TY - CONF A1 - Neumann, Patrick P. A1 - Weller, Michael G. A1 - Nerger, Tino T1 - D.E.T.E.C.T. - Drohnengestützte Technologie zur Lokalisierung von Explosivstoffen mittels Chemosensoren N2 - Communities worldwide face significant threats from Explosive Remnants of War (ERW), which endanger lives and restrict land usage. From forest fires due to ERWs or in ERW-contaminated areas (e.g., in Jüterbog, Germany) to broader global challenges (e.g., the Ukrainian conflict), the need for efficient detection and removal of these remnants, especially for humanitarian demining, is paramount. Traditional methods, like manual demining, have severe limitations in safety and efficiency. Here, we introduce an innovative solution to these challenges: “Chemosensing Smart Dust.” This technology uses chemoselective dyes that change their fluorescence properties when exposed to explosives like 2,4,6-trinitrotoluene (TNT). Fluorescence-based detection offers superior sensitivity, reduced likelihood of false positives, and enhanced accuracy of explosive detection. Drones, equipped with excitation lasers or LEDs, deploy the Chemosensing Smart Dust over areas of interest and actively detect the fluorescence changes using high-resolution cameras, offering a rapid, safe, and adaptable detection method. Beyond demining, this innovative approach has potential applications in monitoring polluted areas, homeland security, and emergency response. T2 - Begutachtungskolloquium Schwerpunktprogramm “Messtechnik auf fliegenden Plattformen“ (SPP 2433/1) CY - Bonn, Germany DA - 22.01.2024 KW - Mobile Robotic Olfaction KW - Smart Dust KW - Source Localization PY - 2024 AN - OPUS4-59433 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Tino A1 - Neumann, Patrick P. A1 - Weller, Michael G. T1 - Passive Smart Dust For Detection Of Hazardous Substances N2 - High demand for remote sensing of hazardous substances. Possible solution: Use of distributed, low cost, and environmentally safe particles as passive sensors that can be read out remotely Chemical intelligence on the particle surface can be easily modified Particles enable optically quantifiable response and inference of target substances (also no maintenance or power supply required T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Smart Dust KW - Drone KW - Remote Detection KW - Colorchanging Particles PY - 2022 AN - OPUS4-56025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Tino A1 - Neumann, Patrick P. A1 - Weller, Michael G. T1 - A New Approach: Passive Smart Dust for Detection of Hazardous Substances T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics - Extended abstracts N2 - Remote sensing of hazardous substances is a key task that can be achieved with the help of remotely operated platforms equipped with specific sensors. A huge variety of methods and used vehicles have been developed for different purposes in recent years. The term smart dust refers to a science fiction novel and develop shortly after into a research proposal at UC Berkley funded by DARPA. Subsequently, the topic gained attraction but was overall considered as to complex for the technologies available at that time. In the launched passive smart dust project, we shift to a simple “chemical intelligent” passive sensor particle on the ground combined a read-out active sensor attached to an Unmanned Aerial Vehicle (UAV). The reactive particle surface can be preadjusted in the lab for exact desired properties regarding certain reactions to hazardous substances. Moreover, the aimed interaction with the active sensor can be modified. Planed applications allow for different materials e.g., for short time measurement, being ecologically degradable, or weather stable for long time monitoring. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Smart Dust KW - Drone KW - Remote Detection KW - Hazardous substances PY - 2022 SP - 1 EP - 2 CY - Athens, Greece AN - OPUS4-55925 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -