring, and clinical diagnostics. KW - Immunoassays KW - Bead-based KW - Core-shell particles KW - Cytometry KW - Mycotoxins PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610593 DO - https://doi.org/10.1021/acsmeasuresciau.4c00038 SP - 1 EP - 11 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-61059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Johann, Sergej A1 - Kohlhoff, Harald A1 - Rurack, Knut A1 - Bartholmai, Matthias A1 - Bell, Jérémy T1 - On-Site Analytical Tool Based on Crude Oil Fluorescence and Chemometrics for the Rapid Determination of the Nature and Essential Properties of Oil Spills N2 - With the reduction of large oil spills because of stricter regulations and safety measures, the question of how to manage smaller oil spills arises. Few on-site analytical tools are available for first responders or other law enforcement personnel to rapidly test for crude oil in the early management of localized polluted areas. The approach reported here relies on well-described computer-assisted multivariate data analysis of the intrinsic fluorescence fingerprints of crude oils to build a multivariate model for the rapid classification of crude oils and the prediction of their properties. Thanks to a dedicated robust portable reader, the method allowed classification and accurate prediction of various properties of crude oil samples like density (according to API, the American Petroleum Institute and viscosity as well as composition parameters such as volume fractions of paraffins or aromatics. In this way, autonomous operation in on-site or in-the-field applications becomes possible based on the direct (undiluted and untreated) measurement of samples and a rapid, tablet-operated readout system to yield a robust and simple analytical test with superior performance. Testing in real-life scenarios allowed the successful classification and prediction of a number of oil spill samples as well as weathered samples that closely resemble samples collected by first responders. KW - Oil spills KW - Fluorescence KW - PCA KW - Petroleum KW - Rapid test KW - Portable PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595442 DO - https://doi.org/10.1021/acsestwater.3c00648 VL - 4 IS - 2 SP - 621 EP - 627 PB - American Chemical Society (ACS) AN - OPUS4-59544 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kislenko, Evgeniia A1 - Incel, A. A1 - Gawlitza, Kornelia A1 - Sellergren, B. A1 - Rurack, Knut T1 - Towards molecularly imprinted polymers that respond to and capture phosphorylated tyrosine epitopes using fluorescent bis-urea and bis-imidazolium receptors N2 - Early detection of cancer is essential for successful treatment and improvement in patient prognosis. Deregulation of post-translational modifications (PTMs) of proteins, especially phosphorylation, is present in many types of cancer. Therefore, the development of materials for the rapid sensing of low abundant phosphorylated peptides in biological samples can be of great therapeutic value. In this work, we have synthesised fluorescent molecularly imprinted polymers (fMIPs) for the detection of the phosphorylated tyrosine epitope of ZAP70, a cancer biomarker. The polymers were grafted as nanometer-thin shells from functionalised submicron-sized silica particles using a reversible addition-fragmentation chain-transfer (RAFT) polymerisation. Employing the combination of fluorescent urea and intrinsically cationic bis-imidazolium receptor cross-linkers, we have developed fluorescent sensory particles, showing an imprinting factor (IF) of 5.0. The imprinted polymer can successfully distinguish between phosphorylated and non-phosphorylated tripeptides, reaching lower micromolar sensitivity in organic solvents and specifically capture unprotected peptide complements in a neutral buffer. Additionally, we have shown the importance of assessing the influence of counterions present in the MIP system on the imprinting process and final material performance. The potential drawbacks of using epitopes with protective groups, which can co-imprint with targeted functionality, are also discussed. KW - Functional monomers KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588089 DO - https://doi.org/10.1039/d3tb01474f SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-58808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maher, C. A1 - Schazmann, B. A1 - Gornushkin, Igor B. A1 - Rurack, Knut A1 - Gojani, Ardian T1 - Exploring an Application of Principal Component Analysis to LaserInduced Breakdown Spectroscopy of Stainless-Steel Standard Samples as a Research Project N2 - Laser-induced breakdown spectroscopy (LIBS) and principal component analysis (PCA) are frequently used for analytical purposes in research and industry, but they seldom are part of the chemistry Curriculum or laboratory exercises. This case study paper describes the combined application of LIBS and PCA during a research internship for an undergraduate student. The instructional method applied was based on a one-on-one mentorship, in which case the learner was engaged in a Research work. The learning activities included theoretical introductions to the LIBS and PCA methods, numerical simulation, experiments, and data analysis. The study covered three main topics: analysis of LIBS spectra, application of PCA for clustering, and use of PCA for experimental design. The realization of the study was instructive for all parties involved: from the mentorship point of view, it is concluded that the topics can be covered during an internship or developed into a one semester long research-based module of a chemistry program or a final year project. The student, on the other hand, developed profound technical skills in performing experiments and using PCA software for data analysis. KW - LIBS KW - PCA PY - 2021 DO - https://doi.org/10.1021/acs.jchemed.1c00563 VL - 98 SP - 3237 EP - 3244 PB - American Chemical Society Publications CY - USA AN - OPUS4-53515 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sun, Yijuan A1 - Pérez-Padilla, Víctor A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescence Detection of Perfluoroalkyl Carboxylic Acids with a Miniaturised Assay N2 - Per- and polyfluoroalkyl substances (PFAS) are a class of man-made organo-fluorine chemicals that have become environmental contaminants of emerging concern, originating from a variety of materials such as adhesive, stain- and oil-resistant coatings, firefighting foams, etc. The high strength of this C-F bond makes PFAS thermodynamically stable and resistant to (bio)degradation, thus retaining them in the environment over time. Perfluoroalkyl carboxylic acids (PFCAs), one category of the most used PFAS, consist of a fully fluorinated carbon backbone and a charged carboxylic acid headgroup, and have been classified as Substances of Very High Concern (SVHC) and added to the REACH Candidate List due to their persistence in the environment, non-biodegradability and toxicological effects.[1-2] Traditional techniques for the analysis of PFCAs include GC-MS, HRMS and HPLC-based approaches, which are laborious, not portable, costly and require trained personnel. In contrast, fluorescence assays can be designed as easy-to-operate, portable and cost-effective methods with high sensitivity and fast response. Integration of fluorescent probes with an adequately miniaturized assay enables a promising alternative for PFCAs analysis. Here, a novel guanidine fluorescent probe has been synthesized and fully characterized for the detection of PFCAs in a biphasic extract-&-detect assay. The fluorescent probe was then incorporated into polymeric matrices supported by a red dye-doped SiO2 nanoparticle to construct a dual-emission sensing platform. Such a system allows precise and selective detection of PFCAs, reducing the interference of competitors, matrix effects and other factors except for the PFCAs. The system was then employed in a droplet-based microfluidic setup which offers a portable and easy to operate detection platform. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - PFAS KW - MIP KW - Fluorescence KW - Microfluidics KW - Fluorezsenz KW - Mikrofluidik PY - 2023 AN - OPUS4-58527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Martínez-Mánez, R. A1 - Rurack, Knut T1 - Immunochemical design of antibody-gated indicator delivery (gAID) systems based on mesoporous silica nanoparticles N2 - In this work, the optimization of the immunochemical response of antibody-gated indicator delivery (gAID) systems prepared with mesoporous silica nanoparticles has been studied along various lines of system tailoring, targeting the peroxide-type explosive TATP as an exemplary analyte. The mechanism of detection of these gAID systems relies on a displacement of an antibody “cap” bound to hapten derivatives anchored to the surface of a porous hybrid material, allowing the indicator cargo stored in the mesopores to escape and massively amplify the analyte-related signal. Since our aim was to obtain gAID systems with the best possible response in terms of sensitivity, selectivity, and assay time, sera obtained from different immunization boosts were screened, the influence of auxiliary reagents was assessed, structural hapten modification (hapten heterology) was investigated, and various indicator dyes and host materials were tested. Considering that highly selective and sensitive immunological responses are best obtained with high-affinity antibodies which, however, could possess rather slow dissociation constants, leading to slow responses, the main challenge was to optimize the immunochemical recognition system for a rapid response while maintaining a high sensitivity and selectivity. The best performance was observed by grafting a slightly mismatching (heterologous) hapten to the surface of the nanoparticles in combination with high-affinity antibodies as “caps”, yielding for the first time gAID nanomaterials for which the response time could be improved from hours to <5 min. The materials showed favorable detection limits in the lower ppb range and discriminated TATP well against H2O2 and other explosives. Further optimization led to straightforward integration of the materials into a lateral flow assay without further treatment or conditioning of the test strips while still guaranteeing remarkably fast overall assay times. KW - Antibody-gated indicator delivery systems KW - Signal amplification KW - Immunochemical response optimization KW - Test strip analysis KW - TATP KW - Explosives detection KW - Heterologous hapten PY - 2022 DO - https://doi.org/10.1021/acsanm.1c03417 SN - 2574-0970 VL - 5 IS - 1 SP - 626 EP - 641 PB - American Chemical Society CY - Washington, DC AN - OPUS4-54176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy T1 - Embedded sensor for the detection of TNT in surface and marine waters N2 - In 1945, the Potsdam Conference led to the decision to destroy a significant amount of ammunition from the warring parties of WWII. Dumping was considered the cheapest, quickest, and safest solution to dispose of unused ammunition. However, thin barrels or containers often leak after 50 years, allowing explosives to escape into the marine environment. As the effects of weapons chemicals on ecosystems are well-documented, it is becoming increasingly important to detect, recover and dispose of old ammunition. Physical techniques such as magnetometry and sonar are used to detect ammunition in the sea, but they do not provide chemical information. Detecting leaking organic contaminants like TNT or other explosives in water or soil requires high-end laboratory equipment like HPLC or GC-MS, making remote water testing virtually impossible. As an alternative, a miniaturized method for the selective and sensitive indication of TNT using fluorescence light-up sensing was developed. The visual identification of TNT with a nucleophile that forms a strongly absorbing charge transfer complex (CTC) is a well-known method. This CTC is formed by the attraction of an electron from the donor molecule by the electron-deficient aromatic ring. In this work, a TNT-based CTC was selectively formed by the addition of tetraoctylammonium acetate in N,N-diethylformamide and, as expected, showed strong absorption. Surprisingly, at room temperature, the CTC can be converted into a fluorescent product with an emission band centred at 577 nm. For the detection of TNT in water, a microfluidic chip made of polydimethylsiloxane (PDMS) is used for both the extraction and reaction steps. In addition to miniaturising the experimental steps, the optical system (fluorometer) has been integrated into an autonomous smartphone assembly capable of catalysing the photoreaction and analysing the fluorescence response. Taking advantage of the light-up response, TNT was still easily detectable down to 9.4 ng with the CMOS camera. Further evaluation of this analytical tool consisted of analyses of unfiltered and untreated surface water samples spiked directly with increasing concentrations of TNT to reflect different levels of contamination. LODs of 21 and 40 ng were found for samples from the Teltow Canal in Berlin (DEU) and the Baltic Sea near Greifswald (DEU). Such an analytical tool could be used to monitor water quality in the field, as the release of organic pollutants from munitions into surface and marine waters will become increasingly problematic and concentrations will continue to rise over the coming decades. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Explosives KW - Microfluidics KW - Smartphone KW - Sprengstoffe KW - Mikrofluidik KW - Sensor PY - 2025 AN - OPUS4-62767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchholz, Michelle T1 - Dual Fluorescent Molecularly Imprinted Polymers (MIPs) for Detection of the Prevalent Anti-Inflammatory Drug Diclofenac N2 - Ensuring the purity of air and water is essential for the overall well-being of life on earth and the sustainability of the planet's diverse ecosystems. To achieve the goal of zero pollution, as outlined in the 2020 European Green Deal by the European Commission,[1] significant efforts are in progress. A key aspect of this commitment involves advancing more efficient and economically viable methods for treating wastewater. This includes the systematic monitoring of harmful pollutants such as heavy metals, microplastics, pesticides, and pharmaceuticals. One example is the presence of the anti-inflammatory drug diclofenac in water systems, primarily originating from its use as a gel or lotion for joint pain treatment. Diclofenac contamination in surface waters has been detected at approximately 10 μg L-1 (0.03 μM)[2] which is not solely due to widespread usage but also because of the drug's resistance to microbial degradation. Conventional wastewater treatment plants (WWTPs), which rely on biodegradation, sludge sorption, ozone oxidation, and powdered activated carbon treatment, struggle to efficiently remove diclofenac from wastewater.[3],[4] For instance, to enable WWTPs to efficiently monitor and optimize their processes, it would be advantageous to develop on-site detection and extraction methods for persistent pharmaceutical residues in aqueous samples. In this work, a sol-gel process was used to prepare Nile blue-doped silica nanoparticles (dSiO2-NPs) with a diameter of ca. 30 nm that were further functionalized to enable reversible-addition-fragmentation chain-transfer (RAFT) polymerization. To achieve fluorescence detection, a fluorescent monomer was used as a probe for diclofenac in ethyl acetate, generating stable complexes through hydrogen bond formation. The diclofenac/fluorescent monomer complexes were imprinted into thin molecularly imprinted polymer (MIP) shells on the surface of the dSiO2-NPs. Thus, the MIP binding behaviour could be easily evaluated by fluorescence titrations to monitor the spectral changes upon addition of the analyte. Doping the core substrate with Nile blue generates effective dual fluorescent signal transduction. This approach does not solely depend on a single fluorescence emission band in response to analyte recognition. Instead, it enables the fluorescent core to function as an internal reference, minimizing analyte-independent factors such as background fluorescence, instrumental fluctuation, and operational parameters.[5] Rebinding studies showed that the MIP particles have excellent selectivity towards the imprinted template and good discrimination against the competitor ibuprofen, with a discrimination factor of 2.5. Additionally, the limit of detection was determined to be 0.6 μM. Thus, with further optimization of the MIP, there is potential for the development of a MIP-based biphasic extract-&-detect fluorescence assay for simple, sensitive and specific sensing of diclofenac in aqueous samples down to the required concentrations of 0.03 μM. T2 - MIP2024: The 12th International Conference on Molecular Imprinting CY - Verona, Italy DA - 18.06.2024 KW - Sensor KW - Diclofenac KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Pollutant PY - 2024 AN - OPUS4-60439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Climent, Estela A1 - Gotor, Raúl A1 - Tobias, Charlie A1 - Martin-Sanchez, Pedro M. A1 - Rurack, Knut T1 - Dipstick coated with polystyrene-silica core-shell particles for the detection of microbiological fuel contamination N2 - Microbial contamination of fuels by fungi or bacteria poses risks such as corrosion and fuel system fouling, which can lead to critical problems in refineries and distribution systems and has a significant economic impact at every stage of the process. Many factors have been cited as being responsible for microbial growth, like the presence of water in the storage tanks. In fact, only 1 % water in a storage system is sufficient for the growth of microorganisms like bacteria or yeasts, as well as for the development of fungal biomass at the oil/water interface. This work presents a rapid test for the accurate determination of genomic DNA from aqueous fuel extracts. The detection is based on the use of polystyrene-mesoporous silica core-shell particles onto which modified fluorescent molecular beacons are covalently grafted. These beacons contain in the hairpin loop a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA subunit. The designed single-stranded molecular beacon contained fluorescein as an internal indicator and a quencher in its proximity when not hybridized. Upon hybridization in presence of the target sequence, the indicator and the quencher are spatially separated, resulting in fluorescence enhancement. To perform the assay the developed particles were deposited on different glass fibre strips to obtain a portable and sensitive rapid test. The assays showed that the presence of genomic DNA extracts from bacteria down to 50–70 μg L–1 induced a fluorescence response. The optical read-out was adapted for on-site monitoring by fitting a 3D-printed case to a conventional smartphone, taking advantages of the sensitivity of the CMOS detector. Such embedded assembly enabled the detection of genomic DNA in aqueous extracts down to the mg L–1 range and represents an interesting step toward on-site monitoring of fuel contamination. T2 - IMA 2023 CY - Chania, Greece DA - 18.09.2023 KW - Teststreifen KW - Test strip KW - Microbial KW - Mikrobiell KW - Smartphone KW - Particles KW - Partikeln PY - 2023 AN - OPUS4-58526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Gotor, Raul A1 - Tobias, Charlie A1 - Bell, Jérémy A1 - Martin-Sanchez, Pedro A1 - Rurack, Knut T1 - Dip Sticks Embedding Molecular Beacon-Functionalized Core−Mesoporous Shell Particles for the Rapid On-Site Detection of Microbiological Fuel Contamination N2 - Microbial contamination of fuels by fungi and bacteria presents risks of corrosion and fuel system fouling. In this work, a rapid test for the determination of microbial genomic DNA from aqueous fuel extracts is presented. It combines test strips coated with polystyrene core/mesoporous silica shell particles, to the surface of which modified fluorescent molecular beacons are covalently grafted, with a smartphone detection system. In the hairpin loop, the beacons incorporate a target sequence highly conserved in all bacteria, corresponding to a fragment of the 16S ribosomal RNA gene, which is also present to a significant extent in the 18S rRNA gene of fungi, allowing for broadband microbial detection. In the developed assay, the presence of genomic DNA extracts from bacteria and fungi down to ca. 20−50 μg L−1 induced a distinct fluorescence response. The optical read-out was adapted for on-site monitoring by combining a 3D-printed case with a conventional smartphone, taking advantage of the sensitivity of contemporary complementary metal oxide semiconductor (CMOS) detectors. Such an embedded assembly allowed to detect microbial genomic DNA in aqueous extracts down to ca. 0.2−0.7 mg L−1 and presents an important step toward the on-site uncovering of fuel contamination in a rapid and simple fashion. KW - Bacteria KW - Fungi KW - Rapid test KW - Fluorescence KW - Smartphone KW - Biofouling PY - 2020 DO - https://doi.org/10.1021/acssensors.0c01178 SN - 2379-3694 VL - 6 IS - 1 SP - 27 EP - 34 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Scharek, Vera T1 - A new elemental analytical approach for microplastic sum parameter analysis in environmental samples – ETV/ICP-MS with CO2 N2 - Plastics are indispensable in our daily lives. Due to their easy processability, durability, and lightweight properties, they are the base material of many consumer and industry products. However, with reported amounts of millions of tons per year, plastic pollution has become a globally emerging problem. In the environment, plastic waste undergoes degradation, leading to the formation of persistent, synthetic particles smaller than 5 mm, known as microplastics (MPs). Toxicological concerns mainly arise from MP uptake by various organisms, including humans. MPs act as transport vectors for hazardous chemicals, e.g., polymer additives, bacteria, and other environmental pollutants. Existing approaches for MP analysis focus on particle size, number, and information on the polymer types. However, there is a lack of analytical tools for a fast and comprehensive assessment of the pollution situation based on the MP mass without limitations to size and polymer types. In this context, a new mass balance approach for the MPs analysis in environmental samples via electrothermal vaporization coupled with inductively coupled plasma-mass spectrometry (ETV/ICP-MS) has been developed as a complementary screening tool to existing methods. With ETV/ICP-MS, the bulk detection of MPs via the 13C isotope as a sum parameter of common polymer types was achievable relatively unaffected by the respective size across the nano-to-micrometer scale. A new mass-based approach through an external gas calibration with carbon dioxide enabled the fast quantification of the MP content in MP-soil mixtures of different portions. By this, the analysis was achievable within a few minutes of analysis time per sample. Furthermore, the potential of polymer heteroatoms and contaminants for the sensitive detection in carbon-rich matrices was investigated. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Microplastics KW - Soil KW - Electrothermal Vaporization KW - Inductively coupled plasma-mass spectrometry KW - Sum parameter analysis PY - 2025 AN - OPUS4-62828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prakash, Swayam T1 - Silane Functionalized Paper Test Strips for Rapid and Sensitive Faecal Pigments Detection towards On-site Water Quality Testing N2 - Introduction. W.H.O estimated that globally at least 2 billion people use drinking water sources contaminated with faeces and according to UNICEF, most of these faecal detection methods are expensive, time-consuming (18–24 h time to result), and, with few exceptions, not suited for on-site analysis. Hence, there is an urgent need for the development of analytical methods that allow to unequivocally test for drinking water quality directly on-site. Aims. Development of rapid and sensitive fluorescence based analytical methods for faecal pigments (FPs) detection towards on-site water quality testing. Methods. Silane functionalized glass fiber paper test strips were developed for the sensitive drop-&-detect analysis of FPs. Drop casting of water samples containing faecal pigment on specifically functionalized test strips allowed the sensitive detection of FPs with a smartphone coupled to a 3D printed optical setup. Results. A series of silanes were used to functionalize glass fiber paper and tune its hydrophobicity, exploiting the influence of matrix tailoring to enhance binding of the Zn salt used as co-reagent to urobilin for optimal fluorescence response. Combination of bis(2-hydroxyethyl)-3-aminopropyltriethoxysilane with zinc chloride-impregnated test strips demonstrated optimum fluorescence response for sensitive (nano- and sub-nanomolar concentration) smartphone-based faecal pigments detection. The obtained fluorescence sensing results were validated with a benchtop fluorometer. Furthermore, the developed analytical method was successfully applied to the analysis of real water samples. Conclusions. The possibilities of matrix tailoring and co-reagent nature on the development of a rapid, sensitive, and embedded fluorescence-based on-site strip test are presented and discussed. This technique has potential application for faecal biomarker detection/primary screening for water quality in developing countries, where sophisticated instruments may not be available. T2 - 18th Conference of Methods and Applications in Fluorescence CY - Valencia, Spain DA - 08.09.2024 KW - Faecal contamination KW - Fluorescence KW - Metal complexes KW - Water analysis PY - 2024 AN - OPUS4-61479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela T1 - Antibody-gated indicator releasing mesoporous materials: a potential biosensor platform to be used in the development of rapid tests N2 - The urgent necessity to carry out reliable and relevant analytical measurements directly at a point-of-need is one of the current drivers for the development of miniaturised analytical systems, quick tests and wearables. Despite their simplicity, this type of tests must guarantee analytical relevance and reliability like laboratory-based analysis, e.g., in terms of sensitivity, selectivity, immunity against false positives and false negatives as well as robustness and repeatability. Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we performed several optimisations to develop a potential biosensor platform for use in rapid tests. Conceptually, these gated materials are closely related to drug delivery systems, consisting of high porous materials usually closed with macromolecular “caps” and loaded with indicator molecules that are released in presence of a target analyte. However, the key difference between the two types of functional materials is that many drug delivery systems should deliver their cargo over a longer period, often many hours, whereas the gated materials prepared for sensing should show fast release kinetics, on the order of <5 min. With the aim to optimise and adapt gated materials for sensing purposes, we prepared in this work several antibody-gated materials for small-molecule sensing. The materials consisted of porous silica particles containing indicator molecules in the pores and certain hapten molecules grafted to the particle surface close to the pore openings. The pores were then capped with antibodies binding to these haptens, thus inhibiting the escape of the indicators from inside of the pores. In presence of the corresponding analyte, the antibody is displaced from the surface of the material, allowing the escape of the indicators. This allows the detection of the analyte indirectly through an inherent signal amplification. In this work, the insecticide permethrin, a type-I pyrethroid, was selected as target model, because type-I pyrethroids play an important role in airplane disinfection. A first in-depth study of the various chemical tuning options of such antibody gated systems was performed. Different mesoporous silica supports, different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material’s pore openings, the better the closing/opening mechanism can be controlled. Because such materials can be used in various different formats from suspension assays[1] via microfluidic chips[2] to test strip-based lateral flow assays,[3] such materials present a powerful analytical particle platform for the sensitive analytics and diagnostics outside of a laboratory, realising sensitivities down to the µg kg–1 range in less analysis times of less than 5 min as we have recently demonstrated.[4] T2 - Biosensors for Pandemics CY - Online conference DA - 06.05.2020 KW - Hybrid materials KW - Pyrethroids KW - Signal amplification PY - 2020 UR - http://www.confstreaming.com/Biosensors2020/ AN - OPUS4-50746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Puertollano, Daniel A1 - Duncan, Hadyn A1 - Abad-Somovilla, Antonio A1 - Abad-Fuentes, Antonio A1 - Rurack, Knut T1 - Competitive cytometry-based immunoassay for patulin determination in apple juice N2 - Patulin is a mycotoxin that is frequently found in apples and apple-derived products. Given the potential harm it can cause to humans, maximum levels for patulin in food have been set worldwide. Conventional methods for the detection of patulin are often time-consuming or lack sensitivity. In this study, a novel cytometry approach based on specific monoclonal antibodies is presented. These high-affinity binders do not target patulin itself, but a stable derivative (adduct) that is rapidly obtained in an aqueous medium at room temperature. To develop the assay, a specific fluorescent competitor was designed and synthesized. After optimizing the assay conditions, including the concentration of the fluorescent competitor and of the antibody bound to polystyrene-silica core–shell microparticles, a detection limit of 0.03 μg L-1 in buffer was achieved. Finally, validation according to Commission Regulation (EU) 2023/2782 demonstrated that apple juice samples spiked with patulin at 25 or 50 μg L-1 (permissible limits set by the EU) were properly scored as non-compliant without any additional treatment other than a simple dilution step in buffer. The developed assay offers several key advantages, including rapid analysis, high sensitivity and specificity, and the potential for multiplexing, making it a promising analytical tool for routine monitoring of patulin contamination in food. KW - Bead-based assay KW - Cytometry KW - Derivatization KW - Mycotoxin KW - Patulin PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-627659 DO - https://doi.org/10.1016/j.microc.2025.113287 SN - 1095-9149 VL - 212 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-62765 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - López-Puertollano, Daniel A1 - Tobias, Charlie A1 - Bell, Jérémy A1 - Abad-Somovilla, A. A1 - Abad-Fuentes, A. A1 - Rurack, Knut T1 - Superparamagnetic Bead-Based Microfluidic Fluoroimmunoassay Platform for Rapid Ochratoxin A Detection in Flour N2 - Simplification and reduction of time and costs are the primary goals in the development and use of onsite methods in diagnostics and food safety. To facilitate the transition from laboratory techniques to simple, miniaturized devices, we have developed a modular microfluidic platform. This platform integrates a competitive fluorescence immunoassay on the surface of superparamagnetic beads, serving as a complementary technique to traditional cytometry assays. In the first chip module, a fast competitive reaction (5 min) occurs, after which the particles are retained in the second module. This module consists of a PDMS chip and a permanent magnet, allowing only the fluorescent competitor to reach the detection module. Ochratoxin A (OTA) was chosen as the model analyte for device development, using fluorescein-labeled OTA as a competitor. The system efficiently separates particles, with OTA concentration directly correlated to the amount of fluorescent competitor remaining in solution after the competitive reaction. This innovative setup allows to perform rapid measurements with small sample volumes in a short time (10 min), achieving a limit of detection for OTA of 1.2 μg L–1. The system was successfully applied to the accurate determination of OTA in wheat flour spiked at regulatorily relevant concentrations. Using this device, conventional cytometry immunoassays can be seamlessly transformed into user-friendly, miniaturized analytical methods at reduced cost for applications outside of a laboratory directly at the point of need. KW - Bead-based assay KW - Fluorescence KW - Immunoassay KW - Microfluidics KW - mycotoxins PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-638472 DO - https://doi.org/10.1021/acssensors.5c01119 SN - 2379-3694 SP - 1 EP - 10 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-63847 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sun, Yijuan A1 - Gawlitza, Kornelia A1 - Valderrey, Virginia A1 - Bell, Jérémy A1 - Rurack, Knut T1 - Polymerizable BODIPY probe crosslinker for the molecularly imprinted polymer-based detection of organic carboxylates via fluorescence N2 - This contribution reports the development of a polymerizable BODIPY-type fluorescent probe targeting small-molecule carboxylates for incorporation into molecularly imprinted polymers (MIPs). The design of the probe crosslinker includes a urea recognition site p-conjugated to the 3-position of the BODIPY core and two methacrylate moieties. Titration experiments with a carboxylate-expressing antibiotic, levofloxacin (LEVO), showed a blue shift of the absorption band as well as a broadening and decrease in emission, attributed to hydrogen bonding between the probe’s urea group and the carboxylate group of the antibiotic. Using this probe crosslinker, core–shell particles with a silica core and a thin MIP shell were prepared for the detection of LEVO. The MIP exhibited highly selective recognition of LEVO, with an imprinting factor of 18.1 compared to the non-imprinted polymer. Transmission electron microscopy confirmed the core–shell structure and spectroscopic studies revealed that the receptor’s positioning leads to a unique perturbation of the polymethinic character of the BODIPY chromophore, entailing the favourable responses. These features are fully preserved in the MIP, whereas no such response was observed for competitors such as ampicillin. The sensory particles allowed to detect LEVO down to submicromolar concentrations in dioxane. We have developed here for the first time a BODIPY probe for organic carboxylates and incorporated it into polymers using the imprinting technique, paving the way for BODIPY-type fluorescent MIP sensors. KW - Fluorescence KW - BODIPY probe KW - Molecularly Imprinted Polymers KW - Sensor Materials KW - Dyes KW - Water analysis KW - Advanced materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598629 DO - https://doi.org/10.1039/D3MA00476G SP - 1 EP - 11 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Verhassel, Alejandra A1 - Kimani, Martha Wamaitha A1 - Gidwani, Kamlesh A1 - Sandholm, Jouko A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Härkönen, Pirkko T1 - Detection of Tn-antigen in breast and prostate cancer models by VVL-labeled red dye-doped nanoparticles N2 - Aim: Fluorescence detection of breast and prostate cancer cells expressing Tn-antigen, a tumor marker, with Vicia villosa lectin (VVL)-labeled nanoparticles. Materials & methods: Breast and prostate cancer cells engineered to express high levels of Tn-antigen and non-engineered controls were incubated with VVL-labeled or unlabeled red dye-doped silica-coated polystyrene nanoparticles. The binding to cells was studied with flow cytometry, confocal microscopy, and electron microscopy. Results: Flow cytometry showed that the binding of VVL-labeled nanoparticles was significantly higher to Tn-antigen-expressing cancer cells than controls. Confocal microscopy demonstrated that particles bound to the cell surface. According to the correlative light and electron microscopy the particles bound mostly as aggregates. Conclusion: VVL-labeled nanoparticles could provide a new tool for the detection of Tn-antigen-expressing breast and prostate cancer cells. KW - Breast cancer cells KW - Fluorescence detection KW - Lectin labeling KW - Prostate cancer cells KW - Silica-coated polystyrene nanoparticles KW - Tn-antigen KW - VVL PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-613451 DO - https://doi.org/10.1080/17435889.2024.2405454 SN - 1743-5889 VL - 19 SP - 2463 EP - 2478 PB - Taylor & Francis CY - London AN - OPUS4-61345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jamieson, O. D. A1 - Bell, Jérémy A1 - Hudson, A. A1 - Saczek, J. A1 - Perez-Padilla, Victor A1 - Kaiya, G. A1 - Novakovic, K. A1 - Davies, M. A1 - Foster, E. A1 - Gruber, J. A1 - Rurack, Knut A1 - Peeters, M. T1 - Design and Application of an Imprinted Polymer Sensor for the Dual Detection of Antibiotic Contaminants in Aqueous Samples and Food Matrices N2 - An innovative polymer-based dual detection microfluidic platform has been developed for the accurate and reliable sensing of trace amounts of antibiotic tetracycline in environmental and food samples. This was achieved through the production of a bespoke polymeric material formed via an imprinting technique using a fluorescent dye. Thus, this enables dual detection of tetracycline, both thermally, via analyzing the heat-transfer resistance at the solid−liquid interface, and optically, through the inner filter effect. The combination of these two methods achieved a nanomolar limit of detection for tetracycline while also providing rapid, selective, and cost-effective sensing. Additionally, this method successfully detected tetracycline levels of 0.56 μM in blank egg samples which was significantly lower than the maximum residual level of 400 μg L−1 (0.9 μM). Our work shows that this approach can be used for the efficient detection of trace antibiotics in complex environmental and food samples, offering enhanced reliability through the integration of two complementary analysis techniques. This sensor has the potential to identify sources of antimicrobial resistance, which is crucial for targeted efforts to combat this pressing global health challenge. KW - Molecularly imprinted polymers KW - Antibiotics monitoring KW - Orthogonal detection KW - Sensors PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626497 DO - https://doi.org/10.1021/acsapm.4c03218 SN - 2637-6105 VL - 7 IS - 4 SP - 1 EP - 9 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-62649 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mantha, Anant T1 - Immobilised gold nanoparticles for an optofluidic SERS platform N2 - The combination of SERS with microfluidics not only miniaturises the system but also introduces the possibility to control the environmental parameters of the analyte, which is not present when using either a droplet or cuvette. This allows for applications involving tiny sample volumes and control of sample environments. Direct usage of nanoparticles in solution with the analyte can cause the adsorption of the nanoparticles onto the surfaces of microfluidic systems, leading to undesirable memory effects. By using plasmonic nanoparticles of gold, silver or a mixture of the two, immobilised on removable glass or PDMS inserts, the life and reusability of the channels can be largely improved [1] because they can be inserted into the channel and replaced after use. Using immobilised nanoparticles also introduces a relatively large surface that can be scanned and can improve the reproducibility of the nanoparticle substrate properties and hence the measured spectra. Here, we will discuss strategies for the fabrication and characterization of immobilised plasmonic nanoparticles for bioanalytical applications in optofluidic systems. We will present the plasmonic properties as well as surface-enhanced Raman scattering (SERS) data of relevant compounds. T2 - Molecular Plasmonics 2025 CY - Jena, Germany DA - 15.05.2025 KW - SERS KW - Microfluidics KW - Mikrofluidik PY - 2025 AN - OPUS4-63259 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - PFAS Sensors N2 - This contribution provides an introduction to the development of sensors for PFAS analysis, presents the most common approaches, and describes the opto-microfluidic strategy in combination with polymerizable indicators and detection matrices currently being pursued by the Chemical and Optical Sensing Division at BAM. T2 - Advancements of Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS) – Second Workshop 2023 CY - Berlin, Germany DA - 19.09.2023 KW - PFAS KW - Sensors KW - Molecularly imprinted polymers KW - Microfluidics KW - Fluorescence PY - 2023 AN - OPUS4-58533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Empowering test strips for rapid, highly sensitive and multiplexed analysis of small molecule analytes at a point-of-need N2 - In particular, the rapid development of lateral flow assays as indispensable tools for everyone to contain the SARS-CoV-2 pandemic has fuelled the global demand for analytical tests that can be used outside dedicated laboratories. In addition to their use in medical diagnostics, rapid tests and assays have become increasingly important in various fields such as food safety, security, forensics, and environmental management. The advantage is obvious: taking the assay directly to the sample minimizes the time between suspicion and decision-making, allowing faster action. Especially today, when mobile communication devices with powerful computing capabilities and built-in cameras are ubiquitous, more people than ever before around the world have the basic skills to operate a powerful detector at their fingertips. This sets the stage for a much wider use of analytical measurements in terms of prognosis and prevention, enabling professional laypersons in particular. However, current strip-based systems are primarily focused on single parameter analysis, whether it is SARS-CoV-2 biomarkers, blood glucose levels, or lead concentrations in water samples. Industrial applications of such methods also often still rely on single-parameter assays, requiring multiple runs even for a limited number of key parameters. Overcoming these limitations depends on developing low-number multiplexing strategies that ensure robustness, reliability, speed, ease of use, and sensitivity. This lecture will give an overview of several generic approaches developed in recent years to address these challenges. It will highlight how the synergy of supramolecular (bio)chemistry, luminescence detection, hybrid (nano)materials and device miniaturization can result in powerful (bio)analytical assays that can be used at a point-of-need.1-5 Selected examples will introduce key aspects of such systems that include tailored signaling mechanisms and recognition elements, materials functionalization and device integration, including hybrid nanomaterials, gated indicator release systems, strip modification, and smartphone-based analysis. T2 - 15th Rapid Methods Europe Conference CY - Amsterdam, Netherlands DA - 06.11.2023 KW - Test strips KW - Lateral flow assays KW - Explosives KW - Pesticides KW - Rapid testing KW - Multiplexing PY - 2023 AN - OPUS4-58816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Chips or strips – the importance of embedding and integration in (bio)chemical assay development N2 - The most important aspect of developing a miniaturized or compact (bio)chemical assay for use outside a dedicated laboratory environment is, of course, the design of the recognition and signaling element that best achieves the required selectivity and sensitivity in relation to the target analyte and analytical scenario. For luminescence assays, this essentially means that the appropriate combination of small-molecule binding units, ligands or biomacromolecular binders such as antibodies or aptamers and organic, metal-organic or rare earth metal ion luminophores or luminescent nanoparticles such as semiconductor nanocrystals, carbon nanodots, polymer dots or fluorescently doped silica or polymer nanoparticles as well as the best strategy for combining binding and signaling unit must be selected. Having accomplished this task and obtained first promising results in a conventional laboratory setting with the use of pipettes, cuvettes and benchtop spectrometers, the challenge is to bridge the gap between such a model assay and an assay that uses a mobile and robust device in the hands of a layperson and does not require complicated operation and extensive manual steps, especially when handling liquids, at best in line with the ASSURED principle, being affordable, sensitive, specific, user-friendly, rapid and robust, equipment free and deliverable to end-users, or, as recently proposed, the REASSURED principle, which furthermore includes real-time connectivity and ease of specimen collection (translating into ease of sampling in the non-diagnostic world). In order to close this gap, it is of utmost importance to know the further requirements of the assay, i.e., whether only one or more than one analyte needs to be detected, what the main potential interferents are and how tolerant the assay is to the sample matrix, as well as how many assays are typically performed per hour/day/week, how long a run should take and how expensive a single analysis should be. These parameters usually determine the most appropriate format, i.e., whether it is a dip stick, a test strip, a lateral flow assay, a microfluidic chip, a 3D-microfluidic approach or a combination thereof, in conjunction with a dedicated readout system or a mobile communication device. This choice in turn determines the most appropriate strategy for integration, i.e., whether the recognition and signaling element are used directly in liquid solution,8 embedded in polymer layers or gels, attached to surfaces of planar substrates, micro- or nanoparticles or immobilized or loaded in micro- or nanoparticles, which could then enable direct or controlled/gated access. This contribution discusses various aspects of this multi-stage process using examples from the group. T2 - How to develop a sensor? Academic Approaches vs. Industrial Interests (EU Training School) CY - Kaiserslautern, Germany DA - 18.09.2024 KW - Sensing KW - Rapid testing KW - Microfluidics KW - Test strips KW - Device integration PY - 2024 AN - OPUS4-61429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - 2023 IEEE SENSORS Conference CY - Vienna, Austria DA - 29.10.2023 KW - Lab-on-a-Chip KW - Nerve agents KW - Hand-held KW - Fluorescence KW - Toxic industrial chemicals PY - 2023 UR - https://ieeexplore.ieee.org/document/10325263 SN - 979-8-3503-0387-2 DO - https://doi.org/10.1109/SENSORS56945.2023.10325263 SP - 1 EP - 4 PB - IEEE CY - New York AN - OPUS4-59367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernández García, María Amparo T1 - SAF-based optical biosensor with 3D-printed free-form optics for targeted explosives immuno-detection N2 - Guaranteeing safety and security of citizens requires a significant effort and innovative tools from national and international agencies and governments, especially when it comes to the field of explosives detection. The need to detect Improvised Explosive Devices (IEDs) and Home-made Explosives (HMEs) at a point of suspicion, has grown rapidly due to the ease with which the precursors can be obtained and the reagents synthesised. The limited availability of immunoanalytical tools for HME detection presents an opportunity for the development of new devices, which enable a rapid detection and recognise the target analyte with high specificity and sensitivity. In this work, we introduce an optical biosensor for highly specific and sensitive HME detection. The immunoassay system is placed in a hydrogel environment permeable to the analyte and transparent to light interrogating the fluorescently labelled antibodies. The readout of the immunoanalytical system is realized with Supercritical Angle Fluorescence (SAF), an advanced microscopy technique. To accomplish this, we made use of recent, commercial high resolution (< 22 µm) Liquid Crystal Display 3D printers to fabricate a parabolic optical element with high refractive index (RI>1.5) and transmission values (>90%) from photo-resin. Aiming at a new generation of sensors, which not only can meet the requirements of trace detection, but can also be used for substance identification, the combination of immunoanalytical recognition with SAF detection offers a modularity and versatility that is principally well suitable for the measurements of target analytes at trace levels. T2 - 8th International conference in Biosensing Technology CY - Seville, Spain DA - 12.05.2024 KW - 3D printing KW - Biosensor KW - Fluorescence KW - Explosives PY - 2024 AN - OPUS4-60561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gawlitza, Kornelia T1 - Fluorescent molecularly imprinted polymer particles for direct detection of glyphosate in organic solvents and water N2 - Glyphosate (GPS) is the most widely used pesticide in the world whose use increased dramatically after the introduction of genetically modified crops engineered to resist its herbicidal action during application. In recent years, there have been growing concerns over its toxicity following its classification by the International Agency for Research on Cancer (IARC) as a probable carcinogen as well as reports of its ecotoxicological effects. This resulted in increased efforts to develop quick and sensitive detection methods. In this work, molecular imprinting was combined with direct fluorescence detection of GPS by improving its solubility in organic solvents using tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) as counterions. To achieve fluorescence detection, a fluorescent crosslinker containing urea binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+, enabling the direct fluorescence detection and quantification of GPS in water in a biphasic assay. A limit of detection of 1.45 µM and a linear range of 5–55 µM, which matches well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 µM), have been obtained. The assay can be further optimized to allow miniaturization into microfluidic devices and shows potential for on-field applications by untrained personnel. T2 - 36th European Colloid & Interface Society Conference CY - Chania, Greece DA - 04.09.2022 KW - Glyphosate KW - Molecular Imprinting KW - Core-Shell Particles KW - Fluorescent Urea Receptors PY - 2022 AN - OPUS4-56311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bell, Jérémy A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Embedded sensor based on tandem smartphone-microfluidic device for the detection of TNT in surface and sea waters N2 - The globe's seas were used as dumping ground after the world wars and those millions of ammunition, most of all containing 2,4,6-trinitrotoluene (TNT), represent a pressing danger for fishermen, dredging operations, submarine cable installations and tourism. We developed an extremely selective indication method for TNT based on a specific reaction that produces a highly fluorescent compound. The indication system was integrated into a microfluidic PDMS chip for the solid-liquid extraction of TNT from water samples, offering environmental monitoring possibilities. Combining the advantages of a light-up indicator, microfluidics and a smartphone as detector, the embedded sensor allows for the remote and rapid detection of TNT down to ng in surface and sea waters. T2 - µTAS 2020 CY - Online meeting DA - 05.10.2020 KW - Smartphone KW - Rapid test KW - TNT KW - Ammunition KW - Schnelltest KW - Munition PY - 2020 AN - OPUS4-51444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mansurova, Maria A1 - Gotor, Raúl A1 - Johann, Sergej A1 - Neumann, Patrick P. A1 - Bartholmai, Matthias A1 - Rurack, Knut A1 - Bell, Jérémy T1 - Fluorescent Hydrophobic Test Strips with Sterically Integrated Molecular Rotors for the Detection of Hydrocarbons in Water and Soil with an Embedded Optical Read-Out N2 - Contamination of natural bodies of water or soil with oils and lubricants (or generally, hydrocarbon derivatives such as petrol, fuels, and others) is a commonly found phenomenon around the world due to the extensive production, transfer, and use of fossil fuels. In this work, we develop a simple system for the on-field detection of total petroleum hydrocarbons (TPHs) in water and soil. The test is based on the measurement of the fluorescence signal emitted by the molecular rotor 2-[ethyl[4-[2-(4-nitrophenyl)ethenyl]phenyl]amino]ethanol (4-DNS-OH). This dye is embedded in a hydrophobic polymeric matrix (polyvinylidene fluoride), avoiding interactions with water and providing a robust support for use in a test strip fashion. Together with the strips, an embedded optical system was designed for fluorescence signal read-out, featuring a Bluetooth low-energy connection to a commercial tablet device for data processing and analysis. This system works for the detection and quantification of TPHs in water and soil through a simple extraction protocol using a cycloalkane solvent with a limit of detection of 6 ppm. Assays in surface and sea waters were conclusive, proving the feasibility of the method for in-the-field operation. KW - Test strip KW - Sensor KW - Smartphone KW - Fluorescence KW - Test Streifen KW - Sensoren KW - Fluoreszenz KW - Petrol KW - Öl PY - 2023 DO - https://doi.org/10.1021/acs.energyfuels.3c01175 SN - 0887-0624 SP - 1 EP - 6 PB - American Chemical Society CY - Washington, United States AN - OPUS4-57892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Sensitive and multiplexed assays for point-of-need applications: innovations for robust, reliable, and user-friendly diagnostics N2 - The development of portable analytical assays, particularly during the SARS-CoV-2 pandemic, has revolutionized diagnostics and expanded their use to areas such as food safety, environmental monitoring and forensics. These assays offer the advantage of rapid on-site decision making without the need for laboratory facilities. The omnipresence of mobile devices with advanced cameras and processing power further increases their usability. However, most current assays are limited to detecting single parameters. The challenge now is to develop robust multiplexed assays that can simultaneously detect multiple parameters with high sensitivity. This lecture will present generic approaches developed at BAM with a focus on supramolecular chemistry, luminescence detection, nanomaterials and miniaturization of devices. Examples include mesoporous nanomaterials, gated indicator systems, imprinted polymers, microfluidic devices, test strips and smartphone-based analysis. T2 - Kolloquium Optische Technologien der FH Münster CY - Steinfurt, Germany DA - 18.12.2024 KW - Rapid testing KW - Fluorescence KW - Explosives KW - Environmental contaminants KW - Multiplexing PY - 2024 AN - OPUS4-62322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tobias, Charlie A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Polystyrene Microparticles with Convergently Grown Mesoporous Silica Shells as a Promising Tool for Multiplexed Bioanalytical Assays N2 - Functional core/shell particles are highly sought after in analytical chemistry, especially in methods suitable for single-particle analysis such as flow cytometry because they allow for facile multiplexed detection of several analytes in a single run. Aiming to develop a powerful bead platform of which the core particle can be doped in a straightforward manner while the shell offers the highest possible sensitivity when functionalized with (bio)chemical binders, polystyrene particles were coated with different kinds of mesoporous silica shells in a convergent growth approach. Mesoporous shells allow us to obtain distinctly higher surface areas in comparison with conventional nonporous shells. While assessing the potential of narrow- as well as wide-pore silicas such as Mobil composition of matter no. 41 (MCM-41) and Santa Barbara amorphous material no. 15 (SBA-15), especially the synthesis of the latter shells that are much more suitable for biomolecule anchoring was optimized by altering the pH and both, the amount and type of the mediator salt. Our studies showed that the best performing material resulted from a synthesis using neutral conditions and MgSO4 as an ionic mediator. The analytical potential of the particles was investigated in flow cytometric DNA assays after their respective functionalization for individual and multiplexed detection of short oligonucleotide strands. These experiments revealed that a two-step modification of the silica surface with amino silane and succinic anhydride prior to coupling of an amino-terminated capture DNA (c-DNA) strand is superior to coupling carboxylic acid-terminated c-DNA to aminated core/shell particles, yielding limits of detection (LOD) down to 5 pM for a hybridization assay, using labeled complementary single-stranded target DNA (t-DNA) 15mers. The potential of the use of the particles in multiplexed analysis was shown with the aid of dye-doped core particles carrying a respective SBA-15 shell. Characteristic genomic sequences of human papillomaviruses (HPV) were chosen as the t-DNA analytes here, since their high relevance as carcinogens and the high number of different pathogens is a relevant model case. The title particles showed a promising performance and allowed us to unequivocally detect the different high- and low-risk HPV types in a single experimental run. KW - Bead-based assay KW - Core-shell particles KW - Human papillomavirus KW - Mesoporous silica KW - Multiplexing PY - 2020 DO - https://doi.org/10.1021/acsami.0c17940 SN - 1944-8244 VL - 13 IS - 1 SP - 207 EP - 218 PB - American Chemical Society CY - Washington, DC AN - OPUS4-51955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Development of a Lab-on-a-Chip for the Detection of Nerve Agents with a Handheld Device N2 - The development of a Lab-on-a-Chip (LoC) is presented, which can detect reactive phosphorous compounds in the gas phase in combination with an optochemical hand-held sensor. The LoC prototype contains three pairs of sensing materials containing fluorescent indicator dyes in various carrier materials. By measuring the fluorescence response to phosphoryl chloride, a surrogate compound, the detection of chemical warfare agents (CWAs) in gas phase becomes possible within seconds, introducing a novel approach to CWA detection. T2 - IEEE Sensors Conference CY - Vienna, Austria DA - 29.10.2023 KW - Chemical warfare agents KW - Lab-on-a-chip KW - Handheld sensors KW - Toxic industrial chemicals KW - Fluorescence PY - 2023 AN - OPUS4-58815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rurack, Knut T1 - Multifunctional hybrid microparticles for rapid cytometric and microfluidic mix-&-detect bioassays N2 - Besides the application-oriented parameters selectivity and sensitivity, simplicity and speed as well as robustness and reliability are the key features that determine success, dissemination and acceptance of analytical assays and methods for use in the field. For bioassays based on antibodies or nucleic acid binders, bead-based assays have become one of the main working horses of lab-based methods. However, these approaches are often limited by complicated and time-consuming workflows, which are mainly compensated by massive parallelisation, keeping the average cost and time-to-result within acceptable limits due to the sheer number and constant flow of samples processed. In on-site applications, where analyses need to be performed on suspicion or on demand because results are needed as quickly as possible for proactive decision making, the number, frequency and type of samples are much more diverse, so analytical assays need to be adapted to remain cost-effective and operable by non-expert users in environments where no lab infrastructure is available. With this in mind, we have developed a multifunctional hybrid microparticle platform that enables fast and simple mix-&-detect bioassays in combination with fluidic cytometry- and chip-based analytical methods. The present contribution will give an overview of the beads, their functions and how they can be combined with immunoanalytical and nucleic acid-based detection technologies. Starting from simple polymeric core/silica shell particles [1], we have progressively introduced coding [2,3], anti-fouling [2], high-surface area [4] and magnetic schemes [5] and in recent years have shown how these beads can be used in simple mix-&-detect assays for a range of different environmental, health and food analytes [1-5]. In addition to cytometry, we have also successfully implemented such assays using miniaturised microfluidic and strip-based approaches [6]. T2 - ANAKON 2025 CY - Leipzig, Germany DA - 10.03.2025 KW - Bead-based assay KW - Core-shell particles KW - Lab-on-a-chip KW - Mycotoxin PY - 2025 AN - OPUS4-62766 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krahl, T. A1 - Beer, F. A1 - Relling, A. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Kemnitz, E. T1 - Toward Luminescent Composites by Phase Transfer of SrF2 :Eu3+ Nanoparticles Capped with Hydrophobic Antenna Ligands N2 - Transparent dispersions of hydrophobic SrF2 :Eu3+ nanoparticles in cyclohexane with up to 20% europium were obtained by fluorolytic sol-gel synthesis followed by Phase transfer into cyclohexane through capping with sodium dodecylbenzenesulfonate (SDBS). The particles were characterized by TEM, XRD and DLS as spherical objects with a diameter between 6 and 11 nm in dry state. 1H-13CP MAS NMR experiments revealed the binding of the anionic sulfonate head group to the particle surface. The particles show bright red luminescence upon excitation of the aromatic capping agents, acting as antennas for an Energy transfer from the benzenesulfonate unit to the Eu3+ centers in the particles. This synthesis method overcomes the current obstacle of the fluorolytic sol-gel synthesis that transparent dispersions can be obtained directly only in hydrophilic solvents. To demonstrate the potential of such hydrophobized alkaline-earth fluoride particles, transparent luminescent organic-inorganic composites with 10% SrF2 :Eu3+ embedded into polyTEGDMA, polyBMA, poly-BDDMA and polyD3MA, respectively, were prepared, endowing the polymers with the luminescence features of the nanoparticles. KW - Nanoparticles KW - Fluorides KW - Sol-gel process KW - Organic-inorganic hybrid composites PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508668 DO - https://doi.org/10.1002/cnma.202000058 SP - 1 EP - 11 PB - Wiley AN - OPUS4-50866 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut ED - Climent Terol, Estela T1 - Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles N2 - Rapid testing methods for the use directly at apointof need are expected to unfold their true potential especiallywhen offering adequate capabilities for the simultaneousmeasurement of multiple analytes of interest. Considering theunique modularity,high sensitivity,and selectivity of antibody-gated indicator delivery (gAID) systems,amultiplexed assayfor three small-molecule explosives (TATP, TNT,PETN) wasthus developed, allowing to detect the analytes simultaneouslywith asingle test strip at lower ppb concentrations in the liquidphase in < 5min using afluorescence reader or asmartphonefor readout. While the TNT and PETN systems were newlydeveloped here,all the three systems also tolerated harshermatrices than buffered aqueous model solutions.Besidesasingle-track strip,the outstanding modularity of the hybridbiosensor materials in combination with strip-patterningtechnologies allowed us to obtain amultichannel strip inastraightforwardmanner,offering comparable analyticalperformance while allowing to be tailored even more to theusersneed. KW - Multiplexing KW - Explosives detection KW - Gated materials KW - Fluorescence PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518424 DO - https://doi.org/10.1002/anie.202009000 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 52 SP - 23862 EP - 23869 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Rurack, Knut T1 - Streifenschnelltest mit ppt-Empfindlichkeit durch Kombination von Elektrochemilumineszenz-Detektion mit Aptamer-gesteuerter Indikatorfreisetzung aus mesoporösen Nanopartikeln N2 - Die Kombination aus elektrogenerierter Chemilumineszenz (ECL) und Aptamer-gesteuerter Indikatorfreisetzung (gAID) aus magnetischen mesoporösen Silica-Nanopartikeln, die in mit Poly(ethylenglycol) und N-(3-Triethoxysilylpropyl) diethanolamin funktionalisiertes Glasfaserpapier eingebettet sind, ermöglichte die Entwicklung eines Schnelltests, mit dem sich Penicillin direkt in verdünnter Milch bis auf 50 +/- 9 ppt in <5 min nachweisen lässt. Die kovalente Bindung der Aptamer-Kappe an das Siliciumdioxid-Gerüst ermöglichte den Verschluss der Poren durch nicht-kovalente elektrostatische Wechselwirkungen mit Oberflächen-Aminogruppen. Die Bindung von Penicillin führte zu einer Faltung des Aptamers, wodurch der zuvor in das Material geladene ECL-Reporter Ru(bpy)32+ freigesetzt wurde und nach lateralem Fluss von einer Smartphone-Kamera nach elektrochemischer Anregung mit einer in einen 3D-gedruckten Halter eingesetzten Siebdruckelektrode detektiert wird. Der Ansatz ist einfach, generisch und bietet Vorteile hinsichtlich Empfindlichkeit, Messunsicherheit und Robustheit gegenüber konventioneller Fluoreszenz- oder elektrochemischer Detektion, insbesondere für Point-of-Need-Analysen anspruchsvoller Matrices und Analyten im Ultraspurenbereich. KW - Schnelltests KW - Elektrochemilumineszenz KW - Aptamere KW - Teststreifen KW - Gesteuerte Freisetzung PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540205 DO - https://doi.org/10.1002/ange.202110744 VL - 133 IS - 50 SP - 26491 EP - 26501 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hudson, A.D. A1 - Jamieson, O. A1 - Crapnell, R.D. A1 - Rurack, Knut A1 - Soares, T.C.C. A1 - Mecozzi, F. A1 - Laude, A. A1 - Gruber, J. A1 - Novakovic, K. A1 - Peeters, M. T1 - Dual detection of nafcillin using a molecularly imprinted polymer-based platform coupled to thermal and fluorescence read-out N2 - Reported here is the production of molecularly imprinted polymer (MIP) films, integrating a fluorescent moiety that serves as both an element for template interaction and signalling, for the thermal and optical detection of the beta-lactam antibiotic nafcillin. Fluorescein methacrylate (FluMa) was synthesized and introduced during the molecular imprinting process as the sole monomer and in a 1 : 1 mixture with methacrylic acid (MAA), allowing to draw first conclusions on the MIP formation potential of such a rather large and rigid monomer. At first, MIP microparticles containing FluMa were prepared by free radical polymerisation. Optical batch rebinding experiments revealed that FluMa can act as a functional monomer for selective detection of nafcillin; however, the addition of MAA as co-monomer significantly improved performance. Subsequently, thin MIP films containing FluMa were deposited onto functionalised glass slides and the influence of porogen, drying time, and monomer composition was studied. These MIP-functionalised glass electrodes were mounted into a customised 3D-printed flow cell, where changes in the liquid were either evaluated with a thermal device or using fluorescence bright field microscopy. Thermal analysis demonstrated that multiple MIP layers enhanced sensor specificity, with detection in the environmentally relevant range. The fluorescence bright field microscope investigations validated these results, showing an increase in the fluorescence intensity upon exposure of the MIP-functionalised glass slides to nafcillin solutions. These are promising results for developing a portable sensor device that can be deployed for antibiotics outside of a dedicated laboratory environment, especially if sensor design and fluorophore architecture are optimised. KW - Molecularly Imprinted Polymers KW - Fluorescence KW - Antibiotics KW - Heat-transfer Measurements KW - Thin films PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540044 DO - https://doi.org/10.1039/D1MA00192B VL - 2 IS - 15 SP - 5105 EP - 5115 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-54004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prakash, Swayam T1 - Development of a Rapid and Sensitive Fluorometric Detection Method for Urobilin Analysis for On-site Water Quality Assessment N2 - The W.H.O. estimated that globally at least 2 billion people use drinking water sources contaminated with faeces and according to UNICEF, most of these faecal contaminants detection methods are expensive, time-consuming (18–24 h time to result), and, with few exceptions, not suited for on-site analysis. Hence, there is an urgent need for the development of rapid analytical methods that allow to unequivocally assess drinking water quality directly on-site. Our approach exploits the weak fluorescence of faecal biomarkers such as urobilin (UB), which is enhanced through complexation with Zn2+ in alcoholic media and is the basis of their detection/estimation, known as Schlesinger’s test.3 However, this method is associated with limitations, as the fluorescence of Zn2+ complexes of UB in water is weak, shows time dependent loss of emission intensity and has strong interference from humic substances that naturally present in surface waters. , To circumvent these issues and achieve the rapid and sensitive on-site detection of FPs, silane-functionalized glass fibre paper test strips were developed following the ‘drop-&-detect’ concept. Drop casting of water samples containing faecal contaminants like UB on specifically functionalized test strips allowed the sensitive detection with a smartphone coupled to a 3D printed optical setup. A series of silanes were used to functionalize glass fibre paper and tune its hydrophobicity, exploiting the influence of matrix tailoring to enhance binding of the Zn2+ salt used as co-reagent to bind UB for optimal fluorometric response. A detection spot was designed by the combination of hydrophilic and hydrophobic silanes with ZnCl2-impregnated test strips. This developed analytical method showed sensitive (nano- and sub-nanomolar concentration) response for UB detection. Furthermore, it can be successfully applied to the analysis of real water samples, allowing for the first time to test for faecal contamination in fresh water directly on-site using a smartphone in only a few minutes, instead of >10 h required for the current standard, i.e., lab-based bacterial tests. T2 - 14th International Conference on Instrumental Methods of Analysis: Modern Trends and Applications CY - Kefalonia, Greece DA - 14.09.2025 KW - Faecal contamination KW - Fluorescence KW - Metal complexes KW - Water analysis KW - Optical and chemical sensing KW - Spectroscopy KW - Onsite analysis KW - Rapid testing PY - 2025 AN - OPUS4-64270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Garrido, E. T1 - Dualplex lateral flow assay for simultaneous scopolamine and cannibal drug detection based on receptor-gated mesoporous nanoparticles N2 - Drug facilitated sexual assaults (chemical submission) consists in the criminal administration of psychoactive substances without the permission of the victim. Among these compounds, scopolamine (SCP) (commonly well-known as burundanga} has emerged as the perfect psychotropic substance for aggressors because its ingestion induces automatism in the brain of the victim causing a state of submission. Physiologically, an appealing feature of SCP is their relevant role as a non-competitive muscarinic acetylcholine receptor antagonist with rapid and robust antidepressant effects in humans and other species. Specifically, SCP is able to block or dampen the biological response because of binding to an allosteric recombinant human muscarinic acetylcholine receptor M2/CM2 (Mi-AChR) site that is separate from the active recognition site of acetylcholine, thereby inhibiting the effects of the natural substrate and even of a potent agonist such as bethanechol. Here, a straightforward portable strip in combination with bioinspired hybrid nanomaterials for SCP drug in situ and at site detection was developed. The strips allow direct identification of SCP in diluted saliva down to 40 nM in less than 15 min using a smartphone for readout. For this purpose, we prepared a nanosensor based on mesoporous silica nanoparticles {MSNs) loaded with a fluorescent dye and functionalized with bethanechol. Attachment of the M2-AChR 'cap' to the silica scaffold enabled pore closure through non-covalent recognition. interactions with the anchored bethanechol moieties. In the presence of SCP pores were opened, due to the preferential interaction of the drug with receptor, thus releasing the encapsulated reporter and allowing it to be detected. Additionally, to a single-track strip, the extraordinary modularity of the hybrid biosensor materials in combination with the strip-pattering technologies enabled us to obtain a dual-channel strip for SCP and cannibal drug detection in a simple way, providing comparable analytical performance, while enabling further tailoring to the user's needs. T2 - XVI International Workshop on Sensors and Molecular Recognition CY - Valencia, Spain DA - 06.07.2023 KW - Schnelltest KW - Vor-Ort-Analytik KW - Drogen KW - Indikatorfreisetzung KW - Lateral Flow Assay PY - 2023 AN - OPUS4-57943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Garrido, E. A1 - Climent Terol, Estela A1 - Marcos, M. D. A1 - Sancenón, F. A1 - Rurack, Knut A1 - Martínez-Máñez, R. T1 - Dualplex lateral flow assay for simultaneous scopolamine and "cannibal drug" detection based on receptor-gated mesoporous nanoparticles N2 - We report herein the design of a strip-based rapid test utilizing bioinspired hybrid nanomaterials for the in situ and at site detection of the drug scopolamine (SCP) using a smartphone for readout, allowing SCP identification in diluted saliva down to 40 nM in less than 15 min. For this purpose, we prepared a nanosensor based on mesoporous silica nanoparticles loaded with a fluorescent reporter (rhodamine B) and functionalized with bethanechol, a potent agonist of recombinant human muscarinic acetylcholine receptor M2 (M2-AChR). M2-AChR interaction with the anchored bethanechol derivative leads to capping of the pores. The sensing mechanism relies on binding of SCP to M2-AChR resulting in pore opening and delivery of the entrapped rhodamine B reporter. Moreover, the material was incorporated into strips for lateral-flow assays coupled to smartphone readout, giving fast response time, good selectivity, and exceptional sensitivity. In an attempt to a mobile analytical test system for law enforcement services, we have also developed a dualplex lateral flow assay for SCP and 3,4-methylenedioxypyrovalerone (MDPV) also known as the so-called “cannibal drug”. KW - Rapid tests KW - Vor-Ort-Analytik KW - Lateral Flow Assays KW - Scopolamine KW - Gesteuerte Freisetzung KW - Cannibal Drug PY - 2022 DO - https://doi.org/10.1039/d2nr03325a SP - 1 EP - 9 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-55744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. A1 - Schneider, Rudolf A1 - Rurack, Knut T1 - Mit dem Testsystem zur Probe N2 - (Bio)chemische Sensoren ersetzen bei der Vor-Ort-Analytik die großen Messgeräte oder dienen dazu, Analyten im Verdachtsfall oder kontinuierlich zu überwachen. Das können pharmazeutische Stoffe im Abwasser sein, Aflatoxin in Milch oder Sprengstoff am Flughafen. Ein Überblick über Neuentwicklungen. KW - Biochemische Sensoren KW - Vor-Ort-Analytik KW - Schnelltests KW - Antikörper PY - 2021 DO - https://doi.org/10.1002/nadc.20214112170 VL - 69 IS - 10 SP - 71 EP - 74 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54003 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tobias, Charlie T1 - Design and Application of Polymer-core/ Silica-shell Particles as Promising Tools for Multiplexed Assays N2 - The simultaneous detection of different analytes has gained increasing importance in recent years, especially in the fields of medical diagnostics and environmental analysis. Multiplex assays allow for a range of biomarkers or pollutants to be rapidly and simultaneously measured. Particularly suitable formats for multiplexing are bead-based assays. The beads employed need to fulfil size and density requirements, important for instance for flow cytometry, and shall exhibit a high modularity to be facilely adapted to various kinds of analytes and detection systems. Core/shell particles are ideally suited in this sense because of their modularity in design and adaptability for various (bio)analytical assays. Here, polystyrene particles coated with different kinds of shells are presented, possessing features that are useful for a multitude of assay formats. The particles in focus were coated with mesoporous and non-porous silica shells, with the possibility to introduce magnetic features to facilitate easier handling dependent on the assay format (e.g., in microfluidics). With high throughput analyses in mind, cytometric model assays were developed. Different factors such as pH or mediator salt used during shell preparation were evaluated with shell inspection by electron microscopy (SEM/TEM/EDX) being key to architectural control of the monodisperse particles. The optimized core/shell particles can be functionalized with capture biomolecules for toxins, viruses, or drugs to demonstrate particle performance. Showing how tailoring of the shell’s surface area controls sensitivity and dynamic range of the assay, an antibody-based assay for the detection of mycotoxins and a multiplex assay for the determination of DNA from different human papilloma virus (HPV) lines were developed. T2 - ICASS 2022 CY - Palma, Mallorca, Spain DA - 25.04.2022 KW - Core–shell particles KW - Multiplexing KW - Surface area control KW - Cytometry PY - 2022 AN - OPUS4-54752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pérez-Padilla, Victor T1 - Fluorescence detection of perfluorocarboxylic acids with core-shell particles N2 - Perfluorocarboxylic acids (PFCAs) are a family of compounds that consist of a fully perfluorinated carbon backbone and a carboxylic acid moiety1. PFCAs have been classified as substances of very high concern by REACH regulations due to their persistence in the environment, non biodegradability and toxicological effects2. Thus, there is significant interest in detecting PFCAs in ground, waste, surface and drinking water. Fluorescence detection is a portable, easy-to-operate and cost-effective alternative, enabling the onsite detection of these analytes e.g., with miniaturized fluidic sensors. Here, a guanidine benzoxadiazole (BD) dye covalently attached to a polymerizable methacrylate unit was developed for the integration of the dye into polymers and on surfaces. The response behavior of the dye toward PFCAs was assessed in monophasic (EtOAc) and biphasic (EtOAc-H2O) solvent systems, the biphasic system being advantageous for the extraction of the hydrophobic organic acids from the aqueous phase. The BD dye was integrated into sensory silica core-polymer shell particles for the sensing of PFCAs directly in aqueous media. Submicron SiO2 particles were functionalized with 3 (trimethoxysilyl)propyl methacrylate followed by radical polymerization with the BD dye and ethylene glycol dimethacrylate. TEM images showed a homogeneous polymer shell with a thickness of 75±2 nm. By incorporating the BD dye into core-shell particles, lower limits of detection (1.52 µM for perfluorooctanoic acid, PFOA) were achieved if compared to the use of the neat BD dye in a biphasic assay (17.3 µM for PFOA), and excellent discrimination against inorganic acids thanks to the hydrophobic polymer shell. The particle sensory platform has proven to be an alternative for the sensing of PFCAs directly in water. T2 - 5th International Conference on Applied Surface Science (ICASS) 2022 CY - Palma de Mallorca, Spain DA - 25.04.2022 KW - PFOA KW - Emerging pollutants KW - Polymer nanolayers KW - Fluorescence detection KW - Guanidine benzoxadiazole KW - Core-shell particles PY - 2022 AN - OPUS4-56513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pérez-Padilla, Victor T1 - Direct detection of glyphosate in water with fluorescent molecularly imprinted polymer particles N2 - Analysis of environmental contaminants such as pesticides is increasing in importance due to frequent detection of residues in water reserves and food stuff, as well as lowering of maximum residue levels (MRLs). Molecularly imprinted polymers (MIPs) have been developed for preconcentration of these analytes prior to analysis by chromatographic techniques [1]. MIPs are prepared by polymerization of monomers in a matrix containing the analyte, followed by extraction of the analyte to obtain binding sites that are complementary to the analyte of interest. Recently, our group developed MIPs containing fluorescent reporter molecules that can be used for direct detection and quantification of 2,4-D in contaminated water. Core/shell MIP particles were employed, consisting of sub-micron silica nanoparticles coated with a MIP shell containing a fluorescent reporter whose signal was enhanced upon binding with 2,4-D in water. A limit of detection of 20 nM was attained [2]. We present here a comparable system, composed of fluorescent core-shell MIPs for the direct analysis of pesticides in environmental samples. T2 - UK-Poland-Ukraine Bioinspired Materials Conference CY - Online meeting DA - 29.11.2022 KW - Core-Shell Particles KW - Fluorescent Probes KW - Molecularly Imprinted Polymers KW - Glyphosate KW - Guanidinium Receptors PY - 2022 AN - OPUS4-56514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent, Estela T1 - Strip-Based Rapid Tests Containing Gated Mesoporous Materials: A Perfect Combination for Sensitivity Improvement N2 - Rapid tests and assays to be used outside of a laboratory for non-trained personal and also at a point of need are becoming increasingly important in areas such as health, food, security, or the environment. Specially on that regard, paper-based sensors are emerging as a new class of devices because they fulfil the requisites of the "World Health Organization" to be ASSURED: affordable, sensitive, specific, user-friendly, rapid and robust, equipment free and deliverable to end-users. The physical, chemical and mechanical properties of cellulose or glass fiber paper in combination with the facility of preparation are making these materials of great interest while looking for cost-efficient and green alternatives for device production technologies. To improve the sensitivity of these systems, a particularly promising approach is the employment of gated indicator delivery systems using preorganized nanoscopic solid structures incorporated on paper strips to produce an exponential amplification of the detectable signal. Having in mind these concepts, several examples of (bio)gated materials incorporated into sensing membranes will be presented for the detection of small organic molecules, having fluorescence or electrochemiluminescence signal as output signal. Compared with fluorescence, it has been demonstrated that the non-optical excitation has significantly reduced the background signal, and with the help of a portable potentiostat in combination with a home-made 3D-printed case fitted onto a smartphone, the sensitivity of the sensing system has been improved tremendously, from the lower ppb range (fluorescence) to the lower ppt range. With this study, the applicability of ECL detection on paper strips in combination with gated indicator-releasing materials has been demonstrated for the first time, presenting a novel synergistic match. Considering the modularity of the system developed, the platform technology potential is obvious, promising expansion of the general concept to many other analytes, applications and scenarios. T2 - XVI International Workshop on Sensors and Molecular Recognition CY - Valencia, Spain DA - 06.07.2023 KW - Schnelltest KW - Vor-Ort-Analytik KW - Lateral Flow Assays KW - Indikatorfreisetzung KW - Fluoreszenz PY - 2023 AN - OPUS4-57966 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hernandez-Sigüenza, G. T1 - Dye-Displacement-Based Test Implemented in Lateral Flow Strips to Prevent GHB Spiking in Alcoholic Beverages N2 - γ-Hydroxybutyric acid (GHB) is a natural metabolite, which is currently used as a date rape drug. Particularly, GHB is rapidly eliminated and its detection in realistic environments is only possible within 6-12 h after ingestion. Owing to the increasing use of GHB for criminal purposes, a need has arisen to develop simple and in situ efficient assays for its identification in aqueous and alcoholic drinks. Based on the above, we report herein an indicator displacement assay (IDA) for GHB detection that consists of a Cu2+ complex with a tetradentate ligand and the fluorescent dye coumarin 343 (IDA probe 1). Firstly, the tetradentate ligand was synthesized by reductive amination of a 1,2-cyclohexyl diamine with 2-quinoline carboxaldehyde. Subsequently, this ligand was reacted with Cu(CF3SO3)2 to obtain the corresponding copper complex, which generates the final sensing ensemble by coordinating with coumarin 343 (IDA probe 1). The sensing mechanism relies on a displacement of coumarin 343 from the sensing ensemble 1 thus restoring its fluorescence, as a consequence of the higher binding constant between GHB and complex, showing a high sensitivity in MES buffer (50 mM, pH 6.0) (detection limit of 0.03 μM). Likewise, system design and optimization led to a straightforward integration into a lateral-flow assay without further treatment or conditioning of the test strips while guaranteeing fast overall assay times of 1 min (Figure 1). In this way, IDA probe 1 was incorporated into a coated PEG-glass fibre (PEG-GF) membrane to obtain a highly robust and sensitive lateral flow assay for GHB detection in spiked alcoholic drinks with a detection limit of 0.1 μM in less than 1 min coupled to smartphone readout. T2 - XVI International Workshop on Sensors and Molecular Recognition CY - Valencia, Spain DA - 06.07.2023 KW - Schnelltest KW - Vor-Ort-Analytik KW - Drogen KW - Farbstoffe KW - Lateral Flow Assay PY - 2023 AN - OPUS4-57942 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela T1 - Antibody-gated indicator releasing mesoporous materials: a potential biosensor platform to be used in the development of rapid tests N2 - The urgent necessity to carry out reliable and relevant analytical measurements directly at a point-of-need is one of the current drivers for the development of miniaturised analytical systems, quick tests and wearables. Despite their simplicity, this type of tests must guarantee analytical relevance and reliability like laboratory-based analysis, e.g., in terms of sensitivity, selectivity, immunity against false positives and false negatives as well as robustness and repeatability. Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we performed several optimisations to develop a potential biosensor platform for use in rapid tests. Conceptually, these gated materials are closely related to drug delivery systems, consisting of high porous materials usually closed with macromolecular “caps” and loaded with indicator molecules that are released in presence of a target analyte. However, the key difference between the two types of functional materials is that many drug delivery systems should deliver their cargo over a longer period, often many hours, whereas the gated materials prepared for sensing should show fast release kinetics, on the order of <5 min. With the aim to optimise and adapt gated materials for sensing purposes, we prepared in this work several antibody-gated materials for small-molecule sensing. The materials consisted of porous silica particles containing indicator molecules in the pores and certain hapten molecules grafted to the particle surface close to the pore openings. The pores were then capped with antibodies binding to these haptens, thus inhibiting the escape of the indicators from inside of the pores. In presence of the corresponding analyte, the antibody is displaced from the surface of the material, allowing the escape of the indicators. This allows the detection of the analyte indirectly through an inherent signal amplification. In this work, the insecticide permethrin, a type-I pyrethroid, was selected as target model, because type-I pyrethroids play an important role in airplane disinfection. A first in-depth study of the various chemical tuning options of such antibody gated systems was performed. Different mesoporous silica supports, different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material’s pore openings, the better the closing/opening mechanism can be controlled. Because such materials can be used in various different formats from suspension assays[1] via microfluidic chips[2] to test strip-based lateral flow assays,[3] such materials present a powerful analytical particle platform for the sensitive analytics and diagnostics outside of a laboratory, realising sensitivities down to the µg kg–1 range in less analysis times of less than 5 min as we have recently demonstrated.[4] T2 - Biosensors for Pandemics CY - Online conference DA - 06.05.2020 KW - Hybrid materials KW - Pyrethroids KW - Signal amplification PY - 2020 UR - http://www.confstreaming.com/Biosensors2020/ AN - OPUS4-50744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kimani, Martha Wamaitha T1 - Design, Synthesis and Characterization of Fluorescent MIP Particles for Labelling of Malignant Cells N2 - Cancer is a leading cause of death worldwide, and its early detection and resultant treatment contributes significantly to patient recovery and survival. Detection is currently based on magnetic resonance imaging and computed tomography, methods that are expensive, while processing of the results is time-consuming1. There is a need for low-cost cancer detection techniques that give conclusive results in the shortest time possible. When equipped with a reporter function, molecularly imprinted polymers (MIPs) targeting tumor markers on cancerous cells may provide a cheaper solution for imaging-based cancer detection. Thin MIP layers immobilized on particle platforms are ideal in this regard, because a fluorescence reporter can be integrated into the particle core and/or MIP shell and such core/shell nanoparticles show faster response times and increased selectivity in comparison to bulk MIPs. Changes in sialylation patterns of cell surface glycans indicate malignancy2. Here, we present the design, synthesis and characterization of MIPs that target sialic acid-terminated glycans (SA MIPs), prepared as a thin layer on a polystyrene core/silica shell nanoparticle platform. The MIP particles contain fluorescent emitters and can be applied in fluorescence imaging of malignant tumors. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) are used for structural characterization. Binding capacity of the MIPs to target glycans and competing sugars is also evaluated and compared to that of the corresponding non-imprinted polymer particles (NIP). T2 - Mini MIP Conference CY - Online meeting DA - 16.06.2020 KW - Cancer KW - MIPs KW - Sialic acid PY - 2020 AN - OPUS4-50901 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costa, Elena T1 - Development of a lateral flow test for rapid pyrethroid detection N2 - Type-I pyrethroids are frequently used for disinfection purposes on airplanes from and to tropical areas as a preventive health measure to control or kill the insect vectors of human diseases including dengue, yellow fever and malaria. The aim of the presented work was the development of such a simple, rapid and effective method for pyrethroid analysis T2 - Biosensors2020 CY - Online meeting DA - 06.05.2020 KW - Nomaterials KW - Lateral flow test KW - Pyrethroids KW - Antibodies KW - Gated delivery systems KW - Biosensors PY - 2020 AN - OPUS4-50755 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -