TY - JOUR A1 - Mi, W. A1 - Josephs, R. D. A1 - Melanson, J. E. A1 - Dai, X. A1 - Wang, Y. A1 - Zhai, R. A1 - Chu, Z. A1 - Fang, X. A1 - Thibeault, M.-P. A1 - Stocks, B. B. A1 - Meija, J. A1 - Bedu, M. A1 - Martos, G. A1 - Westwood, S. A1 - Wielgosz, R. I. A1 - Liu, Q. A1 - Teo, T. L. A1 - Liu, H. A1 - Tan, Y. J. A1 - Öztuğ, M. A1 - Saban, E. A1 - Kinumi, T. A1 - Saikusa, K. A1 - Schneider, Rudolf A1 - Weller, Michael G. A1 - Konthur, Zoltán A1 - Jaeger, Carsten A1 - Quaglia, M. A1 - Mussell, C. A1 - Drinkwater, G. A1 - Giangrande, C. A1 - Vaneeckhoutte, H. A1 - Boeuf, A. A1 - Delatour, V. A1 - Lee, J. E. A1 - O'Connor, G. A1 - Ohlendorf, R. A1 - Henrion, A. A1 - Beltrão, P. J. A1 - Naressi Scapin, S. M. A1 - Sade, Y. B. T1 - PAWG Pilot Study on Quantification of SARS-CoV-2 Monoclonal Antibody - Part 1 N2 - Under the auspices of the Protein Analysis Working Group (PAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a pilot study, CCQM-P216, was coordinated by the Chinese National Institute of Metrology (NIM), National Research Council of Canada (NRC) and the Bureau International des Poids et Mesures (BIPM). Eleven Metrology Institutes or Designated Institutes and the BIPM participated in the first phase of the pilot study (Part 1). The purpose of this pilot study was to develop measurement capabilities for larger proteins using a recombinant humanized IgG monoclonal antibody against Spike glycoprotein of SARS-CoV-2 (Anti-S IgG mAb) in solution. The first phase of the study was designed to employ established methods that had been previously studies by the CCQM Protein Analysis Working Group, involving the digestion of protein down to the peptide or amino acid level. The global coronavirus pandemic has also led to increased focus on antibody quantitation methods. IgG are among the immunoglobulins produced by the immune system to provide protection against SARS-CoV-2. Anti-SARS-CoV-2 IgG can therefore be detected in samples from affected patients. Antibody tests can show whether a person has been exposed to the SARS-CoV-2, and whether or not they potentially show lasting immunity to the disease. With the constant spread of the virus and the high pressure of re-opening economies, antibody testing plays a critical role in the fight against COVID-19 by helping healthcare professionals to identify individuals who have developed an immune response, either via vaccination or exposure to the virus. Many countries have launched large-scale antibody testing for COVID-19. The development of measurement standards for the antibody detection of SARS-CoV-2 is critically important to deal with the challenges of the COVID-19 pandemic. In this study, the SARS-CoV-2 monoclonal antibody is being used as a model system to build capacity in methods that can be used in antibody quantification. Amino acid reference values with corresponding expanded uncertainty of 36.10 ± 1.55 mg/kg, 38.75 ± 1.45 mg/kg, 18.46 ± 0.78 mg/kg, 16.20 ± 0.67 mg/kg and 30.61 ± 1.30 mg/kg have been established for leucine, valine, phenylalanine, isoleucine and proline, respectively. Agreement between nearly all laboratories was achieved for the amino acid analysis within 2 to 2.5 %, with one participant achieving markedly higher results due to a technical issue found in their procedure; this result was thus excluded from the reference value calculations. The relatively good agreement within a laboratory between different amino acids was not dissimilar to previous results for peptides or small proteins, indicating that factors such as hydrolysis conditions and calibration procedures could be the largest sources of variability. Peptide reference values with corresponding expanded uncertainty of 4.99 ± 0.28 mg/kg and 6.83 ± 0.65 mg/kg have been established for ALPAPIEK and GPSVFPLAPSSK, respectively. Not surprisingly due to prior knowledge from previous studies on peptide quantitation, agreement between laboratories for the peptide-based analysis was slightly poorer at 3 to 5 %, with one laboratory's result excluded for the peptide GPSVFPLAPSSK. Again, this level of agreement was not significantly poorer than that achieved in previous studies with smaller or less complex proteins. To reach the main text of this paper, click on Final Report. KW - Antibody quantification KW - Amino acid analysis KW - Peptide analysis KW - Round robin test PY - 2021 U6 - https://doi.org/10.1088/0026-1394/59/1a/08001 VL - 59 IS - 1A SP - 08001 AN - OPUS4-54972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial,we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Biosensors KW - Biophotonics KW - Chemosensor KW - Biosensor KW - Microresonator KW - Nanophotonics KW - Optical sensors KW - Photonic sensors KW - Optoelectronic KW - Ring resonator KW - Silicon photonics KW - Miniaturization KW - Lab-on-a-chip KW - Lab-on-chip KW - Waveguide KW - Surface chemistry KW - Silanization KW - Glutaraldehyde KW - Affinity immobilization KW - Antibody KW - Oriented immobilization KW - Real-time measurement PY - 2022 U6 - https://doi.org/10.1109/JSEN.2021.3119547 SN - 1530-437X VL - 22 IS - 11 SP - 10089 EP - 10105 PB - IEEE AN - OPUS4-55147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Brangsch, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Reimann, C. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Iron Oxide Nanoparticles for Visualization of Prostate Cancer in MRI N2 - Prostate cancer (PCa) is one of the most common cancers in men. For detection and diagnosis of PCa, non-invasive methods, including magnetic resonance imaging (MRI), can reduce the risk potential of surgical intervention. To explore the molecular characteristics of the tumor, we investigated the applicability of ferumoxytol in PCa in a xenograft mouse model in two different tumor volumes, 500 mm3 and 1000 mm3. Macrophages play a key role in tumor progression, and they are able to internalize iron-oxide particles, such as ferumoxytol. When evaluating T2*-weighted sequences on MRI, a significant decrease of signal intensity between pre- and post-contrast images for each tumor volume (n = 14; p < 0.001) was measured. We, furthermore, observed a higher signal loss for a tumor volume of 500 mm3 than for 1000 mm3. These findings were confirmed by histological examinations and laser ablation inductively coupled plasma-mass spectrometry. The 500 mm3 tumors had 1.5% iron content (n = 14; sigma = 1.1), while the 1000 mm3 tumors contained only 0.4% iron (n = 14; sigma = 0.2). In vivo MRI data demonstrated a correlation with the ex vivo data (R2 = 0.75). The results of elemental analysis by inductively coupled plasma-mass spectrometry correlated strongly with the MRI data (R2 = 0.83) (n = 4). Due to its long retention time in the blood, biodegradability, and low toxicity to patients, ferumoxytol has great potential as a contrast agent for visualization PCa. KW - Imaging KW - Nanoparticle KW - Cancer KW - Iron oxide KW - ICP-MS KW - Magnetic resonance imaging PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550075 VL - 14 IS - 12 SP - 1 EP - 13 PB - MDPI CY - Basel, Switzerland AN - OPUS4-55007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-550720 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Kader, A. A1 - Saatz, Jessica A1 - Mangarova, D. B. A1 - Zacharias, M. A1 - Kempf, W. E. A1 - Schwaar, T. A1 - Wilke, Marco A1 - Adams, L. C. A1 - Möckel, J. A1 - Botnar, R. M. A1 - Taupitz, M. A1 - Mägdefessel, L. A1 - Traub, Heike A1 - Hamm, B. A1 - Weller, Michael G. A1 - Makowski, M. R. T1 - ADAMTS4-specific MR-probe to assess aortic aneurysms in vivo using synthetic peptide libraries N2 - The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it’s potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture. KW - Peptide KW - Peptide library KW - OBOC library KW - Combinatorial chemistry KW - Peptide aptamers KW - Binding molecule KW - Affinity KW - Synthetic peptides KW - Contrast agent KW - Magnetic resonance imaging KW - One-bead-one-compound library KW - On-chip screening KW - Lab-on-a-chip KW - MALDI-TOF MS KW - SPR KW - Surface plasmon resonance KW - Alanine scan KW - Fluorescence label KW - MST KW - Docking KW - Chelate PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-560930 VL - 13 IS - 1 SP - 1 EP - 18 PB - Springer Nature Limited CY - Heidelberg AN - OPUS4-56093 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lisec, Jan T1 - ABID N2 - In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Software KW - Antibody KW - MALDI PY - 2022 UR - https://github.com/BAMresearch/ABID PB - GitHub CY - San Francisco, CA, USA AN - OPUS4-56192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fischer, Janina T1 - Suspensionsarray-Fluoreszenzimmunoassay zur Multiplexbestimmung von SARS-CoV-2-Antikörpern N2 - Übergeordnetes Ziel der Arbeit war die Entwicklung und Optimierung eines Suspensionsarray-Fluoreszenzimmunoassays (SAFIA) für die simultane Bestimmung verschiedener gegen SARS-CoV-2-Proteine gerichtete Antikörper mittels Multiplexdetektion in komplexen Matrices wie humanen Blutserumproben. KW - SARS-CoV-2 KW - Corona KW - COVID-19 KW - Coronavirus KW - Virus KW - Spike-Protein KW - Nucleocapsid-Protein KW - RBD KW - SAFIA KW - LFIA KW - ELISA KW - Partikel KW - Mutationen KW - Neutralisierende Antikörper KW - Durchflusszytometrie KW - ACE2 PY - 2022 SP - 1 EP - 99 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54722 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H. W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-Based Identification of Monoclonal Murine Anti-SARS-CoV-2 Antibodies within One Hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - Reproducibility KW - Quality control KW - Traceability KW - Peptides KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Recombinant antibody KW - Identity KW - Antibody identification KW - Sequencing KW - Light chain KW - Mass spectrometry KW - Software KW - Open science KW - Library KW - COVID-19 KW - Corona virus KW - Sequence coverage KW - NIST-mAb 8671 KW - Reference material KW - RBD KW - Spike protein KW - Nucleocapsid KW - Cleavage KW - Tryptic digest KW - MALDI KW - DHAP KW - 2,5-dihydroxyacetophenone KW - Github KW - Zenodo KW - ABID PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-547347 VL - 11 IS - 2 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-54734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kaufmann, Jan Ole A1 - Brangsch, J. A1 - Mangarova, D. B. A1 - Kader, A. A1 - Zacharias, M. A1 - Makowski, M. R. A1 - Weller, Michael G. T1 - Finding the Ticking Timebomb - MRI probe for the detection of aneurysms N2 - Screening against ADAMTS4 reveals a specific peptide, which was turned into an MRI probe. The aneurysm in a mouse modal was visualized via MRI. A differentiation between stable and unstable aneurysm in an early state was performed. Using the probe as tool for an easy and non-invasive rupture assessment is possible. T2 - Adlershofer Forschungsforum 2022 CY - Berlin, Germany DA - 11.11.2022 KW - Magnetic resonance imaging KW - Peptide library KW - OBOC library KW - Synthetic peptides KW - Contrast agent KW - Imaging KW - ADAMTS4 KW - MALDI-TOF mass spectrometry KW - Cardiovascular diseases KW - Medicine KW - Diagnostic KW - Screening KW - Risk assessment KW - Aorta PY - 2022 AN - OPUS4-56313 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Winkler, Nicolas P. A1 - Nerger, Tino A1 - Weller, Michael G. A1 - Otremba, Frank A1 - Werner, Jan A1 - Schugardt, Jan T1 - Capabilities of using mobile platforms for monitoring hazard scenarios by the example of the RASEM project N2 - This presentation shows the capabilities of mobile platforms for monitoring hazard scenarios. As an example the RASEM project is presented. Furthermore two ideas for future work are shown, namely, Aerial-based Gas Tomography and Passive Smart Dust. T2 - Climate Change @ Fire Science Workshop CY - Berlin, Germany DA - 10.11.2022 KW - RASEM KW - Dust sensor KW - Low-cost KW - Sensor network KW - Passive Smart Dust KW - Gas Tomography PY - 2022 AN - OPUS4-56296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tchipilov, Teodor A1 - Raysyan, Anna A1 - Weller, Michael G. T1 - Methods for the quantification of particle-bound protein – Application to reagents for lateral-flow immunoassays (LFIA) N2 - Protein immobilization for the functionalization of particles is used in various applications, including biosensors, lateral-flow immunoassays (LFIA), bead-based assays, and others. Common methods for the quantification of bound protein are measuring protein in the supernatant before and after coating and calculating the difference. This popular approach has the potential for a significant overestimation of the amount of immobilized protein since layers not directly bound to the surface (soft protein corona) are usually lost during washing and handling. Only the layer directly bound to the surface (hard corona) can be used in subsequent assays. A simplified amino acid analysis method based on acidic hydrolysis and RP-HPLC-FLD of tyrosine and phenylalanine (aromatic amino acid analysis, AAAA) is proposed to directly quantify protein bound to the surface of gold nano- and latex microparticles. The results are compared with indirect methods such as colorimetric protein assays, such as Bradford, bicinchoninic acid (BCA), as well as AAAA of the supernatant. For both particle types, these indirect quantification techniques show a protein overestimation of up to 1700% compared to the direct AAAA measurements. In addition, protein coating on latex particles was performed both passively through adsorption and covalently through EDC/sulfo-NHS chemistry. Our results showed no difference between the immobilization methodologies. This finding suggests that usual protein determination methods are no unambiguous proof of a covalent conjugation on particles or beads. KW - Soft protein corona KW - Hard protein corona KW - Gold particles KW - Nanoparticles KW - Mikroparticles KW - Antibody KW - Bioconjugation KW - Protein quantification KW - Supernatant KW - Sodium chloride method KW - Covalent conjugation KW - Latex particles KW - Lateral flow immunoassays PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545365 SP - 1 EP - 8 PB - MDPI CY - Basel AN - OPUS4-54536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg A1 - Kaiser, Melanie N. A1 - Lisec, Jan A1 - Beslic, D. A1 - Muth, Thilo A1 - Krüger, M. A1 - Mages, H.-W. A1 - Dorner, B. G. A1 - Knospe, J. A1 - Schenk, J. A. A1 - Sellrie, F. A1 - Weller, Michael G. T1 - MALDI-TOF-MS-based identification of monoclonal murine anti-SARS-CoV-2 antibodies within one hour N2 - During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used thirty-five monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied onto the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 45 minutes and had a combined sequence coverage of over 80%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 °C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0 (https://gets.shinyapps.io/ABID/). This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context. KW - SARS-CoV-2 antibody KW - Reproducibility crisis KW - Peptide mass fingerprinting KW - Monoclonal antibody KW - Traceability KW - Antibody identification KW - Identity KW - Antibody light chain KW - MALDI-TOF-MS KW - Trypsin KW - Acidic cleavage KW - Antibody subclass KW - Database KW - Peak overlap KW - ABID KW - Sulfuric acid KW - Online software KW - Sequencing KW - Peptide coverage PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545182 SN - 2310-287X SP - 1 EP - 24 PB - MDPI CY - Basel AN - OPUS4-54518 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Gabler, Mariella T1 - Development of an affinity-based method for the site-selective synthesis of antibody-drug-conjugates N2 - For the site-selective synthesis of ADCs, a variety of obstacles must be overcome. Those include designing bifunctional affinity peptides with reasonably low 𝐾𝑑-values that couple to the mAb in a site-selective manner. These peptides should also include a functional group that links the payload to the mAb under mild conditions without adversely affecting it. The bioconjugation between peptide and antibody and the linker between peptide and payload must be stable and durable to provide safety when used for medical purposes. The usage of metals and organic solvents should be minimized. Within the project, new types of functionalized affinity peptides were designed, and their affinity towards the Fc-fragment was determined. KW - Antibody drug conjugate KW - ADC KW - Human antibody KW - Peptide KW - Linker KW - Toxin KW - Payload KW - Monomethyl Auristatin E KW - MMAE KW - DM1 KW - Click chemistry KW - Copper-catalyzed KW - SDS-PAGE KW - HPLC KW - Trastuzumab KW - Herceptin KW - SPR KW - MALDI-TOF-MS KW - Mertansine KW - Site-selective bioconjugation KW - Affinity PY - 2021 SP - 1 EP - 100 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Herrmann, Stefan T1 - Charakterisierung zweier monoklonaler Antikörper zur Detektion von Sprengstoffen N2 - In 2019 over 30 000 people were killed or injured by explosions caused by explosives like TNT, PETN, HMX and RDX. Therefore, highly sensitive assays for the detection of TNT are needed. In this study we compared two commercially available TNT antibodies: A1.1.1 and EW75C with a highly optimized indirect competitive ELISA based on a BSA-TNA conjugate. As a result, a precision profile for both antibodies was determined with a LOD of 170 pmol L-1 for the clone A1.1.1 and a LOD of 3,2 nmol L-1 for the clone EW75C. The measurements showed that the clone A1.1.1 is a highly sensitive antibody for the detection of TNT while the clone EW75C does show medium performance at most. In the cross-reactivity characterization of both antibodies many substances, closely related to the structure of TNT were tested. Both antibodies showed strong cross reactivity with trinitroaniline and trinitrobenzene. For the clone A1.1.1, which is known to originate from immunization of mice with an TNP-glycine-KLH conjugate, this has to be expected. Interestingly the clone EW75C, which was not characterized yet, showed similar behavior. This suggests a TNA-conjugate as immunogen for the EW75C antibody as well. None of both antibodies showed cross-reactions to the high explosives PETN, HMX and RDX. Also, the cross-reactions of nitro musks with the antibodies were investigated. Despite their prohibition, nitro musks are still used in Asia especially and are particularly popular in India. The overall superior clone A1.1.1 showed a significant cross-reactivity to musk ambrette. For practical reasons the influence of musk ambrette on this assay when used in natural environment should be investigated. In further experiments, the highly sensitive TNT antibody A1.1.1 was digested with papain to obtain monovalent Fab-fragments. Due to its high stability against the digestion, a custom protocol for the IgG1 subclass of mice, to which the clone A1.1.1 belongs, was developed, resulting in a quantitative digestion of the intact antibody to Fab fragments. The success of the digestion was determined with MALDI-TOF-MS and SDS-PAGE. It was shown that this protocol worked for many different antibodies of IgG1 subclass as well. KW - TNT KW - Trinitrotoluol KW - Nitroaromaten KW - Nitromoschus KW - Duftstoffe KW - ELISA KW - Immunoassay KW - Antibody KW - Explosives KW - Klon A1.1.1 KW - Klon EW75C KW - Fab Fragment KW - Kreuzreaktion KW - Crossreactivity KW - Precision Profile KW - Präzisionsprofil KW - Affinity KW - Affinitätskonstante KW - IC50 PY - 2020 SP - 1 EP - 113 PB - Hochschule für Technik und Wirtschaft Berlin - htw CY - Berlin AN - OPUS4-54556 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Hartfiel, Reni T1 - Zweistufiges Screening von One-Bead-One-Peptide-Bibliotheken linearer & cyclischer Peptide gegen Pflanzenviren N2 - In der Masterarbeit wurde ein Screening gegen den CCMV mit einer linearen Peptidbibliothek entwickelt, wobei zwei lineare Binder identifiziert wurden. Das resynthetisierte Peptid wurde auf seine Bindungseigenschaften mittels ELISA und MST untersucht. Aufgrund eines Aminosäurefehlers in der selbst durchgeführten Resynthese des Peptids sind die Ergebnisse nicht vollständig übertragbar. Um eine umsetzbare Cyclusgröße für die Peptidbibliothek zu finden, wurden Ringgrößen mit sechs bis acht Aminosäuren untersucht. Da keiner der gewählten Ringgrößen bevorzugt war, wurde die Ringgröße aus acht Aminosäuren für die Peptidbibliothek gewählt. Der Ringschluss wurde durch die Bildung einer Disulfidbrücke erreicht. Dadurch war die Alkylierung der vorhandenen Thiolgruppe in den Abbruchsequenzen notwendig. Neben den etablierten Alkylierungsreagenzien Iodessigsäure, Iodacetamid und Acrylamid wurden zwei Epoxide mituntersucht. Hierbei konnte nur bei Acrylamid und Propylenoxid eine vollständige Alkylierung beobachtet werden. Eine synthetische Peptidbibliothek aus zehn Aminosäuren pro Kopplungsschritt und einer Peptidlänge von acht Aminosäuren wurde erfolgreich nach der Split-and-Mix-Synthese hergestellt. Neben den kanonischen Aminosäuren wurde die synthetische Aminosäure 3-(3-Pyridyl)-alanin in die Peptidbibliothek mit eingebaut. Peptidsequenzen aus der cyclische Peptidbibliothek konnte mittels MALDI-TOF-MS identifiziert werden. Es konnte außerdem gezeigt werden, dass synthetische Aminosäuren mit proteinogenen Aminosäuren erfolgreich übersetzt werden. Anschließend wurde das entwickelte Screening auf eine cyclische Peptidbibliothek übertragen. Dabei konnte kein Binder identifiziert werden, da zu viele Nebenreaktionen auftraten. Ein alternativer Ringschluss über die Seitenketten von Lysin und Cystein wurden mit ortho-Phthaldialdehyd und 2,4,6-Trichloro-1,3,5-triazin (Cyanurchlorid) untersucht. Beide Bedingungen wiesen keinen erfolgreichen Ringschluss auf. Obwohl der Ringschluss über die Seitenketten von Lysin und Cystein nicht erfolgreich war, sollte ein Austausch von Cystein angestrebt werden, so dass kein freies Cystein in den Abbruchsequenzen vorhanden ist und die Alkylierung überflüssig wäre. Der Ringschluss durch Verwendung anderer Seitenketten bietet einen vielseitigen Ansatz. KW - CCMV KW - Pflanzenvirus KW - Peptidbibliothek KW - Peptid-Aptamer KW - Alkylierung KW - Cyclisierung KW - MALDI-TOF-MS KW - Fluoreszenz KW - Chip KW - Sequenzierung KW - Peptid-Synthese PY - 2022 SP - 1 EP - 81 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reinmuth-Selzle, K. A1 - Tchipilov, Teodor A1 - Backes, A. T. A1 - Tscheuschner, Georg A1 - Tang, K. A1 - Ziegler, K. A1 - Lucas, K. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. A1 - Weller, Michael G. T1 - Determination of the protein content of complex samples by aromatic amino acid analysis, liquid chromatography-UV absorbance, and colorimetry N2 - Fast and accurate determination of the protein content of a sample is an important and non-trivial task of many biochemical, biomedical, food chemical, pharmaceutical, and environmental research activities. Different methods of total protein determination are used for a wide range of proteins with highly variable properties in complex matrices. These methods usually work reasonably well for proteins under controlled conditions, but the results for non-standard and complex samples are often questionable. Here, we compare new and well-established methods, including traditional amino acid analysis (AAA), aromatic amino acid analysis (AAAA) based on the amino acids phenylalanine and tyrosine, reversed-phase liquid chromatography of intact proteins with UV absorbance measurements at 220 and 280 nm (LC-220, LC-280), and colorimetric assays like Coomassie Blue G-250 dye-binding assay (Bradford) and bicinchoninic acid (BCA) assay. We investigated different samples, including proteins with challenging properties, chemical modifications, mixtures, and complex matrices like air particulate matter and pollen extracts. All methods yielded accurate and precise results for the protein and matrix used for calibration. AAA, AAAA with fluorescence detection, and the LC-220 method yielded robust results even under more challenging conditions (variable analytes and matrices). These methods turned out to be well-suited for reliable determination of the protein content in a wide range of samples, such as air particulate matter and pollen. KW - Air particulate matter KW - Aromatic amino acid analysis KW - Atmospheric aerosol KW - Chemical protein modification KW - Derivatization KW - Nitration KW - Nitrotyrosine KW - LC-UV absorbance KW - Pollen extract KW - Protein quantification KW - Protein test KW - Kjeldahl KW - Tyrosine KW - Phenylalanine KW - Hydrolysis KW - Bradford KW - BCA test KW - 280 nm KW - Air filter samples KW - Fluorescence KW - HPLC KW - Chromatography KW - Protein content KW - 150th anniversary of BAM KW - Topical collection: Analytical Methods and Applications in the Materials and Life Sciences PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545924 UR - https://pubmed.ncbi.nlm.nih.gov/35320366/ SP - 1 EP - 14 PB - Springer Nature Limited CY - New York, Heidelberg AN - OPUS4-54592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Döring, Sarah T1 - Vergleichende Darstellung SARS-CoV-2-spezifischer Nanobodys aus unterschiedlichen Wirtsorganismen N2 - Aufgrund der anhaltenden COVID-19-Pandemie werden neutralisierende Therapeutika benötigt. Eine Möglichkeit zur Behandlung stellt die Verwendung monoklonaler Anti-SARS-CoV-2-Immun-globuline dar. Ihre Produktion in Säugetierzellen ist jedoch schwer skalierbar, um den weltweiten Bedarf zu decken. VHH-Antikörper, auch Nanobodys genannt, bieten hierfür eine Alternative, da sie eine hohe Temperaturstabilität aufweisen und eine kostengünstige Produktion in prokaryotischen Wirtsorganismen ermöglichen. KW - E. coli KW - Corona KW - Virus KW - Spike-Protein KW - Nanobody KW - Antikörper KW - Expression KW - Fingerprint KW - Vhh KW - RBD KW - COVID-19 KW - SARS-CoV-2 KW - ELISA KW - MST KW - Halomonas elongata KW - Periplasma KW - SDS-PAGE KW - ACE2-Rezeptor PY - 2021 SP - 1 EP - 111 PB - Technische Universität Berlin CY - Berlin AN - OPUS4-54624 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule Lexa T1 - Herstellung und Charakterisierung Antigen-beschichteter Nanopartikel als Analoga von Virus-like Particles (VLP) N2 - In dieser Arbeit wurden drei verschiedene Nanomaterialien auf ihre Bindungsfähigkeit zu Proteinen untersucht. Zu Beginn standen dabei die Herstellung stabiler Dispersionen der einzelnen Nanopartikel und die Stabilität der gebildeten Konjugate im Vordergrund. Der Nachweis einer erfolgreichen Konjugatbildung, sprich der Beschichtung von Nanopartikel mit Proteinen, wurde sowohl qualitativ mittels DLS-Messungen als auch über quantitative Protein-Bestimmungen erbracht. Für die Quantifizierung konnten verschiedene Methoden eingesetzt werden. Neben der klassischen Vorgehensweise, welche indirekt über die Quantifizierung von ungebundenem Protein im Überstand erfolgt, konnten ihm Rahmen dieser Arbeit verschiedene direkte Bestimmungsmethoden entwickelt werden. So wurden mittels kolorimetrischer Tests, wie dem BCA-Assay und dem Bradford-Assay, Nanodiamantdispersionen mit Hilfe einer Korrekturwellenlänge vermessen und quantifiziert. Ebenso zum Einsatz kam die Methode der Aminosäureanalytik, welche aufgrund ihrer guten Rückführbarkeit auf Aminosäurestandards Ergebnisse mit hoher Richtigkeit generieren kann und ebenso die Detektion kleiner Proteinmengen möglich macht. Nach den erfolgten quantitativen Betrachtungen wurden die Protein-beschichteten Nanopartikel auf ihre Anwendbarkeit als Analoga von Virus-like Particles (VLP) bei einer Immunisierung zur Gewinnung von polyklonalen Antikörpern gegen humanes Ceruloplasmin in Kaninchen überprüft. Es konnte mittels ELISA gezeigt werden, dass die Konjugate erfolgreich für die Herstellung von Antikörpern eingesetzt werden können und im zeitlichen Verlauf einer Immunisierung eine Steigerung des Antikörper-Titers zu erreichen ist. KW - DLS KW - Dynamische Lichtstreuung KW - Aluminiumoxid KW - Nanodiamant KW - Gold-Nanopartikel KW - BSA KW - Albumin KW - Protein G KW - Ceruloplasmin KW - Immunpräzipitation KW - Ultraschall KW - BCA KW - Bradford-Assay KW - AAAA KW - Aromatische Aminosäureanalytik KW - ICP-MS KW - NaCl-Methode PY - 2018 SP - 1 EP - 107 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54625 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Le Xuan, Hoa T1 - Gezieltes Crosslinking von Immunglobulinen mit ortspezifischen Bindern N2 - Die neue Crosslinking-Methode ist hilfreich, um Immunglobuline des Isotyps G ortspezifisch an ihrer Bindungsstelle mit Protein A oder G zu konjugieren. Die Kopplungen von Protein A und G konnten erfolgreich an Maus- und Human-IgG durchgeführt, sowie die Bedingungen untersucht und optimiert werden. Die Aktivierung von Protein G mit Glutaraldehyd erfolgt am besten bei pH 8 und die anschließende Kopplung mit Maus-IgG1 bei einem pH-Wert von 6. Jedoch wurden mit SIAB und Sulfo-SIAB als Crosslinker im Vergleich zu Glutaraldehyd noch höhere Signale erhalten. Für die Kopplung von SIAB sind 40% DMSO im Reaktionspuffer günstig, währenddessen Sulfo-SIAB gut wasserlöslich ist daher keine Lösungsvermittler benötigt. Es ergab sich ein optimaler pH-Wert von 7,4 um Protein A mit SIAB zu aktivieren und den gleichen pH-Wert um die Kopplung mit Maus-IgG1 durchzuführen. Für die Kopplung von Protein G mit Maus-IgG1 hingegen zeigten die Experimente, dass ein leicht saurer pH-Wert bei pH 6 für den IgG-Kopplungsschritt am günstigsten ist. Während die Inkubationszeit von Maus-IgG1 mit Protein G bei 16 h liegt, muss mit Protein A bis zu 40 h inkubiert werden, um das Kopplungsmaximum zu erreichen. Des Weiteren wurde das Crosslinking von Human-IgG (Herceptin) mit SIAB untersucht. Dabei zeigte sich, wie in der Abbildung 47 zu sehen ist, dass Protein A und G vergleichbar gut an Human-IgG zu koppeln sind. Für das Crosslinking von Protein G mit Maus-IgG1 ist dagegen ein deutlich besserer Umsatz im Vergleich zu Protein A zu erkennen (Abbildung 48). Heterobifunktionale Linker können mit der reaktiveren Gruppe die erste Bindung eingehen, um erst nach Zugabe eines weiteren Reagenzes die zweite Bindung auszubilden und zudem intramolekulare Reaktionen möglichst zu vermeiden. KW - Antikörper KW - Antibodies KW - Vernetzung KW - Immobilisierung KW - Immobilization KW - Herceptin KW - Human antibodies KW - Therapeutic antibodies KW - Diagnostic antibodies KW - Oriented immobilization PY - 2019 SP - 1 EP - 100 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54658 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bahri, Marwa T1 - Ortsspezifische Biokonjugation von humanen Antikörpern mit IgG-bindenden Peptiden N2 - Es wurde im Rahmen dieser Arbeit eine neue Methode der Biokonjugation entwickelt, die es ermöglicht humane Antikörper ortspezifisch mit IgG-bindenden Peptiden zu konjugieren. Als Basis fungierte ein Peptid, welches für den Einsatz gezielt modifiziert wurde. So sollte am C-Terminus ein Biotin eingefügt werden, dass für die spätere Detektion der Biokonjugation genutzt werden kann, während am N-Terminus ein Cross-Linker für die kovalente Bindung zum Antikörper eingefügt wurde. Das Biotin wurde mittels Biotin-Lysin eingebaut. Dies hat den Vorteil, dass die modifizierte Aminosäure direkt in der SPPS genutzt werden kann. Auch der Cross-Linker soll schon während der SPPS in das Peptid integriert werden. Als Cross Linker wurden die zwei heterobifunktionellen Succinimidyl(3-bromoacetamid)propionate und Succinimidyl(4-iodacetyl)aminobenzoat untersucht. Die Aktivierung des Peptides mit dem SBAP-Cross-Linker erfolgte am besten im pH-Bereich zwischen 7,0 und 9,0. Die Modifizierung des Peptides mit dem Iodid-Cross-Linker SIAB unter den gleichen Bedingungen zeigte allerdings keine zufriedenstellenden Ergebnisse. Da das erste Peptid allerdings in den Folgeexperimenten sehr gute Ergebnisse zeigte, musste kein weiterer Linker getestet werden. Zusätzlich zu der Cross-Linker-Wahl sollte der Abstand zwischen dem Cross-Linker und dem Grundgerüst des Peptides auf den Einfluss der Bindung untersucht werden. Dazu wurden drei Kontrollpeptide synthetisiert, die entweder um zwei Aminosäuren zwischen dem ursprünglichen N-Terminus des Peptides und dem SBAP-Linker verlängert wurden, keinen SBAP-Linker beinhalten oder die Verlängerung ohne SBAP-Linker besaßen. Die erfolgreiche Synthese aller vier Peptide wurde mittels MALDI-TOF-MS bestätigt. KW - Peptide KW - Bioconjugation KW - Crosslinker PY - 2020 SP - 1 EP - 82 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54659 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Linke, Michael T1 - Entwicklung einer magnetischen Anreicherungsmethode für Peptidbibliotheken zur Identifizierung von Proteinbindern N2 - Das Ziel der Arbeit war die Entwicklung einer magnetischen Anreicherungsmethode für eine Bead-basierte Substanzbibliothek zur Identifizierung von Proteinbindern. Im Ramen des Forschungsbelegs wurde bereits eine Anreicherungsmethode für ein Modellsystem einer Peptidbibliothek entwickelt. Das Modellsystem bestand dabei aus zwei verschiedenen Peptiden. Als Positivkontrolle wurde das FLAG-Peptid gewählt, welches selektiv gegen den Anti-FLAG-Antikörper bindet, und ein weiteres Peptid wurde als Negativkontrolle gewählt. Anhand dieses Modellsystems konnte die zuvor entwickelte Anreicherungsmethode von 20.000 auf 1.000.000 Beads vergrößert werden. Hierbei wurde ein Anreicherungsfaktor von 818 und eine gute Wiederfindungsrate von 82% erreicht. KW - Peptide library KW - OBOC library KW - Enrichment KW - Magnetic beads KW - Protein interaction PY - 2018 SP - 1 EP - 86 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54651 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg T1 - Entwicklung einer Methode zur schnellen Identifikation von Antikörpern mittels MALDI-TOF-MS N2 - Im Vergleich zu anderen Proteinen ist die Identifizierung von Antikörpern anhand ihrer Sequenz zum Beispiel mittels "peptide mass fingerprinting" schwierig. Da die Sequenzinformation eines Antikörpers aufgrund der hypersomatischen Mutation während der Affinitätsreifung nicht im Genom eines Organismus gespeichert ist, kann die Aminosäuresequenz nicht auf einfachem Weg der DNA-Sequenzierung gewonnen werden. Das ist nur in seltenen Fällen möglich, wenn dem Endanwender der Zellklon der Antikörper-produzierenden Zelle zugänglich ist. Eine Sequenzierung auf Protein-Ebene ist sehr aufwändig und teuer und wird daher fast nie für die Charakterisierung von analytischen Antikörpern verwendet. Der Mangel an Validierung dieser analytischen Antikörper, die bei Experimenten verwendeten werden, löst aber eine Reihe Probleme aus, die die Wiederholbarkeit dieser Experimente schwierig und in einigen Fällen unmöglich macht. Das sorgt jährlich für verschwendete Forschungsgelder in Milliardenhöhe und hindert den wissenschaftlichen Fortschritt. Ziel der vorliegenden Arbeit war die Entwicklung einer einfachen und schnellen Methode, die es trotzdem ermöglicht, die Identifikation von Antikörpern sicherzustellen. Dazu wurde eine Methode basierend auf dem "peptide mass fingerprinting" gewählt. Das Problem der unbekannten Aminosäuresequenz der Antikörper wurde gelöst, indem lediglich die Peptidmuster der entstehenden Fingerprint-Spektren zur Identifikation herangezogen wurden. MALDI wurde dabei als Ionisationsmethode für die Massenspektrometrie gewählt, da die resultierenden Spektren im Gegensatz zu ESI-MS einfach auszuwerten sind. Auch kann auf eine vorige Trennung der Peptide mittels LC verzichtet werden, was zusätzlich Analysenzeit spart. Für die Proteinspaltung wurde eine simple saure Hydrolyse mittels Ameisensäure gewählt. Im Vergleich zum herkömmlichen Trypsin-Verdau konnten auf zeitraubende Arbeitsschritte wie Denaturierung, Reduktion und Alkylierung der Antikörper verzichtet werden. Die Hydrolyse mittels Ameisensäure wurde bisher nur auf kleine und mittelgroße Proteine angewendet, sodass im ersten Teil dieser Arbeit mehrere Schritte optimiert wurden bevor zufriedenstellende Fingerprint-Spektren von Antikörpern erhalten wurden. KW - Peptide KW - Fingerprint KW - Peptide mass fingerprinting KW - Massenspektrometrie KW - Saure Hydrolyse KW - Festphasenextraktion KW - Protein G KW - Ameisensäure KW - ABID KW - Korrelationsmatrix PY - 2019 SP - 1 EP - 116 PB - Humboldt-Universität zu Berlin CY - Berlin AN - OPUS4-54626 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Martínez-Mánez, R. A1 - Rurack, Knut T1 - Immunochemical design of antibody-gated indicator delivery (gAID) systems based on mesoporous silica nanoparticles N2 - In this work, the optimization of the immunochemical response of antibody-gated indicator delivery (gAID) systems prepared with mesoporous silica nanoparticles has been studied along various lines of system tailoring, targeting the peroxide-type explosive TATP as an exemplary analyte. The mechanism of detection of these gAID systems relies on a displacement of an antibody “cap” bound to hapten derivatives anchored to the surface of a porous hybrid material, allowing the indicator cargo stored in the mesopores to escape and massively amplify the analyte-related signal. Since our aim was to obtain gAID systems with the best possible response in terms of sensitivity, selectivity, and assay time, sera obtained from different immunization boosts were screened, the influence of auxiliary reagents was assessed, structural hapten modification (hapten heterology) was investigated, and various indicator dyes and host materials were tested. Considering that highly selective and sensitive immunological responses are best obtained with high-affinity antibodies which, however, could possess rather slow dissociation constants, leading to slow responses, the main challenge was to optimize the immunochemical recognition system for a rapid response while maintaining a high sensitivity and selectivity. The best performance was observed by grafting a slightly mismatching (heterologous) hapten to the surface of the nanoparticles in combination with high-affinity antibodies as “caps”, yielding for the first time gAID nanomaterials for which the response time could be improved from hours to <5 min. The materials showed favorable detection limits in the lower ppb range and discriminated TATP well against H2O2 and other explosives. Further optimization led to straightforward integration of the materials into a lateral flow assay without further treatment or conditioning of the test strips while still guaranteeing remarkably fast overall assay times. KW - Antibody-gated indicator delivery systems KW - Signal amplification KW - Immunochemical response optimization KW - Test strip analysis KW - TATP KW - Explosives detection KW - Heterologous hapten PY - 2022 U6 - https://doi.org/10.1021/acsanm.1c03417 SN - 2574-0970 VL - 5 IS - 1 SP - 626 EP - 641 PB - American Chemical Society CY - Washington, DC AN - OPUS4-54176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Zhao, J. A1 - Saatz, Jessica A1 - Traub, Heike A1 - Buchholz, R. A1 - Karst, U. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Visualization and Quantification of the Extracellular Matrix in Prostate Cancer Using an Elastin Specific Molecular Probe N2 - One of the most commonly diagnosed cancers in men is prostate cancer (PCa). Understanding tumor progression can help diagnose and treat the disease at an early stage. Components of the extracellular matrix (ECM) play a key role in the development and progression of PCa. Elastin is an essential component of the ECM and constantly changes during tumor development. This article visualizes and quantifies elastin in magnetic resonance imaging (MRI) using a small molecule probe. Results were correlated with histological examinations. Using an elastin-specific molecular probe, we were able to make predictions about the cellular structure in relation to elastin and thus draw conclusions about the size of the tumor, with smaller tumors having a higher elastin content than larger tumors. Human prostate cancer (PCa) is a type of malignancy and one of the most frequently diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is involved in the structure and organization of prostate tissue. The present study examined prostate cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance molecular imaging. Two different tumor sizes (500 mm3 and 1000 mm3) were compared and analyzed by MRI in vivo and histologically and analytically ex vivo. The T1-weighted sequence was used in a clinical 3-T scanner to calculate the relative contrast enhancement before and after probe administration. Our results show that the use of an elastin-specific probe enables better discrimination between tumors and surrounding healthy tissue. Furthermore, specific binding of the probe to elastin fibers was confirmed by histological examination and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS). Smaller tumors showed significantly higher signal intensity (p > 0.001), which correlates with the higher proportion of elastin fibers in the histological evaluation than in larger tumors. A strong correlation was seen between relative enhancement (RE) and Elastica–van Gieson staining (R2 = 0.88). RE was related to inductively coupled plasma–mass spectrometry data for Gd and showed a correlation (R2 = 0.78). Thus, molecular MRI could become a novel quantitative tool for the early evaluation and detection of PCa. KW - Magnetic resonance imaging KW - MRI KW - Molecular imaging KW - Cancer KW - LA-ICP-MS PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-538410 VL - 10 IS - 11 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Costa, Elena A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Antibody-gated dye delivery systems for Type-I pyrethroids detection N2 - Type-I pyrethroids are frequently used for disinfection purposes on airplanes from and to tropical areas. The WHO (Word Health Organization) defines “disinfection” as the procedure whereby health measures are taken to control or kill the insect vectors of human diseases including dengue, yellow fever and malaria.1 Due to this, a new effective and rapid method for pyrethroids analysis directly in the plane is needed. To detect type-I pyrethroids, gated materials are constructed for the purpose of finely tuning the movement of a cargo from voids of a mesoporous inorganic support to a solution, in response to a predefined stimulus.2 Antibodies are bound to specific functional groups grafted on the support’s surface with the two-fold aim of closing the mesopores and working as biological receptors for the target compounds.2 A specific opening mechanism, activated selectively in presence of pyrethroids as analytes, is able to control the release of an indicator dye previously loaded inside the inorganic support. As only few molecules of pyrethroids are necessary to open a pore and release a large amount of dyes, the system shows an intrinsic signal amplification quantified as a fluorescence emission intensity.3 Different mesoporous silica supports (from nano- and microparticles to platelets and short fibers) were synthetized, characterized and functionalized following different capping strategies. In this contribution, we will compare the temporal response behaviour of the optimized gated materials to verify if the respective delivery systems are properly closed and how fast they can be opened in presence of the analytes. Our results indicate that the trends of the kinetics observed in solution show a better control of the closing/opening mechanism when the epitope region of the antibody (around 10 nm) properly fits the pore size of the carriers. Because the incorporation of an antibody-gated dye-delivery system with a conventional test-strip-based lateral-flow assay allows for the detection of analytes down to the ppb level in an easy-to-operate manner and an overall assay time of 2–5 min, which is fast for a biochemical test,3 we carried out first model studies for a lateral flow test assay on membranes, using a smartphone setup for read-out. T2 - XV EUROPT(R)ODE 2021 CY - Online meeting DA - 28.11.2021 KW - Antibody-gated materials KW - Lateral flow assay KW - Pyrethroids detection PY - 2021 AN - OPUS4-53862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. A1 - Schneider, Rudolf A1 - Rurack, Knut T1 - Mit dem Testsystem zur Probe N2 - (Bio)chemische Sensoren ersetzen bei der Vor-Ort-Analytik die großen Messgeräte oder dienen dazu, Analyten im Verdachtsfall oder kontinuierlich zu überwachen. Das können pharmazeutische Stoffe im Abwasser sein, Aflatoxin in Milch oder Sprengstoff am Flughafen. Ein Überblick über Neuentwicklungen. KW - Biochemische Sensoren KW - Vor-Ort-Analytik KW - Schnelltests KW - Antikörper PY - 2021 U6 - https://doi.org/10.1002/nadc.20214112170 VL - 69 IS - 10 SP - 71 EP - 74 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54003 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Möckel, J. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Sack, I. A1 - Mangarova, D. B. A1 - Kader, A. A1 - Taupitz, M. A1 - Adams, L. C. A1 - Keller, S. A1 - Ludwig, A. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Assessment of Albumin ECM Accumulation and Inflammation as Novel In Vivo Diagnostic Targets for Multi-Target MR Imaging N2 - Atherosclerosis is a progressive inflammatory vascular disease characterized by endothelial dysfunction and plaque burden. Extracellular matrix (ECM)-associated plasma proteins play an important role in disease development. Our magnetic resonance imaging (MRI) study investigates the feasibility of using two different molecular MRI probes for the simultaneous assessment of ECM-associated intraplaque albumin deposits caused by endothelial damage and progressive inflammation in atherosclerosis. Male apolipoprotein E-deficient (ApoE-/-)-mice were fed a high-fat diet (HFD) for 2 or 4 months. Another ApoE-/--group was treated with pravastatin and received a HFD for 4 months. T1- and T2*-weighted MRI was performed before and after albumin-specific MRI probe (gadofosveset) administration and a macrophage-specific contrast agent (ferumoxytol). Thereafter, laser ablation inductively coupled plasma mass spectrometry and histology were performed. With advancing atherosclerosis, albumin-based MRI signal enhancement and ferumoxytol-induced signal loss areas in T2*-weighted MRI increased. Significant correlations between contrast-to-noise-ratio (CNR) post-gadofosveset and albumin stain (R2 = 0.78, p < 0.05), and signal loss areas in T2*-weighted MRI with Perls’ Prussian blue stain (R2 = 0.83, p < 0.05) were observed. No interference of ferumoxytol with gadofosveset enhancement was detectable. Pravastatin led to decreased inflammation and intraplaque albumin. Multi-target MRI combining ferumoxytol and gadofosveset is a promising method to improve diagnosis and treatment monitoring in atherosclerosis. KW - Magnetic resonance imaging KW - MRI KW - Imaging KW - Human serum albumin KW - Extracellular matrix KW - Macrophages KW - Contrast agent KW - Atherosclerotic plaques KW - Gadofosveset KW - Aneurysm PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-536725 VL - 10 IS - 10 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-53672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Nowak, K. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Noninvasive imaging of vascular permeability to predict the risk of rupture in abdominal aortic aneurysms using an albumin binding probe N2 - Abdominal aortic aneurysm (AAA) remains a fatal disease. Its development encompasses a complex interplay between hemodynamic stimuli on and changes in the arterial wall. Currently available biomarkers fail to predict the risk of AAA rupture independent of aneurysm size. Therefore, novel biomarkers for AAA characterization are needed. In this study, we used a mouse model of AAA to investigate the potential of magnetic resonance imaging (MRI) with an albumin-binding probe to assess changes in vascular permeability at different stages of aneurysm growth. Two imaging studies were performed: a longitudinal study with follow-up and death as endpoint to predict rupture risk and a week-by-week study to characterize AAA development. AAAs, which eventually ruptured, demonstrated a significantly higher in vivo MR signal enhancement from the albumin-binding probe (p = 0.047) and a smaller non-enhancing thrombus area compared to intact AAAs (p = 0.001). The ratio of albumin-binding-probe enhancement of the aneurysm wall to size of non-enhancing-thrombus-area predicted AAA rupture with high sensitivity/specificity (100%/86%). More advanced aneurysms with higher vascular permeability demonstrated an increased uptake of the albumin-binding-probe. These results indicate that MRI with an albumin-binding probe may enable noninvasive assessment of vascular permeability in murine AAAs and prediction of rupture risk. KW - Magnetic resonance imaging KW - Imaging KW - Tomography KW - Gadolinium KW - Contrast agent KW - Atherosclerosis KW - ICP-MS KW - Gadofosveset KW - Angiography KW - LA-ICP-MS PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525541 VL - 10 SP - Article number: 3231 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52554 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered Glass Monoliths as New Supports for Affinity Columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 minute. Due to the glass material's excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nanofiltration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Glass KW - Purification KW - Antibodies KW - Solid support KW - HPLC KW - FPLC KW - Separation PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529117 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Backes, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Ziegler, K. A1 - Krevert, C. S. A1 - Tscheuschner, Georg A1 - Lucas, K. A1 - Weller, Michael G. A1 - Berkemeier, T. A1 - Pöschl, U. A1 - Fröhlich-Nowoisky, J. T1 - Oligomerization and Nitration of the Grass Pollen Allergen Phl p 5 by Ozone, Nitrogen Dioxide, and Peroxynitrite: Reaction Products, Kinetics, and Health Effects N2 - The allergenic and inflammatory potential of proteins can be enhanced by chemical modification upon exposure to atmospheric or physiological oxidants. The molecular mechanisms and kinetics of such modifications, however, have not yet been fully resolved. We investigated the oligomerization and nitration of the grass pollen allergen Phl p 5 by ozone (O3), nitrogen dioxide (NO2), and peroxynitrite (ONOO–). Within several hours of exposure to atmospherically relevant concentration levels of O3 and NO2, up to 50% of Phl p 5 were converted into protein oligomers, likely by formation of dityrosine cross-links. Assuming that tyrosine residues are the preferential site of nitration, up to 10% of the 12 tyrosine residues per protein monomer were nitrated. For the reaction with peroxynitrite, the largest oligomer mass fractions (up to 50%) were found for equimolar concentrations of peroxynitrite over tyrosine residues. With excess peroxynitrite, the nitration degrees increased up to 40% whereas the oligomer mass fractions decreased to 20%. Our results suggest that protein oligomerization and nitration are competing processes, which is consistent with a two-step mechanism involving a reactive oxygen intermediate (ROI), as observed for other proteins. The modified proteins can promote pro-inflammatory cellular signaling that may contribute to chronic inflammation and allergies in response to air pollution. KW - Protein KW - Nitrotyrosine KW - Dityrosine KW - Allergy KW - Hay fever KW - Diesel exhaust KW - Combustion KW - Exhaust PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529729 VL - 22 IS - 14 PB - MDPI CY - Basel AN - OPUS4-52972 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, Patrick A1 - Paul, Martin A1 - Mai, C. A1 - Böhme, A. A1 - Bondarenko, S. A1 - Weller, Michael G. A1 - Mai, A. T1 - A monolithically integrated microfluidic channel in a silicon-based photonic-integrated-circuit technology for biochemical sensing N2 - In this work, a cost-effective optofluidic system is proposed and preliminary experimental results are presented. A microfluidic channel monolithically integrated into a photonic integrated circuit technology is used in conjunction with a cyclic olefin copolymer (COC) substrate to provide fluidic in- and output ports. We report on initial experimental results as well as on the simple and cost-effective fabrication of this optofluidic system by means of micro-milling. KW - Biosensors KW - Biophotonics KW - Optical sensors KW - Photonic sensors KW - Ring resonators KW - Silicon photonics KW - Lab-on-a-chip KW - Microfluidics KW - Chip KW - Biochip PY - 2021 U6 - https://doi.org/10.1117/12.2588791 VL - 11772 SP - 1 EP - 5 PB - SPIE AN - OPUS4-53559 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - The Protocol Gap N2 - Although peer review is considered one of the main pillars of modern science, experimental methods and protocols seem to be not a rigorous subject of this process in many papers. Commercial equipment, test kits, labeling kits, previously published concepts, and standard protocols are often considered to be not worth a detailed description or validation. Even more disturbing is the extremely biased citation behavior in this context, which sometimes leads to surrogate citations to avoid low-impact journals, preprints, or to indicate traditional practices. This article describes some of these surprising habits and suggests some measures to avoid the most unpleasant effects, which in the long term may undermine the credibility of science as a whole. KW - Validation KW - Peer review KW - Experiment KW - Documentation KW - Scientific publication KW - Reproducibility crisis KW - Replication crisis KW - Trust KW - Citation KW - References KW - Surrogate citations KW - Impact PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-521440 SN - 2409-9279 VL - 4 IS - 1 SP - 1 EP - 5 PB - MDPI CY - Basel AN - OPUS4-52144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Tannenberg, Robert A1 - Tscheuschner, Georg A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Cocaine Detection by a Laser-induced Immunofluorometric Biosensor N2 - The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue in public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect ultra-small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 23 pM (7 ppt) of cocaine with a response time of 90 seconds and a total assay time below 3 minutes. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. KW - Drug search KW - Customs KW - Confiscation KW - Border surveillance KW - Narcotics KW - International drug trade KW - Drug trafficking KW - Illicit drug KW - Immunosensor KW - Antibodies KW - Detection PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529951 SP - 1 PB - MDPI CY - Basel AN - OPUS4-52995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tannenberg, Robert A1 - Tscheuschner, Georg A1 - Ponader, Marco A1 - Weller, Michael G. T1 - Cocaine Detection by a Laser-Induced Immunofluorometric Biosensor N2 - The trafficking of illegal drugs by criminal networks at borders, harbors, or airports is an increasing issue for public health as these routes ensure the main supply of illegal drugs. The prevention of drug smuggling, including the installation of scanners and other analytical devices to detect small traces of drugs within a reasonable time frame, remains a challenge. The presented immunosensor is based on a monolithic affinity column with a large excess of immobilized hapten, which traps fluorescently labeled antibodies as long as the analyte cocaine is absent. In the presence of the drug, some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and microfluidic chip-based mixing devices and flow cells. The biosensor achieved limits of detection of 7 ppt (23 pM) of cocaine with a response time of 90 s and a total assay time below 3 min. With surface wipe sampling, the biosensor was able to detect 300 pg of cocaine. This immunosensor belongs to the most sensitive and fastest detectors for cocaine and offers near-continuous analyte measurement. KW - Online detection KW - Security KW - Monoclonal antibody KW - Microfluidic mixing KW - Microfluidics KW - Lab-on-a-chip KW - Monolithic column KW - Affinity chromatography KW - Laser-induced fluorescence KW - LIF KW - ELISA KW - Wipe test KW - Low-cost PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534487 VL - 11 IS - 9 SP - 1 EP - 15 PB - MDPI CY - Basel AN - OPUS4-53448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Steglich, P. A1 - Rabus, D. G. A1 - Sada, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, C. A1 - Mai, A. T1 - Silicon Photonic Micro-Ring Resonators for Chemical and Biological Sensing: A Tutorial N2 - Silicon photonic micro-ring resonators (MRR) developed on the silicon-on-insulator (SOI) platform, owing to their high sensitivity and small footprint, show great potential for many chemical and biological sensing applications such as label-free detection in environmental monitoring, biomedical engineering, and food analysis. In this tutorial, we provide the theoretical background and give design guidelines for SOI-based MRR as well as examples of surface functionalization procedures for label-free detection of molecules. After introducing the advantages and perspectives of MRR, fundamentals of MRR are described in detail, followed by an introduction to the fabrication methods, which are based on a complementary metal-oxide semiconductor (CMOS) technology. Optimization of MRR for chemical and biological sensing is provided, with special emphasis on the optimization of waveguide geometry. At this point, the difference between chemical bulk sensing and label-free surface sensing is explained, and definitions like waveguide sensitivity, ring sensitivity, overall sensitivity as well as the limit of detection (LoD) of MRR are introduced. Further, we show and explain chemical bulk sensing of sodium chloride (NaCl) in water and provide a recipe for label-free surface sensing. KW - Lab on a chip KW - Biosensor KW - Cmos KW - Silanization KW - Surface derivatization KW - Evanescent wave PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529360 SP - 1 EP - 18 PB - IEEE CY - Piscataway Township AN - OPUS4-52936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Kader, A. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. A1 - Keller, S. T1 - Effect of Doxycycline on Survival in Abdominal Aortic Aneurysms in a Mouse Model N2 - Background. Currently, there is no reliable nonsurgical treatment for abdominal aortic aneurysm (AAA). This study, therefore, investigates if doxycycline reduces AAA growth and the number of rupture-related deaths in a murine ApoE−/− model of AAA and whether gadofosveset trisodium-based MRI differs between animals with and without doxycycline treatment. Methods. Nine ApoE−/− mice were implanted with osmotic minipumps continuously releasing angiotensin II and treated with doxycycline (30 mg/kg/d) in parallel. After four weeks, MRI was performed at 3T with a clinical dose of the albumin-binding probe gadofosveset (0.03 mmol/kg). Results were compared with previously published wild-type control animals and with previously studied ApoE−/− animals without doxycycline treatment. Differences in mortality were also investigated between these groups. Results. In a previous study, we found that approximately 25% of angiotensin II-infused ApoE−/− mice died, whereas in the present study, only one out of 9 angiotensin II-infused and doxycycline-treated ApoE−/− mice (11.1%) died within 4 weeks. Furthermore, doxycycline-treated ApoE−/− mice showed significantly lower contrast-to-noise (CNR) values in MRI compared to ApoE−/− mice without doxycycline treatment. In vivo measurements of relative signal enhancement (CNR) correlated significantly with ex vivo measurements of albumin staining (R2 = 0.58). In addition, a strong visual colocalization of albumin-positive areas in the fluorescence albumin staining with gadolinium distribution in LA-ICP-MS was shown. However, no significant difference in aneurysm size was observed after doxycycline treatment. Conclusion. The present experimental in vivo study suggests that doxycycline treatment may reduce rupture-related deaths in AAA by slowing endothelial damage without reversing aneurysm growth. KW - Ggadolinium KW - MRI KW - Magnetic resonance imaging KW - Osmotic minipumps KW - Tetracyclin KW - Antibiotics KW - Angiotensin II KW - LA-ICP-MS PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527015 SP - 9999847 PB - Hindawi CY - London AN - OPUS4-52701 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adams, L. C. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Simultaneous molecular MRI of extracellular matrix collagen and inflammatory activity to predict abdominal aortic aneurysm rupture N2 - Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease with an up to 80% mortality in case of rupture. Current biomarkers fail to account for size-independent risk of rupture. By combining the information of different molecular probes, multi-target molecular MRI holds the potential to enable individual characterization of AAA. In this experimental study, we aimed to examine the feasibility of simultaneous imaging of extracellular collagen and inflammation for size-independent prediction of risk of rupture in murine AAA. The study design consisted of: (1) A outcome-based longitudinal study with imaging performed once after one week with follow-up and death as the end-point for assessment of rupture risk. (2) A week-by-week study for the characterization of AAA development with imaging after 1, 2, 3 and 4 weeks. For both studies, the animals were administered a type 1 collagen-targeted gadolinium-based probe (surrogate marker for extracellular matrix (ECM) remodeling) and an iron oxide-based probe (surrogate marker for inflammatory activity), in one imaging session. In vivo measurements of collagen and iron oxide probes showed a significant correlation with ex vivo histology (p < 0.001) and also corresponded well to inductively-coupled plasma-mass spectrometry and laser-ablation inductively-coupled plasma mass spectrometry. Combined evaluation of collagen-related ECM remodeling and inflammatory activity was the most accurate predictor for AAA rupture (sensitivity 80%, specificity 100%, area under the curve 0.85), being superior to information from the individual probes alone. Our study supports the feasibility of a simultaneous assessment of collagen-related extracellular matrix remodeling and inflammatory activity in a murine model of AAA. KW - Atherosclerosis KW - Specific probe KW - Magnetic resonance imaging KW - Gadolinium KW - Iron oxide KW - Ferumoxytol KW - Inductively‑coupled mass spectrometry KW - ICP-MS KW - LA-ICP-MS KW - Laser ablation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-525864 UR - https://www.nature.com/articles/s41598-020-71817-x VL - 10 IS - 1 SP - 15206 PB - Springer Nature Limited CY - London, New York, Berlin, Shanghai and Tokyo AN - OPUS4-52586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Röder, Bettina A1 - Paul, Martin A1 - Weller, Michael G. T1 - Sintered glass monoliths as supports for affinity columns N2 - A novel stationary phase for affinity separations is presented. This material is based on sintered borosilicate glass readily available as semi-finished filter plates with defined porosity and surface area. The material shows fast binding kinetics and excellent long-term stability under real application conditions due to lacking macropores and high mechanical rigidity. The glass surface can be easily modified with standard organosilane chemistry to immobilize selective binders or other molecules used for biointeraction. In this paper, the manufacturing of the columns and their respective column holders by 3D printing is shown in detail. The model system protein A/IgG was chosen as an example to examine the properties of such monolithic columns under realistic application conditions. Several specifications, such as (dynamic) IgG capacity, pressure stability, long-term performance, productivity, non-specific binding, and peak shape, are presented. It could be shown that due to the very high separation speed, 250 mg antibody per hour and column can be collected, which surpasses the productivity of most standard columns of the same size. The total IgG capacity of the shown columns is around 4 mg (5.5 mg/mL), which is sufficient for most tasks in research laboratories. The cycle time of an IgG separation can be less than 1 min. Due to the glass material’s excellent pressure resistance, these columns are compatible with standard HPLC systems. This is usually not the case with standard affinity columns, limited to manual use or application in low-pressure systems. The use of a standard HPLC system also improves the ability for automation, which enables the purification of hundreds of cell supernatants in one day. The sharp peak shape of the elution leads to an enrichment effect, which might increase the concentration of IgG by a factor of 3. The final concentration of IgG can be around 7.5 mg/mL without the need for an additional nano-filtration step. The purity of the IgG was > 95% in one step and nearly 99% with a second polishing run. KW - Affinity Chromatography KW - Affinity Extraction KW - Affinity Separation KW - Protein Purification KW - Down Stream Processing KW - Antibody Purification KW - Diagnostic Antibodies KW - Therapeutic Antibodies KW - Automated Purification KW - HPLC KW - FPLC KW - IgG determination KW - Concentration step KW - Monoclonal Antibodies KW - Polyclonal Antibodies KW - Human Plasma KW - Glass Support KW - Borosilicate Glass KW - Monolith KW - Sintered Material KW - Additive Manufacturing KW - Column holder KW - Construction KW - Open Science KW - Citizen Science KW - Protein A KW - Regeneration KW - High-Speed Separations KW - Robustness PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-527581 SN - 2297-8739 VL - 8 IS - 5 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-52758 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tscheuschner, Georg A1 - Kaufmann, Jan Ole A1 - Kaiser, Melanie A1 - Weller, Michael G. T1 - MALDI-TOF MS Fingerprinting of Antibodies in Less Than One Hour N2 - Antibodies are the most used biomolecules in analytical research. Nevertheless, the sequence and structure information of antibodies is often limited, since manufacturers keep them secret or suppliers sell them under different names. This can make it difficult to reproduce even basic experiments performed in publications as the antibodies used might not be identifiable. To overcome these problems, we developed a simple and cheap method for antibody identification by MALDI-TOF-MS fingerprinting. This technique was used to generate a library of antibody fingerprints, which enables the identification and comparison of antibodies in short time. T2 - SALSA Make and Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Hydrolysis KW - Acid KW - Trypsin KW - Digestion KW - Fragment KW - Peptides KW - Mass spectrometry KW - Database KW - Clones KW - Monoclonal antibodies PY - 2021 AN - OPUS4-53294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin A1 - Schleeh, C. A1 - Weller, Michael G. T1 - Development of a high-sensitivity biosensor for the quasi-continuous detection of the explosive TNT and the illegal drug cocaine N2 - An immunofluorometric biosensor with laser-induced fluorescence detection was presented. For TNT an LOD of 60 ppb and for cocaine an LOD of 9 ppb was achieved. A swipe test was performed in less than 3 minutes. No significant cross-reactivity was observed. T2 - 15. Interdisziplinäres Doktorandenseminar des Arbeitskreises Prozessanalytik der GDCh CY - Online meeting DA - 06.09.2021 KW - PETN KW - HMX KW - RDX KW - Microfluidic mixing KW - Lab-on-a-chip KW - Affinity column KW - Monolithic material KW - Sintered glass KW - Dy-654 KW - Flowcell KW - Epifluorescence KW - CMOS camera KW - Diode laser KW - Antibody screening PY - 2021 AN - OPUS4-53329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tannenberg, Robert A1 - Weller, Michael G. T1 - Detection of Cardiac Troponin I with Chemiluminescence Biosensor N2 - Cardiovascular diseases are the number one cause of death worldwide and responsible for 3.9 million deaths in Europe and over 1.8 million deaths in the European Union (2017) [1]. Cardiac Troponin I (cTnI) is part of a triple protein complex and the most important biomarker for acute events such as heart attacks. Once a heart attack occurs, the blood stream within the heart is interrupted and further oxygen supply cannot be maintained. As a result, heart cells undergo apoptosis and their proteins will be released into the blood stream. Within the project CardioMet of the European Metrology Program of Research and Innovation (EMPIR) a biosensor for online-monitoring of acute myocardial infarction by detecting cTnI is being developed. T2 - SALSA Make and Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sensor KW - Luminol KW - ECL KW - Peroxidase KW - Monolith KW - Lab on a Chip KW - EMPIR KW - 18HTL10 KW - CardioMet KW - Horizon 2020 PY - 2021 AN - OPUS4-53306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Tino A1 - Neumann, Patrick P. A1 - Weller, Michael G. T1 - A New Approach: Passive Smart Dust for Detection of Hazardous Substances N2 - Remote sensing of hazardous substances is a key task that can be achieved with the help of remotely operated platforms equipped with specific sensors. A huge variety of methods and used vehicles have been developed for different purposes in recent years. The term smart dust refers to a science fiction novel and develop shortly after into a research proposal at UC Berkley funded by DARPA. Subsequently, the topic gained attraction but was overall considered as to complex for the technologies available at that time. In the launched passive smart dust project, we shift to a simple “chemical intelligent” passive sensor particle on the ground combined a read-out active sensor attached to an Unmanned Aerial Vehicle (UAV). The reactive particle surface can be preadjusted in the lab for exact desired properties regarding certain reactions to hazardous substances. Moreover, the aimed interaction with the active sensor can be modified. Planed applications allow for different materials e.g., for short time measurement, being ecologically degradable, or weather stable for long time monitoring. T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Smart Dust KW - Drone KW - Remote Detection KW - Hazardous substances PY - 2022 SP - 1 EP - 2 CY - Athens, Greece AN - OPUS4-55925 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Völzke, Jule L. A1 - Hodjat Shamami, P. A1 - Gawlitza, Kornelia A1 - Feldmann, Ines A1 - Zimathies, Annett A1 - Weller, Michael G. T1 - High-purity corundum as support for affinity extractions from complex samples N2 - Nonporous corundum powder, known as an abrasive material in the industry, was functionalized covalently with protein binders to isolate and enrich specific proteins from complex matrices. The materials based on corundum were characterized by TEM, ESEM, BET, DLS, and zeta potential measurements. The strong Al-O-P bonds between the corundum surface and amino phosphonic acids are used to introduce functional groups for further conjugations. The common cross-linker glutaraldehyde was compared with a hyperbranched polyglycerol (PG) of around 10 kDa. The latter is oxidized with periodate to generate aldehyde groups that can covalently react with the amines of the surface and the amino groups from the protein via a reductive amination process. The amount of bound protein was quantified via aromatic amino acid analysis (AAAA). This work shows that oxidized polyglycerol can be used as an alternative to glutaraldehyde. With polyglycerol, more of the model protein bovine serum albumin (BSA) could be attached to the surface under the same conditions, and lower nonspecific binding (NSB) was observed. As a proof of concept, IgG was extracted with protein A from crude human plasma. The purity of the product was examined by SDS-PAGE. A binding capacity of 1.8 mg IgG per g of corundum powder was achieved. The advantages of corundum are the very low price, extremely high physical and chemical stability, pressure resistance, favorable binding kinetics, and flexible application. KW - Protein KW - Bioseparation KW - Purification KW - Immunoprecipitation KW - Affinity chromatography KW - Polyglycerol KW - Glutaraldehyde KW - Linker KW - Bioconjugation KW - Self-assembled monolayer (SAM) KW - Periodate oxidation KW - Reductive amination KW - Antibodies KW - Igg KW - Immunoglobulins KW - Carrier KW - Solid phase KW - Hyperbranched polymer KW - Aromatic amino acid analysis aaaa PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555142 SP - 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-55514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nerger, Tino A1 - Neumann, Patrick P. A1 - Weller, Michael G. T1 - Passive Smart Dust For Detection Of Hazardous Substances N2 - High demand for remote sensing of hazardous substances. Possible solution: Use of distributed, low cost, and environmentally safe particles as passive sensors that can be read out remotely Chemical intelligence on the particle surface can be easily modified Particles enable optically quantifiable response and inference of target substances (also no maintenance or power supply required T2 - 38th Danubia-Adria Symposium on Advances in Experimental Mechanics CY - Poros, Greece DA - 20.09.2022 KW - Smart Dust KW - Drone KW - Remote Detection KW - Colorchanging Particles PY - 2022 AN - OPUS4-56025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR ED - Resch-Genger, Ute ED - Koch, Matthias ED - Meermann, Björn ED - Weller, Michael G. T1 - Topical collection: Analytical methods and applications in the materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - 150th anniversary KW - ABC KW - Analysis KW - Analytical sciences KW - BAM KW - Collection KW - Environment KW - Fluorescence KW - Life sciences KW - Limit of detection KW - Material sciences KW - Method KW - Nanoparticle KW - Pollutant KW - Quality assurance KW - Reference material KW - Sensor KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://link.springer.com/journal/216/topicalCollection/AC_16a2ef9b81853377e321ef84d9c4a431 SN - 1618-2642 SN - 1618-2650 VL - 414 SP - 4267 EP - 4529 PB - Springer CY - Berlin AN - OPUS4-55670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scherz, Franziska A1 - Krop, U. A1 - Monks, K. A1 - Weller, Michael G. T1 - Antikörperreinigung mit Glasmonolithen - Vereinfachung von Affinitätstrennungen mit HPLC-Systemen N2 - Druckstabile Glasmonolithen ermöglichen eine schnelle und unkomplizierte Reinigung von Antikörpern, z.B. aus Serum oder Zellkulturüberständen. Die sehr gute Regenerierbarkeit lässt eine lange Lebensdauer der Säulen erwarten, was die Kosten pro Probe niedrig hält. KW - Borosilicatglas KW - Immunglobuline KW - IgG KW - Serum KW - Plasma KW - Protein A KW - Protein G KW - Affinitätschromatographie KW - Agarose KW - Carrier-Material KW - Stationäre Phase KW - Immobilisierung KW - Highspeed KW - Trennung KW - Reinigung KW - Downstream Processing PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-445330 UR - http://www.git-labor.de/forschung/materialien/antikoerperreinigung-mit-glasmonolithen SN - 0016-3538 VL - 62 IS - 3 SP - 24 EP - 25 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-44533 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eisenreich, F. A1 - Kathan, M. A1 - Dallmann, A. A1 - Ihrig, S. P. A1 - Schwaar, Timm A1 - Schmidt, B. M. A1 - Hecht, S. T1 - A photoswitchable catalyst system for remote-controlled (co)polymerization in situ N2 - The fundamental properties of a polymeric material are ultimately governed by its structure, which mainly relies on monomercomposition and connection, topology, chain length, and polydispersity. Thus far, these structural characteristics are typicallyset ex situ by the specific polymerization procedure, eventually limiting the future design space for the creation of moresophisticated polymers. Herein, we report on a single photoswitchable catalyst system, which enables in situ remote controlover the ring-opening polymerization of l-lactide and further allows regulation of the incorporation of trimethylene carbonateand δ -valerolactone monomers in copolymerizations. By implementing a phenol moiety into a diarylethene-type structure,we exploit light-induced keto–enol tautomerism to switch the hydrogen-bonding-mediated monomer activation reversiblyON and OFF. This general and versatile principle allows for exquisite external modulation of ground-state catalysis of a livingpolymerization process in a closed system by ultraviolet and visible light and should thereby facilitate the generation of newpolymer structures. KW - Polymers PY - 2018 U6 - https://doi.org/10.1038/s41929-018-0091-8 SN - 2520-1158 VL - 1 IS - 7 SP - 516 EP - 522 PB - Nature CY - London AN - OPUS4-45407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Remmler, Dario A1 - Schwaar, Timm A1 - Pickhardt, M. A1 - Donth, C. A1 - Mandelkow, E. A1 - Weller, Michael G. A1 - Börner, H. T1 - On the way to precision formulation additives: 2D-screening to select solubilizers with tailored host and release capabilities N2 - A 2-dimensional high-throughput screening method is presented to select peptide sequences from large peptide libraries for precision formulation additives, having a high capacity to specifically host a drug of interest and provide tailored drug release properties. The identified sequences are conjugated with poly(ethylene glycol) (PEG) to obtain peptide-PEG conjugates that proved to be valuable as solubilizers for small organic molecule drugs to overcome limitations of poor water-solubility and low bio-availability. The 2D-screening method selects peptide sequences on both (i) high loading capacities and (ii) preferred drug-release capabilities as demonstrated on an experimental Tau-protein aggregation inhibitor/Tau- deaggregator with potentials for an anti-Alzheimer disease drug (BB17). To enable 2D-screening, a one-bead one-compound (OBOC) peptide library was immobilized on a glass slide, allocating individual beads to permanent positions. While the first screening step involved incubation of the supported OBOC library with BB17 to identify beads with high drug binding capacities by fluorescence scanner readouts, the second step reveals release properties of the high capacity binders by incubation with blood plasma protein model solutions. Efficiently peptides with high BB17 capacities and either keeper or medium or fast releaser properties can be identified by direct sequence readouts from the glass slide supported resin beads via matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry. Four peptides are synthesized as peptide-PEG solubilizers representing strong, medium, weak releasers and non-binders. Loading capacities reached up to 1:3.4 (mol drug per mol carrier) and release kinetics (fast/medium/slow) are in agreement with the selection process as investigated by fluorescence anisotropy and fluorescence correlation spectroscopy. The ability of BB17/conjugate complexes to inhibit the aggregation of Tau4RDΔK (four repeat Tau ((M)Q244-E372 with deletion of K280), 129 residues) in N2a cells is studied by a Tau-pelleting assay showing the modulation of cellular Tau aggregation. Promising effects such as the reduction of 55% of total Tau load are observed for the strong releaser additive. Studies of in vitro Thioflavin S Tau-aggregation assays show half-maximal inhibitory activities (IC50 values) of BB17/conjugates in the low micro-molar range. KW - Block copolymer KW - Drug transporters KW - Peptide library screening KW - Formulation additives PY - 2018 U6 - https://doi.org/10.1016/j.jconrel.2018.06.032 SN - 0168-3659 SN - 1873-4995 VL - 285 SP - 96 EP - 105 PB - Elsevier CY - Amsterdam AN - OPUS4-45483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Montes-Bayón, M. A1 - Weller, Michael G. T1 - Improved LC-MS/MS method for the quantification of hepcidin-25 in clinical samples N2 - Mass spectrometry-based methods play a crucial role in the quantification of the main iron metabolism regulator hepcidin by singling out the bioactive 25-residue peptide from the other naturally occurring N-truncated isoforms (hepcidin-20, -22, -24), which seem to be inactive in iron homeostasis. However, several difficulties arise in the MS analysis of hepcidin due to the sticky character of the peptide and the lack of suitable standards. Here, we propose the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces after testing several types of vials for the preparation of stock solutions and serum samples for isotope dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS). Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions with the aim of developing an LC-MS/MS method for the sensitive and reliable quantification of hepcidin-25 in serum samples. A chromatographic separation based on usual acidic mobile phases was compared with a novel approach involving the separation of hepcidin-25 with solvents at high pH containing 0.1% of ammonia. Both methods were applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with good correlation of the results. Finally, we recommend an LC-MS/MS-based quantification method with a dynamic range of 0.5–40 μg/L for the assessment of hepcidin-25 in human serum that uses TFA-based mobile phases and silanized glass vials. KW - HPLC KW - Liquid chromatography KW - Mass spectrometry KW - Silanization KW - Mobile phase KW - Adsorption KW - Peptide losses KW - Recovery KW - Validation KW - Quality control KW - QC KW - Iron disorders KW - Chronic kidney disease KW - Metrology KW - Round robin exercise KW - Basic solvent KW - Peptide analysis PY - 2018 U6 - https://doi.org/10.1007/s00216-018-1056-0 SN - 1618-2642 SN - 1618-2650 VL - 410 IS - 16 SP - 3835 EP - 3846 PB - Springer Nature CY - Heidelberg AN - OPUS4-45053 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen A1 - Conrad, T. A1 - Weller, Michael G. A1 - Börner, H. G. T1 - Finding peptide binders for polypropylene using phage display and next generation sequencing N2 - Phage display is used to find specific target binding peptides for polypropylene (PP) surfaces. PP is one of the most commonly used plastics in the world. Millions of tons are produced every year. PP binders are of particular interest because so far gluing or printing on PP is challenging due to its low surface energy. A phage display protocol for PP was developed followed by Next Generation DNA Sequencing of the whole phage library. Data analysis of millions of sequences yields promising peptide candidates which were synthesized as PEG conjugates. Fluorescence-based adsorption-elution-experiments show high adsorption on PP for several sequences. T2 - BAM PhD Day CY - Berlin-Adlershof, Germany DA - 31.05.2018 KW - Polymer KW - Glue KW - Amplification KW - Illumina KW - PEG KW - Sanger sequencing KW - SALSA KW - Data analysis KW - Fluorescence PY - 2018 AN - OPUS4-45055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weller, Michael G. T1 - Ten Basic Rules of Antibody Validation N2 - The quality of research antibodies is an issue for decades. Although several papers have been published to improve the situation, their impact seems to be limited. This publication makes the effort to simplify the description of validation criteria in a way that the occasional antibody user is able to assess the validation level of an immunochemical reagent. A simple, 1-page checklist is supplied for the practical application of these criteria. KW - Replication KW - Reproducibility KW - Documentation KW - Open Science KW - Quality Control KW - Biochemistry KW - Biotechnology KW - Bioanalysis PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-444322 UR - https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5813849/ SN - 11773901 VL - 13 SP - 1 EP - 5 PB - Sage CY - Los Angeles, USA AN - OPUS4-44432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwaar, Timm A1 - Remmler, Dario A1 - Börner, H. G. A1 - Weller, Michael G. T1 - Multidimensional high throughput methods for the analysis of particle-based peptide libraries N2 - Screening of one-bead-one-peptide libraries is a useful procedure for the identification of protein ligands. The demand for binders with high affinity and high specificity towards various target proteins has surged in the biomedical field in the recent years. The 1 traditional peptide screening procedure involves tedious steps as selection, sequencing, and characterization. Herein, we developed a high-throughput – “all in one chip” system to avoid time-consuming separation steps. T2 - Chemistry and Biology of Peptides Gordon Research Conference CY - Ventura, CA, USA DA - 10.02.2018 KW - Lab-on-a-chip KW - Combinatorial peptide library PY - 2018 AN - OPUS4-44611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwaar, Timm A1 - Remmler, Dario A1 - Lettow, Maike A1 - Börner, H. G. A1 - Weller, Michael G. T1 - MALDI-Supported Screening of Large Peptide Libraries for Identification of Protein Binders N2 - Screening of one-bead-one-peptide libraries is a useful procedure for the identification of protein ligands. The demand for binders with high affinity and high specificity towards various target proteins has surged in the biomedical field in the recent years. The traditional peptide screening procedure involves tedious steps as selection, sequencing, and characterization. Herein, we developed a high-throughput – “all in one chip” system to avoid time-consuming separation steps. T2 - European Mass Spectrometry Conference (EMSC) 2018 CY - Saarbrücken, Germany DA - 11.02.2018 KW - Lab-on-a-chip KW - Combinatorial peptide library PY - 2018 AN - OPUS4-44612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bernevic, Bogdan A1 - El-Khatib, Ahmed H. A1 - Jakubowski, Norbert A1 - Weller, Michael G. T1 - Online immunocapture ICP‑MS for the determination of the metalloprotein ceruloplasmin in human serum N2 - The human copper-protein ceruloplasmin (Cp) is the major copper-containing protein in the human body. The accurate determination of Cp is mandatory for the reliable diagnosis of several diseases. However, the analysis of Cp has proven to be difficult. The aim of our work was a proof of concept for the determination of a metalloprotein-based on online immunocapture ICP-MS. The immuno-affinity step is responsible for the enrichment and isolation of the analyte from serum, whereas the compound-independent quantitation with ICP-MS delivers the sensitivity, precision, and large dynamic range. Off-line ELISA (enzyme-linked immunosorbent assay) was used in parallel to confirm the elution profile of the analyte with a structure-selective method. The total protein elution was observed with the 32S mass trace. The ICP-MS signals were normalized on a 59Co signal. The human copper-protein Cp could be selectively determined. This was shown with pure Cp and with a sample of human serum. The good correlation with off-line ELISA shows that Cp could be captured and eluted selectively from the anti-Cp affinity column and subsequently determined by the copper signal of ICP-MS. KW - ELISA KW - Affinity chromatography KW - Affinity extraction KW - IgY KW - Chicken antibodies KW - Immunoaffinity extraction KW - Copper KW - Diagnostics PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-446157 UR - https://bmcresnotes.biomedcentral.com/articles/10.1186/s13104-018-3324-7 UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM1_ESM.pdf UR - https://static-content.springer.com/esm/art%3A10.1186%2Fs13104-018-3324-7/MediaObjects/13104_2018_3324_MOESM2_ESM.pdf SN - 1756-0500 VL - 11 IS - 1 SP - Article 213, 1 EP - 5 PB - Springer Nature CY - Heidelberg AN - OPUS4-44615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abbas, Ioana M. A1 - Hoffmann, Holger A1 - Weller, Michael G. T1 - An LC-MS/MS based reference method candidate for the clinical assessment of the promising iron biomarker hepcidin-25 in serum N2 - Hepcidin-25 has attracted much attention ever since its discovery in 2001. It is widely recognized that this peptide hormone plays a major role in the regulation of iron levels in mammals and can reveal important clinical information about several iron-related disorders. However, the development of a reliable assay to quantify hepcidin proved to be problematic and serum hepcidin-25 concentrations determined by various assays differ substantially. Challenges arise in the MS analysis of hepcidin due to the “sticky” character of the peptide and the lack of suitable standards. With the aim to tackle the current difficulties in hepcidin quantification and improve the status of this promising biomarker in the clinical field, we developed a rapid and robust analytical strategy for the quantification of hepcidin-25 in human samples based on HPLC-MS/MS (QqQ) as a reference method candidate to be implemented in routine laboratories. The novelty of the method is the use of amino- and fluoro-silanized autosampler vials to reduce hepcidin interaction to laboratory glassware surfaces. Furthermore, we have investigated two sample preparation strategies and two chromatographic separation conditions where the use of acidic mobile phases was compared with a novel approach involving solvents at high pH containing 0.1% of ammonia. Both methods were carefully validated and applied to clinical samples in an intra-laboratory comparison of two LC-MS/MS methods using the same hepcidin-25 calibrators with very good correlation of the results. T2 - European Mass Spectrometry Conference 2018 CY - Saarbrücken, Germany DA - 11.03.2018 KW - Validation KW - LC-MS/MS peptide quantification KW - Clinical samples PY - 2018 AN - OPUS4-44616 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Remmler, Dario A1 - Schwaar, Timm A1 - Weller, Michael G. A1 - Börner, H. G. T1 - Two-dimensional screening of large peptide libraries to identify solubilizers with tailored release capabilities N2 - Small organic molecule drugs are one of the key classes, taking increasingly important roles in modern drug development strategies. With the focus on small molecule drugs, difficulties originate frequently from a pronounced lipophilic character, resulting in poor water solubility, low bioavailability and unfavored pharmacokinetics. Recently, peptide-poly(ethylene glycol) conjugates (peptide-PEG conjugates) were described as precisely tunable platforms to solubilize a broad scope of fluorescent or non-fluorescent small organic molecules [1-2]. Selection of drug hosting peptides was achieved by combinatorial means, which can further be extended by implementation of a drug release screening step. One-bead-one-compound peptide libraries are powerful tools to select high affinity binders. However, the selection of positive hits from the peptide libraries remains tedious as it occurs by handpicking, strongly limiting the pool of investigated beads. Here we report our recent results on improving the analytical platform, using automated fluorescence scanning and MALDI-ToF-ToF MS/MS imaging to screen larger sets of beads, broadening the statistical base and unraveling more precisely suitable peptides. The screening puts special emphasis on loading capacities and drug-release of transporters by performing additional washing steps in different media (cf. Fig. 1). Peptides representing strong, medium, weak releaser were chosen for further analysis and synthesized as peptide-polymer transporters. Release was analyzed by fluorescence anisotropy and fluorescence correlation spectroscopy, due to the fluorescent characteristics of the drug. Solubilization studies confirmed sufficient loading capacities for a potential anti-Alzheimer disease drug of three transporter molecules representing strong/weak drug releaser, reaching solubilization of up to 1:3.4 (µmol drug/µmol conjugate). Fluorescence anisotropy and fluorescence correlation spectroscopy of the drug-loaded transporter showed significant differences in drug releasing properties, confirming the screening process. T2 - 15th European Symposium on Controlled Drug Delivery CY - Egmond aan Zee, The Netherlands DA - 11.04.2018 KW - Combinatorial library KW - Bioconjugates KW - Screening KW - Pharmaceuticals KW - Biotechnology KW - Drugs PY - 2018 AN - OPUS4-44713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin A1 - Weller, Michael G. T1 - Fast Detection of TNT at ppt Level by an Immunofluorometric Biosensor N2 - The mechanism of this system is based on kinetic competition. This biosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. If the explosive 2,4,6-trinitrotoluene (TNT) is introduced some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein. The fluorescence is detected by highly sensitive laser-induced fluorescence with a conventional CMOS camera. The system achieved limits of detection of approx.1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 minutes. A cross-reactivity test with 5000 pM solutions of pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) showed no cross reactivity. T2 - Doktorandenseminar 2020 des Arbeitskreis-Prozessanalytik CY - Online meeting DA - 21.09.2020 KW - TNT KW - Explosive KW - Antibody KW - Fluorescence KW - Biosensor KW - Affinity PY - 2020 AN - OPUS4-51314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schroeder, Barbara A1 - Le Xuan, Hoa A1 - Völzke, Jule L. A1 - Weller, Michael G. T1 - Preactivation Crosslinking - An Efficient Method for the Oriented Immobilization of Antibodies N2 - Crosslinking of proteins for their irreversible immobilization on surfaces is a proven and popular method. However, many protocols lead to random orientation and the formation of undefined or even inactive by-products. Most concepts to obtain a more targeted conjugation or immobilization requires the recombinant modification of at least one binding partner, which is often impractical or prohibitively expensive. Here a novel method is presented, which is based on the chemical preactivation of Protein A or G with selected conventional crosslinkers. In a second step, the antibody is added, which is subsequently crosslinked in the Fc part. This leads to an oriented and covalent immobilization of the immunoglobulin with a very high yield. Protocols for Protein A and Protein G with murine and human IgG are presented. This method may be useful for the preparation of columns for affinity chromatography, immunoprecipitation, antibodies conjugated to magnetic particles, permanent and oriented immobilization of antibodies in biosensor systems, microarrays, microtitration plates or any other system, where the loss of antibodies needs to be avoided, and maximum binding capacity is desired. This method is directly applicable even to antibodies in crude cell culture supernatants, raw sera or protein-stabilized antibody preparations without any purification nor enrichment of the IgG. This new method delivered much higher signals as a traditional method and, hence, seems to be preferable in many applications. KW - Antibody coating KW - Proximity-enhanced reaction KW - Immunoglobulins KW - IgG KW - Protein A KW - Protein G KW - Immunoprecipitation KW - Immunocapture KW - Regeneration KW - Biosensor KW - Immunosensor KW - Affinity chromatography KW - Immunoaffinity extraction KW - Oriented immobilization KW - Immunoassay KW - Bioconjugation PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-479786 UR - https://www.mdpi.com/2409-9279/2/2/35 SN - 2409-9279 VL - 2 IS - 2 SP - 1 EP - 14 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juds, Carmen A1 - Schmidt, J. A1 - Weller, Michael G. A1 - Lange, Thorid A1 - Beck, Uwe A1 - Conrad, T. A1 - Boerner, H. G. T1 - Combining phage display and next-generation sequencing for materials sciences: A case study on probing polypropylene surfaces N2 - Phage display biopanning with Illumina next-generation sequencing (NGS) is applied to reveal insights into peptide-based adhesion domains for polypropylene (PP). One biopanning round followed by NGS selects robust PP-binding peptides that are not evident by Sanger sequencing. NGS provides a significant statistical base that enables motif analysis, statistics on positional residue depletion/enrichment, and data analysis to suppress false-positive sequences from amplification bias. The selected sequences are employed as water-based primers for PP-metal adhesion to condition PP surfaces and increase adhesive strength by 100% relative to nonprimed PP. KW - Polymers KW - Polypropylene KW - Glue KW - Plastics KW - Surface Activation KW - Primer KW - Peptide Library KW - Epoxy KW - Solid-binding Peptides KW - Functionalization KW - Polymer-binding Peptides KW - Adhesion KW - Material-binding Peptides KW - Adhesives PY - 2020 U6 - https://doi.org/10.1021/jacs.0c03482 SN - 0002-7863 SN - 1520-5126 VL - 142 IS - 24 SP - 10624 EP - 10628 PB - ACS CY - Washington, DC, USA AN - OPUS4-51123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Tscheuschner, Georg A1 - Herrmann, Stefan A1 - Weller, Michael G. T1 - Fast Detection of 2,4,6-Trinitrotoluene (TNT) at ppt Level by a Laser-Induced Immunofluorometric Biosensor N2 - The illegal use of explosives by terrorists and other criminals is an increasing issue in public spaces, such as airports, railway stations, highways, sports venues, theaters, and other large buildings. Security in these environments can be achieved by different means, including the installation of scanners and other analytical devices to detect ultra-small traces of explosives in a very short time-frame to be able to take action as early as possible to prevent the detonation of such devices. Unfortunately, an ideal explosive detection system still does not exist, which means that a compromise is needed in practice. Most detection devices lack the extreme analytical sensitivity, which is nevertheless necessary due to the low vapor pressure of nearly all explosives. In addition, the rate of false positives needs to be virtually zero, which is also very difficult to achieve. Here we present an immunosensor system based on kinetic competition, which is known to be very fast and may even overcome affinity limitation, which impairs the performance of many traditional competitive assays. This immunosensor consists of a monolithic glass column with a vast excess of immobilized hapten, which traps the fluorescently labeled antibody as long as no explosive is present. In the case of the explosive 2,4,6-trinitrotoluene (TNT), some binding sites of the antibody will be blocked, which leads to an immediate breakthrough of the labeled protein, detectable by highly sensitive laser-induced fluorescence with the help of a Peltier-cooled complementary metal-oxide-semiconductor (CMOS) camera. Liquid handling is performed with high-precision syringe pumps and chip-based mixing-devices and flow-cells. The system achieved limits of detection of 1 pM (1 ppt) of the fluorescent label and around 100 pM (20 ppt) of TNT. The total assay time is less than 8 min. A cross-reactivity test with 5000 pM solutions showed no signal by pentaerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). This immunosensor belongs to the most sensitive and fastest detectors for TNT with no significant cross-reactivity by non-related compounds. The consumption of the labeled antibody is surprisingly low: 1 mg of the reagent would be sufficient for more than one year of continuous biosensor operation. KW - Airport KW - Aviation KW - Bombs KW - Terrorism KW - Biosensing KW - Continuous Sensor KW - High-Speed KW - Ultrasensitive PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511245 VL - 10 IS - 8 SP - 89 PB - MDPI CY - Basel AN - OPUS4-51124 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schwaar, Timm T1 - Entwicklung von multidimensionalen Hochdurchsatzmethoden zur Analyse von Partikel-basierten Peptidbibliotheken N2 - Gegenwärtig ist das Interesse und der Bedarf von Proteinbindern insbesondere in der Biotechnik und Pharmaforschung sehr groß. Kombinatorische, Partikel-basierte (One-Bead-One-Compound) Peptidbibliotheken sind eine Technik, um selektiv bindende Proteine zu identifizieren. Allerdings beinhaltet das Screening dieser Peptidbibliotheken aufwendige Schritte, wie die Separation, Sequenzierung und Charakterisierung von identifizierten Bindern. In dieser Arbeit wurde ein Chip-System entwickelt, auf dem alle Schritte eines Screenings durchgeführt werden können. Dafür wurde ein Glasobjektträger mit einem magnetisch leitenden, doppelseitigen Klebeband versehen. Die Partikel der Bibliothek wurden durch ein Sieb aufgetragen. Dies führte zu einer geordneten Immobilisierung der Partikel auf dem Chip. Über 30.000 Partikel konnten so auf einem Chip immobilisiert werden. Für die Identifizierung von selektiven Protein-bindenden Peptiden wird die immobilisierte Peptidbibliothek mit einem Fluorophor-markierten Protein inkubiert, bindende Partikel mittels Fluoreszenzscan identifiziert und die Peptidsequenz direkt auf dem Chip mittels Matrix-Assisted-Laser-Desorption/Ionization-(MALDI)-Flugzeit-(TOF)-Massenspektroskopie (MS) bestimmt. Die Durchführung einer Abbruchsequenz-Methode erlaubt die eindeutige Bestimmung der Peptidsequenzen mit einer nahezu 100 % Genauigkeit. Die entwickelte Technologie wurde in einem FLAG-Peptid-Modell validiert. Bei dem Screening wurden neue anti-FLAG-Antikörper-bindende Peptide identifiziert. Anschließend wurden in einem Screening von ca. 30.000 Partikeln IgG-bindende Peptide mit mittleren mikromolaren Dissoziationskonstanten identifiziert. Für die Identifizierung stärkerer Binder wurde eine magnetische Anreicherung entwickelt, die dem Chip-Screening vorgeschaltet werden kann. Hiermit wurden aus ca. 1 Million gescreenter Partikel, Peptide mit Dissoziationskonstanten im niedrigen mikromolaren Bereich identifiziert. N2 - The screening of one-bead-one-compound (OBOC) libraries is a well-established technique for the identification of protein-binding ligands. The demand for binders with high affinity and specificity towards various targets has surged in the biomedical and pharmaceutical field in recent years. The combinatoric peptide screening traditionally involves tedious steps such as affinity selection, bead picking, sequencing and characterization. In this thesis, a high-throughput “all-on-one chip” system is presented to avoid slow and technically complex bead picking steps. Beads of a combinatorial peptide library are immobilized on a conventional glass slide equipped with an electrically conductive tape. The beads are applied by using a precision sieve, which allows the spatially ordered immobilization of more than 30,000 beads on one slide. For the target screening, the immobilized library is subsequently incubated with a fluorophore-labeled target protein. In a fluorescence scan followed by matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF) mass spectrometry (MS), high-affinity binders are directly and unambiguously sequenced directly from the bead. The use of an optimized ladder sequencing approach improved the accuracy of the de-novo sequencing step to 100 %. This new technique was validated by employing a FLAG-based model system. In a first step, new peptide binders for the M2 anti-FLAG monoclonal antibody were identified. Finally, this system was utilized to screen for IgG-binding peptides. The screening of about 30.000 peptides on one chip led to the identification of peptide binders in the mid micromolar range. A magnetic enrichment technique was developed to increase the number of screened beads. By combining the magnetic enrichment strategy with the chip system, 1 million beads were screened and IgG-binders in the low micromolar range were identified. KW - Peptidbibliotheken KW - Hochdurchsatzscreening KW - Peptidsequenzierung KW - Chip-Screening PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-511649 SP - 1 EP - 153 PB - Humboldt-Universität CY - Berlin AN - OPUS4-51164 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Nearly all commercial antibody suppliers also may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that, in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies, as well as to assign a specific reagent to a datasheet of a commercial supplier, public database record, or antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - Hybridoma KW - Monoclonal Antibody KW - Recombinant Antibody PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506611 SN - 2310-287X VL - 9 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50661 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology – Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence a risky venture. We think that it is crucial to improve the screening process to eliminate most of the immanent deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and simultaneous performance of competition experiments. The latter can directly be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones and blank supernatant has been designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the IgG concentration, which is unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration is not possible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media had been used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system, we conclude that this approach should be preferable to most other protocols leading to many of false positives, causing expensive and lengthy confirmation steps to weed out the poor clones. KW - Hybridoma KW - Monoclonal Antibodies KW - Clones KW - Competitive Immunoassay KW - Hapten Immunoassay KW - False Positives PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506621 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Tscheuschner, Georg A1 - Schwaar, Timm A1 - Weller, Michael G. T1 - Fast Confirmation of Antibody Identity by MALDI-TOF-MS Fingerprints N2 - Thousands of antibodies for diagnostic and other analytical purposes are on the market. However, it is often difficult to identify duplicates, reagent changes, and to assign the correct original publications to an antibody. This slows down scientific progress and might even be a cause of irreproducible research and a waste of resources. Recently, activities were started to suggest the sole use of recombinant antibodies in combination with the open communication of their sequence. In this case, such uncertainties should be eliminated. Unfortunately, this approach seems to be rather a long-term vision since the development and manufacturing of recombinant antibodies remain quite expensive in the foreseeable future. Also, nearly all commercial antibody suppliers may be reluctant to publish the sequence of their antibodies, since they fear counterfeiting. De-novo sequencing of antibodies is also not feasible today for a reagent user without access to the hybridoma clone. Nevertheless, it seems to be crucial for any scientist to have the opportunity to identify an antibody undoubtedly to guarantee the traceability of any research activity using antibodies from a third party as a tool. For this purpose, we developed a method for the identification of antibodies based on a MALDI-TOF-MS fingerprint. To circumvent lengthy denaturation, reduction, alkylation, and enzymatic digestion steps, the fragmentation was performed with a simple formic acid hydrolysis step. Eighty-nine unknown monoclonal antibodies were used for this study to examine the feasibility of this approach. Although the molecular assignment of peaks was rarely possible, antibodies could be easily recognized in a blinded test, simply from their mass-spectral fingerprint. A general protocol is given, which could be used without any optimization to generate fingerprints for a database. We want to propose that in most scientific projects relying critically on antibody reagents, such a fingerprint should be established to prove and document the identity of the used antibodies and to assign a specific reagent to a datasheet of a commercial supplier, a public database record or an antibody ID. KW - Reproducibility KW - Quality Control KW - Traceability KW - Diagnostics KW - ELISA KW - Immunoassay PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-506590 SN - 2310-287X SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-50659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular-matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two-months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden and inflammatory activity by dual-probe molecular MRI of progressive atherosclerosis. The in-vivo detection and quantification of different MR biomarkers in a single scan could be useful to improve characterization of atherosclerotic-lesions. KW - In-vivo KW - Molecular MRI PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-492514 VL - 9 IS - 1 SP - Article number: 13827 PB - Nature AN - OPUS4-49251 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Costa, Elena A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Antibody-gated indicator releasing mesoporous materials: a potential biosensor platform to be used in the development of rapid tests N2 - The urgent necessity to carry out reliable and relevant analytical measurements directly at a point-of-need is one of the current drivers for the development of miniaturised analytical systems, quick tests and wearables. Despite their simplicity, this type of tests must guarantee analytical relevance and reliability like laboratory-based analysis, e.g., in terms of sensitivity, selectivity, immunity against false positives and false negatives as well as robustness and repeatability. Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we performed several optimisations to develop a potential biosensor platform for use in rapid tests. Conceptually, these gated materials are closely related to drug delivery systems, consisting of high porous materials usually closed with macromolecular “caps” and loaded with indicator molecules that are released in presence of a target analyte. However, the key difference between the two types of functional materials is that many drug delivery systems should deliver their cargo over a longer period, often many hours, whereas the gated materials prepared for sensing should show fast release kinetics, on the order of <5 min. With the aim to optimise and adapt gated materials for sensing purposes, we prepared in this work several antibody-gated materials for small-molecule sensing. The materials consisted of porous silica particles containing indicator molecules in the pores and certain hapten molecules grafted to the particle surface close to the pore openings. The pores were then capped with antibodies binding to these haptens, thus inhibiting the escape of the indicators from inside of the pores. In presence of the corresponding analyte, the antibody is displaced from the surface of the material, allowing the escape of the indicators. This allows the detection of the analyte indirectly through an inherent signal amplification. In this work, the insecticide permethrin, a type-I pyrethroid, was selected as target model, because type-I pyrethroids play an important role in airplane disinfection. A first in-depth study of the various chemical tuning options of such antibody gated systems was performed. Different mesoporous silica supports, different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material’s pore openings, the better the closing/opening mechanism can be controlled. Because such materials can be used in various different formats from suspension assays[1] via microfluidic chips[2] to test strip-based lateral flow assays,[3] such materials present a powerful analytical particle platform for the sensitive analytics and diagnostics outside of a laboratory, realising sensitivities down to the µg kg–1 range in less analysis times of less than 5 min as we have recently demonstrated.[4] T2 - Biosensors for Pandemics CY - Online conference DA - 06.05.2020 KW - Hybrid materials KW - Pyrethroids KW - Signal amplification PY - 2020 UR - http://www.confstreaming.com/Biosensors2020/ AN - OPUS4-50744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Climent Terol, Estela A1 - Costa, Elena A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Antibody-gated indicator releasing mesoporous materials: a potential biosensor platform to be used in the development of rapid tests N2 - The urgent necessity to carry out reliable and relevant analytical measurements directly at a point-of-need is one of the current drivers for the development of miniaturised analytical systems, quick tests and wearables. Despite their simplicity, this type of tests must guarantee analytical relevance and reliability like laboratory-based analysis, e.g., in terms of sensitivity, selectivity, immunity against false positives and false negatives as well as robustness and repeatability. Keeping in mind the high sensitivity offered by gated indicator-releasing micro- and nanoparticles due to their inherent features of signal amplification, we performed several optimisations to develop a potential biosensor platform for use in rapid tests. Conceptually, these gated materials are closely related to drug delivery systems, consisting of high porous materials usually closed with macromolecular “caps” and loaded with indicator molecules that are released in presence of a target analyte. However, the key difference between the two types of functional materials is that many drug delivery systems should deliver their cargo over a longer period, often many hours, whereas the gated materials prepared for sensing should show fast release kinetics, on the order of <5 min. With the aim to optimise and adapt gated materials for sensing purposes, we prepared in this work several antibody-gated materials for small-molecule sensing. The materials consisted of porous silica particles containing indicator molecules in the pores and certain hapten molecules grafted to the particle surface close to the pore openings. The pores were then capped with antibodies binding to these haptens, thus inhibiting the escape of the indicators from inside of the pores. In presence of the corresponding analyte, the antibody is displaced from the surface of the material, allowing the escape of the indicators. This allows the detection of the analyte indirectly through an inherent signal amplification. In this work, the insecticide permethrin, a type-I pyrethroid, was selected as target model, because type-I pyrethroids play an important role in airplane disinfection. A first in-depth study of the various chemical tuning options of such antibody gated systems was performed. Different mesoporous silica supports, different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material’s pore openings, the better the closing/opening mechanism can be controlled. Because such materials can be used in various different formats from suspension assays[1] via microfluidic chips[2] to test strip-based lateral flow assays,[3] such materials present a powerful analytical particle platform for the sensitive analytics and diagnostics outside of a laboratory, realising sensitivities down to the µg kg–1 range in less analysis times of less than 5 min as we have recently demonstrated.[4] T2 - Biosensors for Pandemics CY - Online conference DA - 06.05.2020 KW - Hybrid materials KW - Pyrethroids KW - Signal amplification PY - 2020 UR - http://www.confstreaming.com/Biosensors2020/ AN - OPUS4-50746 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Ast, S. A1 - Weller, Michael G. A1 - Canning, J. A1 - Rurack, Knut T1 - Development of a lateral flow test for rapid pyrethroid detection using antibody-gated indicator-releasing hybrid materials N2 - The employment of type-I pyrethroids for airplane disinfection in recent years underlines the necessity to develop sensing schemes for the rapid detection of these pesticides directly at the point-of-use. Antibody-gated indicator-releasing materials were thus developed and implemented with test strips for lateral-flow assay-based analysis employing a smartphone for readout. Besides a proper matching of pore sizes and gating macromolecules, the functionalization of both the material's outer surface as well as the strips with PEG chains enhanced system performance. This simple assay allowed for the detection of permethrin as a target molecule at concentrations down to the lower ppb level in less than 5 minutes. KW - Lateral flow test KW - Gated hybrid material KW - Fluorescence KW - Smartphone readout device KW - Pyrethroid KW - Pesticide KW - Insecticide KW - SBA-15 KW - Permethrin PY - 2020 U6 - https://doi.org/10.1039/d0an00319k SN - 0003-2654 SN - 1364-5528 VL - 145 IS - 10 SP - 3490 EP - 3494 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-50756 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Juds, Carmen T1 - Biocombinatorially selected peptide-polymer conjugates as polypropylene binders N2 - Peptide-polymer bioconjugates combine oligopeptides with synthetic polymer blocks and can be used for various applications in material sciences. In recent years, bioconjugates were applied as compatibilizers and coatings. Biocombinatorial approaches, such as phage display, have been shown to yield strong binding peptides, which exhibit excellent coating properties as peptide-PEO conjugates. Phage display represents a widely exploited strategy to select peptides or proteins that exhibit highly specific affinity to various substrates. Following a phage display experiment, DNA sequencing of binding phage clones is required in order to get the sequence information of the binding peptides. Traditionally, random clone picking followed by Sanger sequencing was applied. However, this method may not necessarily identify the strongest binding clones. Next-generation sequencing made sequencing of whole phage libraries possible, which highly improved the selection of strong binders. Here, we show that the biocombinatorial method of phage display combined with next generation DNA sequencing of whole phage libraries represents a powerful tool for an application in material chemistry. Phage display is used to find specific target binding peptides for polypropylene surfaces (PP). PP binders are of particular interest because thus far gluing or printing on PP is challenging due to its low surface energy. Scripts for sequence data analysis were developed and promising sequences were synthesized as peptide-PEO conjugates. Fluorescence based adsorption experiments on PP surfaces led to the identification of strong binding sequences and a better understanding of the peptide-surface interactions. T2 - 257th National Meeting of the American-Chemical-Society (ACS) CY - Orlando, FL, USA DA - 31.03.2019 KW - Peptides KW - Surfaces KW - Phage Display KW - Peptide Library KW - Screening KW - Glue KW - Paint KW - Polyethylene Glycol KW - PEG KW - Next Generation Sequencing PY - 2019 AN - OPUS4-48837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut ED - Climent Terol, Estela T1 - Multiplexed Detection of Analytes on Single Test Strips with Antibody-Gated Indicator-Releasing Mesoporous Nanoparticles N2 - Rapid testing methods for the use directly at apointof need are expected to unfold their true potential especiallywhen offering adequate capabilities for the simultaneousmeasurement of multiple analytes of interest. Considering theunique modularity,high sensitivity,and selectivity of antibody-gated indicator delivery (gAID) systems,amultiplexed assayfor three small-molecule explosives (TATP, TNT,PETN) wasthus developed, allowing to detect the analytes simultaneouslywith asingle test strip at lower ppb concentrations in the liquidphase in < 5min using afluorescence reader or asmartphonefor readout. While the TNT and PETN systems were newlydeveloped here,all the three systems also tolerated harshermatrices than buffered aqueous model solutions.Besidesasingle-track strip,the outstanding modularity of the hybridbiosensor materials in combination with strip-patterningtechnologies allowed us to obtain amultichannel strip inastraightforwardmanner,offering comparable analyticalperformance while allowing to be tailored even more to theusersneed. KW - Multiplexing KW - Explosives detection KW - Gated materials KW - Fluorescence PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-518424 SN - 1433-7851 SN - 1521-3773 VL - 59 IS - 52 SP - 23862 EP - 23869 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Climent Terol, Estela A1 - Biyikal, Mustafa A1 - Gröninger, Delia A1 - Weller, Michael G. A1 - Martínez Mánez, R. A1 - Rurack, Knut T1 - Multiplex‐Nachweis von Analyten auf einem einzelnen Teststreifen mit Antikörper‐gesteuerten und Indikator freisetzenden mesoporösen Nanopartikeln N2 - Vor dem Hintergrund der einzigartigen Modularität, hohen Empfindlichkeit und Selektivität von Antikörper‐gesteuerten Indikatorfreisetzungssystemen (gAID‐Systemen) wurde hier ein Multiplex‐Assay für drei organische Explosivstoffmoleküle (TATP, TNT, PETN) entwickelt, der es erlaubt, die Analyten gleichzeitig in flüssiger Phase mit einem einzelnen Teststreifen und einem Fluoreszenzlesegerät bzw. Smartphone als Detektor in Konzentrationen bis in den unteren ppb‐Bereich in <5 min nachzuweisen. Alle drei Systeme, darunter die hier neu entwickelten Systeme für TNT und PETN, tolerieren zudem nicht nur gepufferte wässrige Modelllösungen, sondern auch komplexere Matrices. Neben einem konventionellen Teststreifen mit einem Kanal erlaubte uns die Anwendung von Wachsdrucktechnologie das Herstellen von mehrkanaligen Streifen mit vergleichbarer analytischer Leistungsfähigkeit, was das enorme Potenzial der modular aufgebauten, hybriden Biosensormaterialien im Hinblick auf eine für den Endanwender maßgeschneiderte Vor‐Ort‐Analytik unterstreicht. KW - Multiplex KW - Gesteuerten Nanopartikeln KW - Explosiven PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-518431 SN - 1521-3757 SN - 0044-8249 VL - 132 IS - 52 SP - 24071 EP - 24078 PB - Wiley-VCH CY - Weinheim AN - OPUS4-51843 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Gawlitza, Kornelia A1 - Wan, Wei A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Optimization of analytical assay performance of antibody-gated indicator-releasing mesoporous silica particles N2 - Antibody-gated indicator delivery (gAID) systems based on mesoporous silica nano- and microparticle scaffolds are a promising class of materials for the sensitive chemical detection of small-molecule analytes in simple test formats such as lateral flow assays (LFAs) or microfluidic chips. Their architecture is reminiscent of drug delivery systems, only that reporter molecules instead of drugs are stored in the voids of a porous host particle. In addition, the pores are closed with macromolecular “caps” through a tailored “gatekeeping” recognition chemistry so that the caps are opened when an analyte has reacted with a “gatekeeper”. The subsequent uncapping leads to a release of a large number of indicator molecules, endowing the system with signal amplification features. Particular benefits of such systems are their modularity and adaptability. With the example of the immunochemical detection of type-I pyrethroids by fluorescent dye-releasing gAID systems, the influence of several tuning modes on the optimisation of such hybrid sensory materials is introduced here. In particular, different mesoporous silica supports (from nano- and microparticles to platelets and short fibres), different functionalisation routes and different loading sequences were assessed. The materials’ performances were evaluated by studying their temporal response behaviour and detection sensitivity, including the tightness of pore closure (through the amount of blank release in the absence of analyte) and the release kinetics. Our results indicate that the better the paratope-accommodating Fab region of the antibody “cap” fits into the host material's pore opening, the better the closing/opening mechanism can be controlled. Because such materials are well-suited for LFAs, performance assessment included a test-strip format besides conventional assays in suspension. In combination with dyes as indicators and smartphones for read-out, simple analytical tests for use by untrained personnel directly at a point-of-need such as an aeroplane cabin can be devised, allowing for sensitivities down to the μg kg−1 range in <5 min with case-required selectivities. KW - Antibody-gated indicator delivery KW - Lateral flow assay KW - SBA-15 KW - SBA-16 KW - Type-I pyrethroids KW - Phenothrin KW - Permethrin KW - Etofenprox KW - Amplification KW - Biosensors KW - Immunoassays KW - Mesoporous particles KW - Optical detection PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517053 VL - 8 IS - 22 SP - 4950 EP - 4961 PB - Royal Society of Chemistry AN - OPUS4-51705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ziegler, K. A1 - Kunert, A. T. A1 - Reinmuth-Selzle, K. A1 - Leifke, A. L. A1 - Widera, D. A1 - Weller, Michael G. A1 - Schuppan, D. A1 - Fröhlich-Nowoisky, J. A1 - Lucas, K. A1 - Pöschl, U. T1 - Chemical modification of pro-inflammatory proteins by peroxynitrite increases activation of TLR4 and NF-κB: Implications for the health effects of air pollution and oxidative stress N2 - Environmental pollutants like fine particulate matter can cause adverse health effects through oxidative stress and inflammation. Reactive oxygen and nitrogen species (ROS/RNS) such as peroxynitrite can chemically modify proteins, but the effects of such modifications on the immune system and human health are not well understood. In the course of inflammatory processes, the Toll-like receptor 4 (TLR4) can sense damage-associated molecular patterns (DAMPs). Here, we investigate how the TLR4 response and pro-inflammatory potential of the proteinous DAMPs α-Synuclein (α-Syn), heat shock protein 60 (HSP60), and high-mobility-group box 1 protein (HMGB1), which are relevant in neurodegenerative and cardiovascular diseases, changes upon chemical modification with peroxynitrite. For the peroxynitrite-modified proteins, we found a strongly enhanced activation of TLR4 and the pro-inflammatory transcription factor NF-κB in stable reporter cell lines as well as increased mRNA expression and secretion of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-8 in human monocytes (THP-1). This enhanced activation of innate immunity via TLR4 is mediated by covalent chemical modifications of the studied DAMPs. Our results show that proteinous DAMPs modified by peroxynitrite more potently amplify inflammation via TLR4 activation than the native DAMPs, and provide first evidence that such modifications can directly enhance innate immune responses via a defined receptor. These findings suggest that environmental pollutants and related ROS/RNS may play a role in promoting acute and chronic inflammatory disorders by structurally modifying the body's own DAMPs. This may have important consequences for chronic neurodegenerative, cardiovascular or gastrointestinal diseases that are prevalent in modern societies, and calls for action, to improve air quality and climate in the Anthropocene. KW - Protein nitration KW - Protein oligomerization KW - Damage-associated molecular patterns (DAMPs) KW - Pattern recognition receptor KW - Anthropocene KW - Environmental pollutants PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517128 VL - 37 SP - 101581 PB - Elsevier B.V. AN - OPUS4-51712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steglich, P. A1 - Bondarenko, S. A1 - Mai, C. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Mai, A. T1 - CMOS-Compatible Silicon Photonic Sensor for Refractive Index Sensing Using Local Back-Side Release N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. The sensor is based on a micro-ring resonator and is fabricated on wafer-level using a CMOS technology. We revealed a ring resonator sensitivity for homogeneous sensing of 106 nm/RIU. KW - Photonic biosensor KW - Lab-on-a-chip KW - Ring resonator KW - Resonance wavelength shift KW - PIC technology KW - Back-side integration PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517139 VL - 32 IS - 19 SP - 1241 EP - 1244 PB - IEEE AN - OPUS4-51713 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. A1 - Thöne-Reineke, C. A1 - Robinson, S. A1 - Wilke, Marco A1 - Weller, Michael G. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR-Imaging for Noninvasive Quantification of the Anti-Inflammatory Effect of Targeting Interleukin-1β in a Mouse Model of Aortic Aneurysm N2 - Background: Molecular-MRI is a promising imaging modality for the assessment of abdominal aortic aneurysms (AAAs). Interleukin-1β (IL-1β) represents a new therapeutic tool for AAA-treatment, since pro-inflammatory cytokines are key-mediators of inflammation. This study investigates the potential of molecular-MRI to evaluate therapeutic effects of an anti-IL-1β-therapy on AAA-formation in a mouse-model. Methods: Osmotic-minipumps were implanted in apolipoprotein-deficient-mice (N = 27). One group (Ang-II+01BSUR group, n = 9) was infused with angiotensin-II (Ang-II) for 4 weeks and received an anti-murine IL-1β-antibody (01BSUR) 3 times. One group (Ang-II-group, n = 9) was infused with Ang-II for 4 weeks but received no treatment. Control-group (n = 9) was infused with saline and received no treatment. MR-imaging was performed using an elastin-specific gadolinium-based-probe (0.2 mmol/kg). Results: Mice of the Ang-II+01BSUR-group showed a lower aortic-diameter compared to mice of the Ang-II-group and control mice (p < 0.05). Using the elastin-specific-probe, a significant decrease in elastin-destruction was observed in mice of the Ang-II+01BSUR-group. In vivo MR-measurements correlated well with histopathology (y = 0.34x-13.81, R2 = 0.84, p < 0.05), ICP-MS (y = 0.02x+2.39; R2 = 0.81, p < 0.05) and LA-ICP-MS. Immunofluorescence and western-blotting confirmed a reduced IL-1β-expression. Conclusions: Molecular-MRI enables the early visualization and quantification of the anti-inflammatory-effects of an IL-1β-inhibitor in a mouse-model of AAAs. Responders and non-responders could be identified early after the initiation of the therapy using molecular-MRI. KW - Cardiovascular KW - Molecular-MRI KW - Magnetic resonance imaging KW - Gadolinium-based contrast agent KW - Elastin-specific contrast agent ESMA KW - Gadovist KW - Gadofosveset KW - MR Angiography KW - Inductively Coupled Mass Spectroscopy KW - Element Specific Bioimaging Using Laser Ablation KW - Visualization PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517150 VL - 19 SP - 61875 PB - SAGE AN - OPUS4-51715 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin A1 - Schleeh, Clemens A1 - Weller, Michael G. T1 - High sensitivity online detection of Trinitrotoluene (TNT) N2 - The antibody A.1.1.1 was labeled and found to be very sensitive and highly selective for TNT. A novel monolithic affinity column was coated with a Trinitroaniline (TNA)-BSA affinity conjugate and a custom laser induced fluorescence detector were built to allow for continuous and sensitive detection. The affinity column combined with the high sensitivity detector resulted in a limit of detection of approx. 100 pM TNT or 20 ppt TNT for offline detection and was able to detect picogram amounts within three minutes. T2 - SALSA Make and Measure 2020 CY - Online meeting DA - 15.10.2020 KW - Biosensor KW - Explosive KW - Antibody KW - Online KW - Fluorescence PY - 2020 AN - OPUS4-51529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brangsch, J. A1 - Reimann, C. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reinecke, C. A1 - Robinson, S. P. A1 - Buchholz, R. A1 - Karst, U. A1 - Botnar, R. M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Concurrent Molecular Magnetic Resonance Imaging of Inflammatory Activity and Extracellular Matrix Degradation for the Prediction of Aneurysm Rupture N2 - This study demonstrates the potential of the concurrent assessment of inflammatory activity and ECM degradation by dual-probe molecular MRI in an experimental mouse model of AAA. Based on the combined information from both molecular probes the rupture of AAAs could reliably be predicted, with higher accuracy compared with each probe alone. The combined in vivo quantification of these biomarkers in 1 imaging session may be useful to improve the in vivo characterization of AAAs. KW - Aneurism KW - Extracellular matrix KW - Inflammation KW - Macrophage KW - Magnetic resonance imaging PY - 2019 U6 - https://doi.org/10.1161/CIRCIMAGING.118.008707 VL - 12 IS - 3 SP - e008707 PB - American Heart Association, Inc. CY - Waltham, MA, USA AN - OPUS4-49705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reimann, C. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Adams, L. C. A1 - Onthank, D. C. A1 - Thöne-Reineke, C. A1 - Robinson, S. P. A1 - Hamm, B. A1 - Botnar, R. M. A1 - Makowski, M. R. T1 - Dual-probe molecular MRI for the in vivo characterization of atherosclerosis in a mouse model: Simultaneous assessment of plaque inflammation and extracellular matrix remodeling N2 - Molecular MRI is a promising in-vivo modality to detect and quantify morphological and molecular vessel-wall changes in atherosclerosis. The combination of different molecular biomarkers may improve the risk stratification of patients. This study aimed to investigate the feasibility of simultaneous visualization and quantification of plaque-burden and inflammatory activity by dual-probe molecular MRI in a mouse-model of progressive atherosclerosis and in response-to-therapy. Homozygous apolipoprotein E knockout mice (ApoE−/−) were fed a high-fat-diet (HFD) for up to four-months prior to MRI of the brachiocephalic-artery. To assess response-to-therapy, a statin was administered for the same duration. MR imaging was performed before and after administration of an elastin-specific gadolinium-based and a macrophage-specific iron-oxide-based probe. Following in-vivo MRI, samples were analyzed using histology, immunohistochemistry, inductively-coupled-mass-spectrometry and laser-inductively-coupled-mass-spectrometry. In atherosclerotic-plaques, intraplaque expression of elastic-fibers and inflammatory activity were not directly linked. While the elastin-specific probe demonstrated the highest accumulation in advanced atherosclerotic-plaques after four-months of HFD, the iron-oxide-based probe showed highest accumulation in early atherosclerotic-plaques after two months of HFD. In-vivo measurements for the elastin and iron-oxide-probe were in good agreement with ex-vivo histopathology (Elastica-van-Giesson stain: y = 298.2 + 5.8, R2 = 0.83, p < 0.05; Perls‘ Prussian-blue-stain: y = 834.1 + 0.67, R2 = 0.88, p < 0.05). Contrast-to-noise-ratio (CNR) measurements of the elastin probe were in good agreement with ICP-MS (y = 0.11x-11.3, R² = 0.73, p < 0.05). Late stage atherosclerotic-plaques displayed the strongest increase in both CNR and gadolinium concentration (p < 0.05). The gadolinium probe did not affect the visualization of the iron-oxide-probe and vice versa. This study demonstrates the feasibility of simultaneous assessment of plaque-burden. KW - Gadolinium KW - Elastin KW - Probe KW - Iron oxide KW - Ferumoxytol PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-497066 VL - 9 SP - 13827 PB - Springer Nature AN - OPUS4-49706 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völzke, Jule L. A1 - El-Khatib, Ahmed H. A1 - Vogl, Jochen A1 - Weller, Michael G. T1 - Immunoprecipitation with Nanodiamonds for the Enrichment of Ceruloplasmin from Human Serum N2 - In this study, we developed a new immunoprecipitation method based on protein-coated nanodiamonds. Performing SDS-PAGE and using the SDS-PAGE buffer as an eluent showed that CER could be successfully enriched from human serum. Based on the copper determination with ICP-MS, the amount of bound CER on the nanodiamonds can be calculated. We could show the fulfilled mass balance of bound CER and CER in the supernatant after incubation with a known amount of CER. For isotope ratio analysis this method can be applied to compare ratios of the total copper content in human serum to copper ratios from CER enrichment. T2 - ReMiND 2019 CY - Braunschweig, Germany DA - 26.06.2019 KW - Metalloprotein KW - Copper KW - Affinity enrichment KW - Immunoaffinity KW - Protein g KW - Blood KW - Serum KW - Plasma KW - SDS-PAGE KW - ICP-MS PY - 2019 UR - https://www.ptb.de/empir/remind-conference.html AN - OPUS4-49728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, Martin A1 - Weller, Michael G. T1 - Antibody Screening by Microarray Technology - Direct Identification of Selective High-Affinity Clones N2 - The primary screening of hybridoma cells is a time-critical and laborious step during the development of monoclonal antibodies. Often, critical errors occur in this phase, which supports the notion that the generation of monoclonal antibodies with hybridoma technology is difficult to control and hence, a risky venture. We think that it is crucial to improve the screening process to eliminate most of the critical deficits of the conventional approach. With this new microarray-based procedure, several advances could be achieved: Selectivity for excellent binders, high-throughput, reproducible signals, avoidance of misleading avidity (multivalency) effects, and performance of simultaneous competition experiments. The latter can also be used to select clones of desired cross-reactivity properties. In this paper, a model system with two excellent clones against carbamazepine, two weak clones, and blank supernatant containing fetal bovine serum was designed to examine the effectiveness of the new system. The excellent clones could be detected largely independent of the immunoglobulin G (IgG) concentration, which is usually unknown during the clone screening since the determination and subsequent adjustment of the antibody concentration are not feasible in most cases. Furthermore, in this approach, the enrichment, isolation, and purification of IgG for characterization is not necessary. Raw cell culture supernatant can be used directly, even when fetal calf serum (FCS) or other complex media is used. In addition, an improved method for the oriented antibody-immobilization on epoxy-silanized slides is presented. Based on the results of this model system with simulated hybridoma supernatants, we conclude that this approach should be preferable to most other protocols leading to many false positives, causing expensive and lengthy elimination steps to weed out the poor clones. KW - ELISA KW - Immunoassay KW - Microarray KW - Lab-on-a-chip KW - Miniaturization KW - Aautomatisation KW - HTS KW - High-throughput KW - Screening KW - Fluorescence KW - Label KW - Hybridoma KW - Inhibition PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503361 SN - 2073-4468 VL - 9 IS - 1 SP - 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-50336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steglich, P. A1 - Mai, C. A1 - Bondarenko, S. A1 - Paul, Martin A1 - Weller, Michael G. A1 - Schrader, S. A1 - Mai, A. T1 - BioPIC - Integration of Biosensors based on Photonic Integrated Circuits by Local-Backside Etching N2 - Silicon photonic sensors are promising candidates for lab-on-a-chip solutions with versatile applications and scalable production prospects using complementary metal-oxide semiconductor (CMOS) fabrication methods. However, the widespread use has been hindered because the sensing area adjoins optical and electrical components making packaging and sensor handling challenging. In this work, a local back-side release of the photonic sensor is employed, enabling a separation of the sensing area from the rest of the chip. This approach allows preserving the compatibility of photonic integrated circuits in the front-end of line and metal interconnects in the back-end of line. T2 - ATTRACT online Conference CY - Online meeting DA - 22.09.2020 KW - Silicon Photonics KW - Photonic Sensor KW - Photonic Integrated Circuits KW - Point-Of-Care-Diagnostics KW - CMOS KW - Microfluidics KW - Lab-on-a-chip KW - Ring resonator PY - 2020 UR - https://attract-eu.com/showroom/project/integration-of-biosensors-based-on-photonic-integrated-circuits-by-local-backside-etching-biopic/ SP - 1 EP - 5 AN - OPUS4-51735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, S. A1 - Borde, T. A1 - Brangsch, J. A1 - Reimann, C. A1 - Kader, A. A1 - Schulze, D. A1 - Buchholz, R. A1 - Kaufmann, Jan Ole A1 - Karst, U. A1 - Schellenberger, E. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Assessment of the hepatic tumor extracellular matrix using elastin‑specific molecular magnetic resonance imaging in an experimental rabbit cancer model N2 - To investigate the imaging performance of an elastin-specific molecular magnetic resonance imaging (MRI) probe with respect to the extracellular matrix (ECM) in an experimental hepatic cancer model. Twelve rabbits with hepatic VX2 tumors were examined using 3 T MRI 14, 21, and 28 days after tumor implantation for two subsequent days (gadobutrol, day 1; elastin-specific probe, day 2). The relative enhancement (RE) of segmented tumor regions (central and margin) and the peritumoral matrix was calculated using pre-contrast and delayed-phase T1w sequences. MRI measurements were correlated to histopathology and element-specific and spatially resolved mass spectrometry (MS). Mixed-model analysis was performed to assess the performance of the elastin-specific probe. In comparison to gadobutrol, the elastin probe showed significantly stronger RE, which was pronounced in the tumor margin (day 14–28: P ≤ 0.007). In addition, the elastin probe was superior in discriminating between tumor regions (χ2(4) = 65.87; P < 0.001). MRI-based measurements of the elastin probe significantly correlated with the ex vivo elastinstain (R = .84; P <0 .001) and absolute gadolinium concentrations (ICP-MS: R = .73, P <0 .01). LA-ICP-MS imaging confirmed the colocalization of the elastin-specific probe with elastic fibers. Elastin-specific molecular MRI is superior to non-specific gadolinium-based contrast agents in imaging the ECM of hepatic tumors and the peritumoral tissue. KW - Elastin-specific molecular agent KW - Extracellular matrix KW - Hepatocellular carcinoma KW - Inductively coupled plasma mass spectroscopy KW - Laser ablation-inductively coupled plasma-mass spectrometry KW - Magnetic resonance imaging KW - MR imaging KW - ESMA KW - Gadolinium PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-517360 VL - 10 IS - 1 SP - 20785 PB - Nature AN - OPUS4-51736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kader, A. A1 - Brangsch, J. A1 - Kaufmann, Jan Ole A1 - Zhao, J. A1 - Mangarova, D. B. A1 - Moeckel, J. A1 - Adams, L. C. A1 - Sack, I. A1 - Taupitz, M. A1 - Hamm, B. A1 - Makowski, M. R. T1 - Molecular MR Imaging of Prostate Cancer N2 - This review summarizes recent developments regarding molecular imaging markers for magnetic resonance imaging (MRI) of prostate cancer (PCa). Currently, the clinical standard includes MR imaging using unspecific gadolinium-based contrast agents. Specific molecular probes for the diagnosis of PCa could improve the molecular characterization of the tumor in a non-invasive examination. Furthermore, molecular probes could enable targeted therapies to suppress tumor growth or reduce the tumor size. KW - Prostate cancer KW - Magnetic resonance imaging KW - Molecular imaging KW - Imaging KW - Molecular marker KW - Screening KW - MRI KW - Diagnosis PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-519503 VL - 9 IS - 1 SP - 1 EP - 17 PB - MDPI CY - Basel AN - OPUS4-51950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bosc-Bierne, Gaby T1 - A generic, cost-efficient HPLC-HRMS method for quality control of peptide pools N2 - Synthetic peptide pools are used in antigen-specific T-cell assays, which are an important part in vaccine and immunotherapeutic clinical trials. As the analytical characterization is challenging due to the similarity of the single peptides or is expensive due to isotope labeled standards, usually only a pre-characterization of the single peptides is performed. However, a regular quality control of the peptide mix would be highly desirable. Therefore, a cost-efficient high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method for quality control of a model peptide pool is developed. Peptides were synthesized using peptides&elephants proprietary libraries of individual peptides (LIPS) technology and purified by reversed-phase chromatography to > 90% each. The lyophilized single peptides were combined to a model peptide pool and analyzed by reversed-phase high-performance capillary liquid chromatography coupled to an orbitrap mass spectrometer. Separation was performed on a capillary reversed phase column (2 μm, ID x L 300 μm x 150 mm) with a linear gradient of acetonitrile + 0,05% trifluoroacetic acid. After optimizing the injection mode, the gradient elution, the temperature and the additives a model peptide pool was separated. The extracted ion chromatogram (XIC) was studied to confirm the exact masses. By combination of capillary HPLC and HRMS a new cost-efficient quality control method could be developed for the separation and identification of complex synthetic peptide pools. T2 - 5th European Congress of Immunology CY - Amsterdam, The Netherlands DA - 02.09.2018 KW - Peptide pools KW - Quality control KW - LC-MS PY - 2018 AN - OPUS4-45858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bosc-Bierne, Gaby T1 - Development of an HPLC-HRMS method for quality control of peptide pools N2 - Synthetic peptide pools are used in antigen-specific T-cell assays, which are an important part in vaccine and immunotherapeutic clinical trials. As the analytical characterization is challenging due to the similarity of the single peptides or is expensive due to isotope labeled standards, usually only a pre-characterization of the single peptides is performed. However, a regular quality control of the peptide mix would be highly desirable. Therefore, a cost-efficient high performance liquid chromatography-high resolution mass spectrometry (HPLC-HRMS) method for quality control of a model peptide pool is developed. Peptides were synthesized using peptides&elephants proprietary libraries of individual peptides (LIPS) technology and purified by reversed-phase chromatography to > 90% each. The lyophilized single peptides were combined to a model peptide pool and analyzed by reversed-phase high-performance capillary liquid chromatography coupled to an orbitrap mass spectrometer. Separation was performed on a capillary reversed phase column (2 μm, ID x L 300 μm x 150 mm) with a linear gradient of acetonitrile + 0,05% trifluoroacetic acid. For the separation of a model peptide pool the additive, additive concentration, the gradient elution and the temperature were optimized. Different quantification approaches were tested. Identification was performed by high resolution mass spectrometry in which extracted ion chromatograms (XIC) were used to confirm exact masses. In line with the development of a new cost-efficient quality control method for the separation and identification of complex synthetic peptide pools, varied HPLC parameters highlighted their influence on chromatographic resolution and peptides were identified with high mass accuracy. T2 - 8th Austrian Peptide Symposium CY - Salzburg, Austria DA - 13.12.2018 KW - LC-MS KW - Peptide pools KW - Quality control PY - 2018 AN - OPUS4-47058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Celasun, S. A1 - Remmler, D. A1 - Schwaar, Timm A1 - Weller, Michael G. A1 - Du Prez, F. A1 - Börner, H. G. T1 - Digging into the sequential space of thiolactone precision polymers: A combinatorial strategy to identify functional domains N2 - Functional sequences of precision polymers based on thiolactone/Michael chemistry are identified from a large one-bead one-compound library. Single-bead readout by MALDI-TOF MS/MS identifies sequences that host m-THPC that is a second Generation photo-sensitizer drug. The corresponding Tla/Michael-PEG conjugates make m-THPC available in solution and drug payload as well as drug release kinetics can be fine-tuned by the precision segment. KW - Combinatorial chemistry KW - Combinatorial polymer libraries KW - Sequence-defined oligomer KW - Precision polymer sequencing KW - Pseudo peptides KW - MALDI-TOF KW - ESI MS KW - Mass spectrometry KW - Sequencing KW - PEG KW - Polyethylene glycol KW - Solubilizer KW - Drug KW - Conjugates PY - 2019 U6 - https://doi.org/10.1002/anie.201810393 SN - 1521-3773 VL - 58 IS - 7 SP - 1960 EP - 1964 PB - Wiley-VCH CY - Weinheim AN - OPUS4-47323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Costa, Elena A1 - Climent Terol, Estela A1 - Weller, Michael G. A1 - Rurack, Knut T1 - Development of a rapid test for on-site measurement of pyrethroid surface residues N2 - Type-I pyrethroids are frequently used for disinfection purposes against insects such as adult mosquitoes, or diseases carried by insects, like Malaria or Zika in cabins of airplanes on long-distance flights especially from tropical destinations. This treatment is mandatory at various airports but compliance with the rules is difficult to test for. Moreover, if improperly used, these compounds can entail negative health effects for crews and passengers. The detection of the pyrethroids will be achieved thanks to an antibody-gated indicator delivery system (gAID) utilizing monoclonal antibodies and hybrid sensory nanoparticles. After the interaction of the pyrethroid with the gAID, the liberated indicator (dye) will be detected. Since only few analyte molecules are necessary for pore opening yet release a large number of dyes, the system shows intrinsic signal amplification. The device system to be developed has to be so simple that chemically untrained personnel, such as ground or cabin crew, can use it and obtain a result in a reasonably short period of time, e.g., ≤5 min. The need for high accuracy and sufficient sensitivity, established at 0.001 g m–2, is a critical requirement and imposes another significant challenge since this value is beyond current LFTs reported in the literature for pesticide detection to date. In order to achieve the selectivity and sensitivity required by the test itself, and to avoid cross reactivity with other type I pyrethroids, the production of a monoclonal antibody for both Permethrin and Phenontrin is necessary. The synthesis of the two hapten molecules and the subsequent immunization with different immunogens represent the first goal of the work. T2 - Rapid Methods Europe 2018 CY - Amsterdam, The Netherlands DA - 05.11.2018 KW - Pyrethroids KW - Raid test KW - Test strip KW - Delivery system KW - Air traffic PY - 2018 AN - OPUS4-47128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diepeveen, L. E. A1 - Laarakkers, C. M. M. A1 - Martos, G. A1 - Pawlak, M. E. A1 - Uguz, F. F. A1 - Verbene, K. E. S. A. A1 - van Swelm, R. P. L. A1 - Klaver, S. A1 - de Haan, A. F. J. A1 - Pitts, K. R. A1 - Bansal, S. S. A1 - Abbas, Ioana M. A1 - Fillet, M. A1 - Lefebvre, T. A1 - Geurts-Moespot, A. J. A1 - Girelli, D. A1 - Castagna, A. A1 - Herkert, M. A1 - Itkonen, O. A1 - Olbina, G. A1 - Tomosugi, N. A1 - Westerman, M. E. A1 - Delatour, V. A1 - Weykamp, C. W. A1 - Swinkels, D. W. T1 - Provisional standardization of hepcidin assays: creating a traceability chain with a primary reference material, candidate reference method and a commutable secondary reference material N2 - Hepcidin-25 concentrations measured by various methods differ considerably, complicating interpretation. Here, a previously identified plasma-based candidate secondary reference material (csRM) was modified into a serum-based two-leveled sRM. We validated its functionality to increase the equivalence between methods for international standardization. We applied technical procedures developed by the International Consortium for Harmonization of Clinical Laboratory Results. The sRM, consisting of lyophilized serum with cryolyoprotectant, appeared commutable among nine different measurement procedures using 16 native human serum samples in a first round robin (RR1). Harmonization potential of the sRM was simulated in RR1 and evaluated in practice in RR2 among 11 measurement procedures using three native human plasma samples. Comprehensive purity analysis of a candidate primary RM (cpRM) was performed by state-of-the-art procedures. The sRM was value assigned with an isotope dilution mass spectrometry-based candidate reference method calibrated using the certified pRM. The inter-assay CV without harmonization was 42.1% and 52.8% in RR1 and RR2, respectively. In RR1, simulation of harmonization with sRM resulted in an inter-assay CV of 11.0%, whereas in RR2 calibration with the material resulted in an inter-assay CV of 19.1%. Both the sRM and pRM passed international homogeneity criteria and showed long-term stability. We assigned values to the low (0.95 ± 0.11 nmol/L) and middle concentration (3.75 ± 0.17 nmol/L) calibrators of the sRM. Standardization of hepcidin is possible with our sRM, which value is assigned by a pRM. We propose the implementation of this material as an international calibrator for hepcidin-25. KW - Reference material KW - Peptide KW - Biomarker KW - Bioanalysis KW - Mass spectrometry KW - LC-MS/MS KW - Iron deficiency KW - MALDI-TOF MS KW - UHPLC-MS/MS KW - ELISA KW - Immunoassay PY - 2018 U6 - https://doi.org/10.1515/cclm-2018-0783 SN - 1437-4331 SN - 1434-6621 VL - 57 IS - 6 SP - 864 EP - 872 PB - De Gruyter CY - Berlin AN - OPUS4-47153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ickert, Stefanie A1 - Schwaar, Timm A1 - Springer, A. A1 - Grabarics, M. A1 - Riedel, Jens A1 - Beck, S. A1 - Pagel, K. A1 - Linscheid, M. W. T1 - Comparison of the fragmentation behavior of DNA and LNA single strands and duplexes N2 - DNA and locked nucleic acid (LNA) were characterized as single strands, as well as double stranded DNA-DNA duplexes and DNA-LNA hybrids using tandem mass spectrometry with collision-induced dissociation. Additionally, ion mobility spectrometry was carried out on selected species. Oligonucleotide duplexes of different sequences – bearing mismatch positions and abasic sites of complementary DNA 15-mers – were investigated to unravel general trends in their stability in the gas phase. Single stranded LNA oligonucleotides were also investigated with respect to their gas phase behavior and fragmentation upon collision-induced dissociation. In contrast to the collision-induced dissociation of DNA, almost no base loss was observed for LNAs. Here, backbone cleavages were the dominant dissociation pathways. This finding was further underlined by the need for higher activation energies. Base losses from the LNA strand were also absent in fragmentation experiments of the investigated DNA-LNA hybrid duplexes. While DNA-DNA duplexes dissociated easily into single stranded fragments, the high stability of DNA-LNA hybrids resulted in predominant fragmentation of the DNA part rather than the LNA, while base losses were only observed from the DNA single strand of the hybrid. KW - Oligonucleotide fragmentation KW - Locked nucleic acids KW - Collision induced dissociation (CID) KW - Double strands KW - Ion mobility spectrometry PY - 2019 U6 - https://doi.org/10.1002/jms.4344 VL - 54 IS - 5 SP - 402 EP - 411 PB - Wiley AN - OPUS4-47485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Riedel, Jens A1 - You, Yi A1 - Bierstedt, Andreas A1 - van Wasen, Sebastian A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. T1 - Airborne Laser-Induced Plasma as an Ambient Desorption/Ionization Source for Mass Spectrometry and its Characterization N2 - Laser-induced plasma (LIP) has drawn significant amount of attentions in the past decades, particular in elemental analyses for solid or liquid samples. Through proper focusing of the highly energetic laser beam, the plasma can also be ignited in the ambient air, where airborne analytes can be ionized. Such an effect enabled the use of airborne LIP as an ambient ionization source for mass spectrometric analyses. In contrast to other ambient desorption/ionization sources, airborne LIP does not require a specific discharge medium or expensive gas stream. Meanwhile, the airborne LIP produces reagent ion species for both proton-transfer and charge-transfer reactions in addition to the vacuum ultraviolent photons that are capable of promoting single photon ionization, which can be utilized to ionize polar and non-polar analytes. In order to gauge the analytical performance of airborne LIP, it is critical to understand the undergoing chemistry and physics during and after the plasma formation. Due to the ambient nature of airborne LIP, the variations of air composition and flow strongly affect the plasma behaviors. Preliminary result suggested the addition of a laminar flow of nitrogen gas favored the formation of protonated species (MH+) against the molecular ones (M+). Although the gas addition approach cannot fully tune the ionization process towards the specific production of pseudo-molecular species versus molecular ones, the alternation of molecular ion formation can be used for analyte recognitions through post processing of the ion patterns. The pulsed character of the used lasers makes the reagent ion equilibrium both transient- and highly fluid-dynamically controlled. The acoustic shock-waves induced by the airborne LIP get affected by an applied gas streams towards the plasma center, influencing the molecular-ion and ion-ion interactions in the near proximity of the plasma. To understand the airborne LIP formation, the temporally and spatially resolved optical emission spectra were recorded. The results will be correlated to time-resolved mass-spectrometric investigations of the ion profile during different stages of the plasma formation. As one example, the formation of pyrylium ion originating from aromatic compounds will be highlighted. T2 - SciX 2018 CY - Atlanta, GA, USA DA - 21.10.2018 KW - Laser-Induced Plasma KW - Ambient Desorption/Ionization KW - Mass Spectrometry KW - Characterization PY - 2018 AN - OPUS4-46376 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Schwaar, Timm A1 - Remmler, Dario A1 - Börner, Hans G. T1 - Spec2Seq N2 - Spe2Seq automatically translates mass spectrometry fragment spectra of precision polymers into their corresponding sequence. This software is especially useful for combinatorial approaches. KW - Java GUI KW - Polymers KW - Mass spectroscopy (MS) PY - 2018 SP - 1 EP - 8 PB - Humboldt-Universität CY - Berlin AN - OPUS4-46987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vranic, Marija A1 - Starke, I. A1 - Weller, Michael G. A1 - Möller, H. M. T1 - Expression, purification and characterization of the recombinant cysteine-rich biomarker Hepcidin-25 N2 - Hepcidin regulates iron homeostasis in response to inflammation, erythropoietic demand, and iron stores. The native state of hepcidin-25 is an attractive target for the development of a reliable analytical tool that can quantify the hepcidin concentration in biological samples and reveal iron metabolic disorders. Therefore, a selective immunoassay would have to discriminate between different types of hepcidin and quantify only hepcidin-25’s concentration. The peptide contains a well-defined β-sheets and a β-hairpin loop stabilized by four disulfide bonds. Recently, it was shown that hepcidin-25 contains an ATCUN motif at its N-terminus. This motif is known to have high affinity towards Cu2+ and Ni2+. One of the aims of this study is to determine the three-dimensional (3D) structure of metal-bound hepcidin-25. Here, we present an optimized procedure for preparing natively folded hepcidin 25 (~2.80 kDa) and structural analysis of metal binding to hepcidin-25. Hepcidin was expressed as a His6-SUMO-hepcidin-25 fusion protein (~16.20 kDa) in Escherichia coli, Origami B strains, and purified as a soluble recombinant protein in three steps. After purification based on the nickel affinity chromatography, the purified His6-SUMO-hepcidin 25 fusion protein was cleaved by the SUMO-specific ULP1 protease. The liberated hepcidin 25 was further purified on a Superdex 30 16/600 column and folded in the last step of purification in the presence of glutathione. Freshly expressed hepcidin was kept in its reduced form to prevent misfolding and allow for efficient removal of the SUMO tag. The presence of natively folded hepcidin 25 after RP-HPLC was confirmed by ESI-MS and NMR spectroscopy. Based on published chemical shifts, we achieved a nearly complete assignment of the labeled and unlabeled hepcidin-25 at pH=3. Comparison of 1H chemical shifts and TOCSY spectra at pH=7 in the presence and absence of Ni2+ demonstrates that the metal binds at the N-terminus of hepcidin 25. Chemical shift changes due to metal complexation decrease further away from the metal binding site. T2 - 28th International Conference on Magnetic Resonance in Biological Systems, ICMRBS CY - Dublin, Irland DA - 19.08.2018 KW - Peptides KW - Metalloproteins KW - Copper KW - ATCUN KW - Nickel KW - NMR KW - SUMO KW - Fusion protein KW - Iron disorders KW - ESI-MS KW - RP-HPLC PY - 2018 AN - OPUS4-46944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vranic, Marija A1 - Starke, I. A1 - Weller, Michael G. A1 - Möller, H. M. T1 - Metal-binding properties of the cystein-rich biomarker Hepcidin-25 N2 - Hepcidin-25 regulates iron homeostasis in response to inflammation, erythropoietic demand and iron stores. The liver synthesizes three types of hepcidin, only hepcidin-25 indirectly regulates and coordinates use and storage of iron. Hepcidin-25 contains a well defined β-sheet and β-hairpin loop stabilized by four disulfide bonds. The N-terminus which plays a crucial role in the biological activity of hepcidin-25 was found to be disordered. The ATCUN motif sequence is present at the N-terminus (Asp-Thr-His). The ATCUN motif (H2N-X-X-His) binds Cu2+ and Ni2+ with high affinity and always contains histidine in its sequence. NMR provides an ideal tool to determine hepcidin-25’s threedimensional(3D) structure taking into account the Cu2+ and Ni2+ binding capacity of hepcidin’s ATCUN motif. T2 - 3rd International Conference Proteins and Peptides, Structure, Function and Biotechnology CY - Geneva, Switzerland DA - 23.07.2018 KW - Peptides KW - Metalloproteins KW - Chromatography KW - ATCUN KW - Nickel KW - Copper KW - SUMO KW - Fusion protein KW - Iron disorders KW - ESI-MS KW - RP-HPLC PY - 2018 AN - OPUS4-46945 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Vranic, Marija A1 - Starke, I. A1 - Weller, Michael G. A1 - Möller, H. M. T1 - Metal-binding properties of the cysteine-rich biomarker Hepcidin-25 N2 - Comparison of 1H chemical shifts and TOCSY data in the presence and absence of Ni2+ demonstrates that the metal binds at the N-terminus of the hepcidin-25. Chemical shift changes due to metal complexation decrease further away from the metal binding site, with the smallest effect at phenylalanine [Phe-4], proline [Pro-5] and isoleucine [Ile-6]. T2 - 8th Peptide Engineering Meeting CY - Berlin, Germany DA - 08.11.2018 KW - Peptides KW - Metalloproteins KW - Copper KW - ATCUN PY - 2018 AN - OPUS4-46946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, Ioana M. A1 - Vranic, M. A1 - Hoffmann, Holger A1 - El-Khatib, Ahmed H. A1 - Montes-Bayón, M. A1 - Möller, H. M. A1 - Weller, Michael G. T1 - Investigations of the copper peptide hepcidin-25 by LC-MS/MS and NMR (+) N2 - Hepcidin-25 was identified as the main iron regulator in the human body, and it by binds to the sole iron-exporter ferroportin. Studies showed that the N-terminus of hepcidin is responsible for this interaction, the same N-terminus that encompasses a small copper(II)-binding site known as the ATCUN (amino-terminal Cu(II)- and Ni(II)-binding) motif. Interestingly, this copper-binding property is largely ignored in most papers dealing with hepcidin-25. In this context, detailed investigations of the complex formed between hepcidin-25 and copper could reveal insight into its biological role. The present work focuses on metal-bound hepcidin-25 that can be considered the biologically active form. The first part is devoted to the reversed-phase chromatographic separation of copper-bound and copper-free hepcidin-25 achieved by applying basic mobile phases containing 0.1% ammonia. Further, mass spectrometry (tandem mass spectrometry (MS/MS), high-resolution mass spectrometry HRMS)) and nuclear magnetic resonance (NMR) spectroscopy were employed to characterize the copper-peptide. Lastly, a three-dimensional (3D)model of hepcidin-25with bound copper(II) is presented. The identification of metal complexes and potential isoforms and isomers, from which the latter usually are left undetected by mass spectrometry, led to the conclusion that complementary analytical methods are needed to characterize a peptide calibrant or reference material comprehensively. Quantitative nuclear magnetic resonance (qNMR), inductively-coupled plasma mass spectrometry (ICP-MS), ion-mobility spectrometry (IMS) and chiral amino acid analysis (AAA) should be considered among others. KW - Metalloprotein KW - Peptide KW - Chromatography KW - High pH KW - Mobile phase KW - Metrology KW - Purity KW - Reference material KW - ATCUN KW - Copper KW - Nickel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457796 UR - http://www.mdpi.com/1422-0067/19/8/2271 SN - 1422-0067 VL - 19 IS - 8 SP - 2271, 1 EP - 16 PB - MDPI CY - Basel AN - OPUS4-45779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Abbas, Ioana M. T1 - Development of LC-MS/MS methods for the quantitative determination of hepcidin-25, a key regulator of iron metabolism N2 - Isotope-dilution liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS) is emerging in the field of clinical chemistry and laboratory medicine as an alternative to immunoassays and is acknowledged as the MS “gold standard” for small biomolecule quantification. Hepcidin-25, a key iron-regulatory peptide hormone discovered in 2000, has revolutionized the understanding of iron disorders and its quantitative determination in biological samples should advance the management of iron-related pathology (diagnosis, prognosis and treatment). This study applied LC-MS/MS, using the triple quadrupole (QqQ) mass spectrometer, in a rapid and robust analytical strategy for the quantification of hepcidin-25 in human serum, to be implemented in routine laboratories. For this purpose, two sample preparation strategies and two complementary chromatographic separation conditions were investigated, where the use of acidic mobile phases (0.1% trifluoroacetic acid) was compared with a novel approach involving solvents at high pH (containing 0.1% ammonia). The application of these LC-MS/MS methods to human samples in an intra-laboratory comparison, using the same hepcidin-25 calibrators, yielded a very good correlation of the results. The LC-MS/MS employing trifluoroacetic acid-based mobile phases was selected as a highly sensitive (limit of quantification LOQ of 0.5 μg/L) and precise (coefficient of variation CV<15%) method and was recommended as a reference method candidate for hepcidin-25 quantification in real samples (in the dynamic range of 0.5-40 μg/L). One of the novel aspects of the methodology was the use of amino- and fluoro-silanized autosampler vials to reduce the interaction of the 25-residue peptide to laboratory glassware surfaces. Moreover, this LC-MS/MS method was used for an international round robin study, applying a secondary reference material as a calibrator. By determining the degree of equivalence between the results of the ten participating methodologies, the performance of the method developed in this study was found to be in the optimal range as defined by the International Consortium for Harmonization of Clinical Laboratory Results (ICHCLR). In this work, the formation of hepcidin-25 complexes with copper(II) was investigated. The first reversed-phase chromatographic separation of hepcidin-25/Cu2+ and hepcidin-25 (copper “free”) was achieved by applying mobile phases containing 0.1% of ammonia (pH 11). LC-MS/MS and high-resolution mass spectrometry (Fourier-transform ion cyclotron resonance (FTICR) MS) were applied for the mass spectrometric characterization of the formed hepcidin-25-Cu(II) species at pH values of 11 and 7.4 respectively. A new species corresponding to hepcidin-25 complexed with two copper ions was identified at high pH. KW - Copper KW - LC-MS/MS KW - Chromatography KW - Mass spectrometry KW - Metal complex KW - Metalloprotein KW - Peptide KW - Metrology KW - Reference material PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:11-110-18452/20119-6 UR - https://edoc.hu-berlin.de/handle/18452/20119?show=full SP - 1 EP - 156 CY - Berlin AN - OPUS4-45780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Carl, Peter A1 - Schwaar, Timm T1 - Spheriplex multiplexed immunoassays: A practical tool for environmental, food and bioanalysis N2 - Clinical, environmental, and food analysis, require efficient and accurate quantitative analysis. Immunoassays take advantage of highly selective and affine binding of an antibody towards an antigen, being easy-to-use and allowing for high sample throughput. However, common immunoassays, e. g. ELISA are not capable of multiplexed analysis, thus limiting possible applications. On the other hand, multi-analyte methods, e.g. liquid chromatographytandem mass spectrometry requires expensive equipment, trained analysts and the time of analysis usually limits sample throughput. This bottleneck can be overcome combining the suspension array technology, where particles are encoded to allow multiplexed detection, with fluorescence immunoassays to create suspension array fluorescence immunoassays (SAFIA). Polystyrene core/silica shell microparticles serve as platform for SAFIA. While an encoding dye is introduced in the polystyrene core, the silica shell is used for immobilization: For competitive hapten immunoassays small molecules are immobilized on the surface, serving as a competitive binding site for selective antibodies. For quantification of proteins, antibodies can be immobilized on the surface and the sandwich immunoassay format can be employed. All mentioned immunoassays can be executed wash-free and highly parallelized, allowing up to 500 determinations within three hours. In contrast to ELISA, short incubation times, a wash-free mix-and-read procedure and automated flow-cytometric read-out makes SAFIA applicable for even non-trained personal. SAFIA showed excellent performance in studies on the origin and fate of drug residues in waste water, which is important to assess clearance rates of wastewater treatment plants. Furthermore, SAFIA can be employed in environmental screenings, detecting pollution of natural river waters by tracking anthropogenic marker substances. It was successfully employed in clinical and food analysis applications, e.g. the quantification of the anti-inflammatory drug diclofenac in breast milk or the quantification of caffeine in beverages. Due to multiplexing capacities, SAFIA can significantly improve biotechnological processes, as in the screening of hybridoma cells for selective and efficient antibody production. For small molecule analytes, limits of detection down to 4 ng/L and for proteins below 25 ng/mL (IgG) were observed, which makes SAFIA applicable to all addressed analytical issues. Moreover, in the analysis of real-world samples, SAFIA shows higher accuracy in contrast to ELISA, indicating higher matrix stability and thus higher robustness in analysis. T2 - Industry on Campus 2019 CY - Berlin, Germany DA - 27.03.2019 KW - Bead-based-assay KW - SAFIA KW - Immunoassay KW - Flow cytometry KW - Diclofenac PY - 2019 AN - OPUS4-47639 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwaar, Timm A1 - Weller, Michael G. A1 - Lettow, Maike A1 - Remmler, Dario A1 - Börner, Hans G. T1 - MALDI-Supported Screening of Large Peptide Libraries for Identification of Protein Binders N2 - Screening of one-bead-one-peptide libraries is a powerful analytical tool for the identification of protein ligands. However, the traditional peptide screening procedure involves tedious steps such as manual selection, sequencing, and characterization. We present a high-throughput “all in one chip” system, allowing the screening of a high number of resin beads in short time. Here, beads of a combinatorial one-bead one compound peptide library are immobilized on an in-house produced chip, on which every bead has a well-defined position. The chip is then incubated with a fluorophore-labeled protein, identifying suitable peptides by a high-resolution fluorescence scan. The screening is followed by MALDI-MS experiments directly on the respective glass chip. To circumvent the need for peptide fragmentation normally used for peptide de novo sequencing, which can result in incomplete sequence information, an approach based on ladder sequencing has been used. This allows the peptide sequence identification by fragmentation-free MS with almost 100 % accuracy. For this purpose, a software tool was developed automatically translating MALDI-MS spectra into the corresponding peptide sequences. T2 - ANAKON CY - Münster, Germany DA - 25.03.2019 KW - OBOC KW - Peptide library KW - Combinatorial screening PY - 2019 AN - OPUS4-47744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin A1 - Weller, Michael G. T1 - Development of a biosensor for the online detection of explosives N2 - An affinity column, which removed up to 99 % of high affinity Anti-TNT antibody at high antibody concentrations, was manufactured based on a monolithic glass core and a trinitroaniline-BSA conjugate. To detect the label Dy654 in the nM range an epi-fluorescence microscope setup with a CMOS camera was established to serve as online fluorescence detector with multiplexing capabilities. T2 - ANAKON 2019 CY - Münster, Germany DA - 25.03.2019 KW - Online fluorescence KW - Trinitro KW - Affinty KW - Antibody PY - 2019 AN - OPUS4-47745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wilke, Marco A1 - Weller, Michael G. T1 - Affinitätschromatografie - Neues Trägermaterial aus Borosilikatglas N2 - Therapeutische Antikörper sind innerhalb weniger Jahre zur wichtigsten pharmazeutischen Produktklasse aufgestiegen. Für 2023 werden weltweite Umsätze von über 200 Milliarden USD erwartet. Auch diagnostische Antikörper sind mittlerweile unverzichtbare Produkte, auf deren Basis zahllose Immunoassays und andere Schnelltests entwickelt wurden. Neben der bereits sehr aufwendigen Herstellung von Antikörpern ist deren Aufreinigung aus komplexen Zellkulturmedien oder Blutseren und -plasmen zu einem Engpass in der Produktion und Nutzung dieser komplexen Proteine geworden. Schnelle und einfache Reinigungsmethoden für Antikörper sind daher sehr gefragt. KW - Affinitätschromatographie KW - Affinitätsextraktion KW - Antikörper KW - Glasmonolith KW - Additive Fertigung KW - IgG KW - Immunglobulin KW - HPLC KW - FPLC KW - biokompatibel KW - Borosilikatglas KW - gesintert KW - Titan-Halterung KW - Druckstabilität PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-477490 UR - https://www.chemiextra.com/ IS - 4 SP - 16 EP - 17 PB - Sigwerb CY - Zug AN - OPUS4-47749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -