TY - JOUR A1 - Bosc-Bierne, Gaby A1 - Weller, Michael G. T1 - Investigation of impurities in peptide pools T1 - Untersuchung von Verunreinigungen in Peptidpools N2 - Peptide pools are important research tools in different biomedical fields. They consist of a complex mixture of defined peptides, which places high demands on the production and quality control of these products. Previously it has been shown that the combination of UHPLC with high-resolution mass-spectrometry (HRMS) is a fast and powerful method to confirm the relative concentration and the structural identity of all peptides expected to be in the pool. In this work, the additional information contained in the UV chromatograms and mass spectra is used to search for impurities due to synthesis by-products and degradation during storage and transportation and to identify possible analytical artifacts. It was shown that most impurities are only present in trace amounts and can be considered uncritical for most applications. The most frequent and perhaps unexpected impurities were homo- and heterodimers caused by the free cysteines contained in these peptide pools. Furthermore, pyroglutamate and aspartimide formation, deamidation, methionine oxidation, and amino acid deletions could be found. This list is not intended to be comprehensive, but rather a brief guide to quickly identify impurities and, in the long term, to suggest possible changes in the composition of the peptide pools to avoid such impurities by design or by special precautions. N2 - Peptidpools sind wichtige Forschungsinstrumente in verschiedenen biomedizinischen Bereichen. Sie bestehen aus einer komplexen Mischung definierter Peptide, was hohe Anforderungen an die Herstellung und Qualitätskontrolle dieser Produkte stellt. In der Vergangenheit wurde gezeigt, dass die Kombination von UHPLC mit hochauflösender Massenspektrometrie (HRMS) eine schnelle und leistungsfähige Methode zur Bestätigung der relativen Konzentration und der strukturellen Identität aller Peptide ist, die in dem Pool erwartet werden. In dieser Arbeit werden die zusätzlichen Informationen, die in den UV-Chromatogrammen und Massenspektren enthalten sind, genutzt, um nach Verunreinigungen zu suchen, die auf Nebenprodukte der Synthese und den Abbau während der Lagerung und des Transports zurückzuführen sind, und um mögliche analytische Artefakte zu identifizieren. Es hat sich gezeigt, dass die meisten Verunreinigungen nur in Spuren vorhanden sind und für die meisten Anwendungen als unkritisch angesehen werden können. Die häufigsten und vielleicht unerwartetsten Verunreinigungen waren Homo- und Heterodimere, die durch die in diesen Peptidpools enthaltenen freien Cysteine verursacht werden. Außerdem wurden Pyroglutamat- und Aspartimidbildung, Deamidierung, Methioninoxidation und Aminosäuredeletionen festgestellt. Diese Liste erhebt keinen Anspruch auf Vollständigkeit, sondern ist eher ein kurzer Leitfaden, um Verunreinigungen schnell zu identifizieren und langfristig mögliche Änderungen in der Zusammensetzung der Peptidpools vorzuschlagen, um solche Verunreinigungen durch Design oder besondere Vorsichtsmaßnahmen zu vermeiden. KW - Synthetic peptides KW - Degradation KW - Synthetic artifacts KW - Peptide losses KW - Stability of peptides KW - Disulfide dimers KW - Cysteine dimers KW - Isomers KW - Cysteine alkylation PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-626987 DO - https://doi.org/10.3390/separations12020036 SN - 2297-8739 VL - 12 IS - 2 SP - 1 EP - 18 PB - MDPI AG CY - Basel AN - OPUS4-62698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weller, Michael G. T1 - Drone-Based Localization of Hazardous Chemicals by Passive Smart Dust N2 - Rapid detection and localization of hazardous chemicals is crucial for environmental monitoring, occupational safety, and emergency response. This study presents a novel approach that combines drone technology with passive smart dust – biodegradable, paper-based chemical sensors – to remotely identify and map hazardous substances. In contrast to conventional smart dust concepts based on electronic microsensors with significant limitations in power supply, cost and environmental impact, this method uses cellulose-based, confetti-like sensors impregnated with colorimetric or fluorescent indicators. These sensors change color in response to chemical exposure, enabling simple optical detection from a distance. A drone equipped with a conventional digital camera takes pictures of the deployed sensors, which are then analyzed by automated image processing. The system converts images from the red-green-blue color model (RGB) into hue-saturation-value space (HSV) and applies threshold filters and clustering algorithms to increase the accuracy of identifying hazardous zones. Field tests using thymol blue as a pH-sensitive indicator have successfully demonstrated the system's ability to detect and locate acid spills in an outdoor environment. The results confirmed that low-cost, off-the-shelf drones can effectively monitor affected areas by providing real-time data for responders while minimizing human exposure to hazardous chemicals. This approach offers a fast, scalable, cost-effective and environmentally friendly alternative to conventional hazard detection technologies. Other important advantages are the close proximity of the sensors to the contamination, the avoidance of downwash problems by the drone propellers and the generation of a dense mesh of data points. Since no complex electronic sensors are required and simple, biodegradable materials are used, the system is well suited for large-scale deployment in industrial accidents, environmental pollution and chemical disaster scenarios. Future research will investigate additional chemical indicators to expand detection capabilities, optimize sensor deployment, and refine data processing for greater accuracy. The passive smart dust system represents a new concept in remote chemical hazard monitoring and may have broad implications for accident response, environmental crime, facility security, and attacks with chemical weapons. N2 - Die schnelle Erkennung und Lokalisierung gefährlicher Chemikalien ist für die Umweltüberwachung, den Arbeitsschutz und den Katastrophenschutz von entscheidender Bedeutung. Diese Studie stellt einen neuartigen Ansatz vor, der Drohnen-Technologie mit Passivem Smart Dust – biologisch abbaubaren, papierbasierten chemischen Sensoren – kombiniert, um gefährliche Substanzen aus der Ferne zu identifizieren und zu kartieren. Im Gegensatz zu herkömmlichen Smart-Dust-Konzepten, die auf elektronischen Mikrosensoren mit erheblichen Einschränkungen bei der Stromversorgung, den Kosten und der Umweltbelastung basieren, verwendet diese Methode zellulosebasierte, konfetti-artige Sensoren, die mit kolorimetrischen oder fluoreszierenden Indikatoren imprägniert sind. Diese Sensoren ändern ihre Farbe bei Kontakt mit Chemikalien, sodass eine einfache optische Erkennung aus der Ferne möglich ist. Eine Drohne, die mit einer herkömmlichen Digitalkamera ausgestattet ist, nimmt Bilder der eingesetzten Sensoren auf, die dann durch automatisierte Bildverarbeitung analysiert werden. Das System konvertiert Bilder vom Rot-Grün-Blau-Farbmodell (RGB) in den Farbton-Sättigungs-Wert-Raum (HSV) und wendet Schwellenwertfilter und Clustering-Algorithmen an, um die Genauigkeit bei der Identifizierung gefährlicher Zonen zu erhöhen. Feldtests mit Thymolblau als pH-empfindlichem Indikator haben erfolgreich die Fähigkeit des Systems nachgewiesen, ausgelaufene Säure in Außenbereichen zu erkennen und zu lokalisieren. Die Ergebnisse bestätigen, dass kostengünstige, handelsübliche Drohnen betroffene Bereiche effektiv überwachen können, indem sie Einsatzkräften Echtzeitdaten liefern und gleichzeitig die Exposition von Menschen gegenüber gefährlichen Chemikalien minimieren. Dieser Ansatz bietet eine schnelle, skalierbare, kostengünstige und umweltfreundliche Alternative zu herkömmlichen Technologien zur Gefahrenerkennung. Weitere wichtige Vorteile sind die räumliche Nähe der Sensoren zur Kontamination, die Vermeidung von Abwindproblemen durch die Drohnenpropeller und die Erzeugung eines dichten Netzes von Datenpunkten. Da keine komplexen elektronischen Sensoren erforderlich sind und einfache, biologisch abbaubare Materialien verwendet werden, eignet sich das System gut für den großflächigen Einsatz bei Industrieunfällen, Umweltverschmutzung und chemischen Katastrophenszenarien. In zukünftigen Forschungsarbeiten sollen weitere chemische Indikatoren untersucht werden, um die Erkennungsmöglichkeiten zu erweitern, den Sensoreinsatz zu optimieren und die Datenverarbeitung für eine höhere Genauigkeit zu verfeinern. Das passive Smart-Dust-System stellt ein neues Konzept für die Fernüberwachung chemischer Gefahren dar und könnte weitreichende Auswirkungen auf die Unfallbekämpfung, Umweltkriminalität, Anlagensicherheit und Angriffe mit Chemiewaffen haben. T2 - 39th Session of the Scientific Advisory Board of the OPCW CY - The Hague, Netherlands DA - 01.04.2025 KW - Imaging KW - Remote Sensing KW - Chemosensors KW - Organization for the Prohibition of Chemical Weapons (OPCW) KW - CBRN Defence PY - 2025 AN - OPUS4-62897 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tannenberg, Robert T1 - Multichannel real-time detection of biomarkers with highly miniaturized photonic microchips N2 - The development of novel photonic microchips is a promising approach to advance the detection of biomarkers through multichannel real-time analysis. This study reports the successful development of a backside released CMOS chip designed for the multichannel real-time detection of biomarkers. Operating at a wavelength of 1550 nm, the microchip features three detection channels in addition to a reference channel, enabling simultaneous analysis of multiple biomarkers. The microchip incorporates micro-ring resonators that are directly functionalized with specific bioreceptors, which significantly improves the affinity towards target biomarkers. The employed surface functionalization strategy enables versatile immobilization of receptor molecules and serves as a starting point for various analytical applications. A tunable laser is utilized as the excitation source, providing precise wavelength tuning and stable optical output, essential for achieving optimal resonance conditions within the micro-ring resonators. Our chips use integrated multi-mode interferometers as beam-splitter, grating coupler and Ge-photodiodes, resulting in an ultra-small footprint. The complete chip including metal pads has an area of 1 mm2. The results indicate that the developed multichannel photonic microchip system enables online detection of multiple biomarkers. The compact and highly miniaturized design of this microchip positions them as promising candidates for point-of-care diagnostics and personalized medicine applications. With further advancements, this technology opens a path to transform biomarker detection across various medical fields, offering rapid, reliable, and cost-effective diagnostic solutions. In conclusion, the presented multichannel photonic microchips signify a substantial leap forward in real-time biomarker detection, providing a robust platform for future research and clinical applications. T2 - SPIE Optics + Optoelectronics 2025 CY - Prague, Czech Republic DA - 07.04.2025 KW - Biosensor KW - Optics KW - Silicon semiconductor KW - Proteins KW - Clinical chemistry PY - 2025 AN - OPUS4-62954 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fünning, Tabea A1 - Peczek, Anna A1 - Kroh, Aleksandra A1 - Mai, Christian A1 - Paul, Martin A1 - Thomsen, Florian A1 - Tannenberg, Robert A1 - Schumann, Christoph A1 - Weller, Michael G. A1 - Mai, Andreas A1 - Steglich, Patrick C. ED - Lieberman, Robert A. ED - Baldini, Francesco ED - Homola, Jiri T1 - Optimization of local backside released micro-ring resonators for sensing applications using silicon photonic integrated circuits in a SOI technology N2 - Photonic micro-ring resonators (MRR) are widely studied for their high sensitivity across applications like environmental monitoring, healthcare, and chemical analysis. Their evanescent field sensing requires partially unembedded waveguides compatible with CMOS processing. Our approach uses local backside etching with an additional buried oxide (BOX) etch to release waveguides while preserving the back-end of line (BEOL) structure, enabling spatial separation of the sensing area and electronics. The BOX etch critically affects sensor performance, as waveguide surface roughness can alter MRR properties and coupling. We analyzed MRR design variations, comparing wet and dry etching techniques for their effects on optical performance across rib and strip waveguides in quasi-TE and quasi-TM modes. Wafer-level measurements show that backside-released MRR achieve high extinction ratios with slightly reduced quality factors, advancing high-sensitivity photonic sensors. T2 - SPIE Optics + Optoelectronics 2025 CY - Prague, Czech Republic DA - 23.05.2025 KW - Photonic sensors KW - Micro-ring resonator (MRR) KW - Silicon on insulator (SOI) KW - CMOS KW - Local backside etching PY - 2025 SN - 978-1-5106-8851-3 DO - https://doi.org/10.1117/12.3056481 VL - 13527 SP - 1 EP - 8 PB - SPIE CY - Bellingham, WA , USA AN - OPUS4-63585 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tannenberg, Robert A1 - Paul, Martin A1 - Fünning, Tabea A1 - Schuhmann, Christoph A1 - Weller, Michael G. A1 - Steglich, Patrick T1 - Multichannel real-time detection of biomarkers with highly miniaturized photonic microchips N2 - The development of novel photonic integrated microchips (PIC) is a promising approach to allow for the convenient detection of key biomarkers in complex matrices through multichannel real-time analysis in a highly compact package. This study reports the successful development and application of a backside released CMOS chip designed for the multichannel real-time detection of biomarkers. Operating at the C-band at approx. 1550 nm, the microchip features three dedicated detection sensors in addition to a reference sensor, enabling simultaneous analysis of multiple biomarkers. The compact and highly miniaturized design of this microchip, with a footprint of just 1 mm², positions it as promising candidate for point-of-care diagnostics and personalized medicine applications. This technology opens a path to transform biomarker detection across various medical fields, offering rapid, reliable, and cost-effective diagnostic solutions. In conclusion, the presented multichannel photonic microchips signify a substantial leap forward in real-time biomarker detection, providing a highly capable platform for future research and clinical applications. T2 - SPIE Optics + Optoelectronics 2025 CY - Prague, Czech Republic DA - 07.04.2025 KW - Photonic integrated circuit KW - Ring resonator KW - Real-time detection KW - Multiplexing KW - Semiconductor KW - CMOS KW - C-reactive protein KW - CRP KW - Biomarker PY - 2025 SN - 978-1-5106-8850-6 DO - https://doi.org/10.1117/12.3056453 VL - 13527 SP - 1 EP - 6 PB - SPIE CY - Prague, Czech Republic AN - OPUS4-63478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sauter, O. A1 - Neumann, Patrick P. A1 - Nerger, Tino A1 - Weller, Michael G. ED - Heß, M. T1 - Aus sicherer Entfernung BT - das Magazin für die Gefahrgut-Logistik N2 - Da chemische Gefahrstoffe im Boden eine ernsthafte Bedrohung für Leben und Gesundheit darstellen, das Grundwasser kontaminieren und langfristige Umweltschäden verursachen können, ist ihre frühzeitige Erkennung von großer Bedeutung. Um solche Gefahrstoffe aus sicherer Entfernung detektieren zu können, wurde bei der Bundesanstalt für Materialforschung und -prüfung (BAM) im Rahmen eines Forschungsvorhabens seit Anfang 2022 an einem neuen Ansatz zur Erkennung und Überwachung chemischer Gefahrstoffe gearbeitet. KW - Cellulose KW - Drohne KW - Kolorimetrische Sensoren KW - Passive Smart Dust PY - 2025 SN - 0016-5808 VL - 2025 IS - 8 SP - 26 EP - 28 PB - ecomed-Storck GmbH, Storck Verlag Hamburg CY - Hamburg AN - OPUS4-64109 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tannenberg, Robert T1 - Troponin I Assay in Wafer-Level Backside Optofluidics N2 - Cardiovascular diseases are the number one cause of death worldwide and responsible for 17.9 million casualities worldwide in 2019. Cardiac Troponin I (cTnI) is the most important biomarker for acute events such as heart attacks. The development of novel photonic integrated microchips (PIC) is a promising approach to allow the convenient detection of key biomarkers in complex matrices through multichannel real-time analysis in a highly compact package. This study presents the development and proof-of-concept of a backside released CMOS chip designed for the multichannel real-time detection of biomarkers. In this work, we introduce a Troponin I assay as well that utilizes a potential and practical approach to backside optofluidics on a wafer-level platform. T2 - Biosensors 2025 - 35th Anniversary World Congress on Biosensors CY - Lisbon, Portugal DA - 19.05.2025 KW - Ring resonator KW - Semiconductor KW - CMOS KW - cTnI KW - Heart attack KW - Biomarker KW - Sandwich immunoassay PY - 2025 AN - OPUS4-63481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Martin T1 - Real time multichannel biomarker detection using photonic integrated circuits on ultra compact CMOS chips N2 - This work presents the real-time, multichannel detection of the biomolecule Neutravidine using photonic integrated circuits on ultra-compact monolithic CMOS chips. The development focuses on implementing bioassays directly on CMOS platforms, enabling highly integrated and scalable biosensing. The presentation will cover key aspects including microfluidic integration, data analysis, surface functionalization, and chip packaging. T2 - World Biosensor Congress CY - Lisbon, Portugal DA - 18.05.2025 KW - Chips KW - Photonics KW - Biosensor KW - Realtime PY - 2025 AN - OPUS4-63777 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumann, Christoph T1 - Design and optimization of integrated multimode interferometers (MMIs) for dual-polarization photonic biosensors for biomedical applications in a silicon-on-insulator platform N2 - Faster, more sensitive, and cost-efficient diagnostic tests are crucial, as conventional lab tests are slow and expensive, while rapid tests often lack specificity. Advancements in medical diagnostics are crucial for early disease detection, reducing costs and testing time. Optical biosensors, particularly multimode interferometers (MMIs), offer high sensitivity and integration potential for Point-of-Care applications [1-2]. This work introduces a novel MMI biosensor utilizing orthogonal TE and TM modes, significantly minimizing the footprint. T2 - SPIE Optics + Optoelectronics 2025 CY - Prague, Czech Republic DA - 23.05.2025 KW - Interferometry KW - Semiconductor KW - Chip KW - Point-of-Care applications KW - Biomarker PY - 2025 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/PC13527/PC135270R/Design-and-optimization-of-integrated-multimode-interferometers-MMIs-for-dual/10.1117/12.3056490.short DO - https://doi.org/10.1117/12.3056490 AN - OPUS4-63568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fünning, Tabea T1 - Optimization of local backside released micro-ring resonators for sensing applications using silicon photonic integrated circuits in a SOI technology N2 - The integration of photonic sensors into compact systems requires space-efficient solutions, such as the backside release of waveguides on silicon-on-insulator (SOI) platforms. This study presents the design, fabrication, and characterization of fully backside-released micro-ring resonators (MRRs) using the IHP SG25H5EPIC technology. The performance of rib and strip waveguides released by either dry or wet etching of the buried oxide (BOX) layer is evaluated. While wet etching provides low-loss release of rib waveguides, dry etching is required for the release of strip waveguides but results in increased waveguide losses and reduced quality factors. The effects of these release methods on critical coupling conditions, extinction ratio (ER), full width at half maximum (FWHM), and sensor performance are analyzed. The findings confirm that both etching strategies yield structures suitable for photonic sensing, with backside release enabling co-integration with microfluidic and optoelectronic components. These results contribute to the advancement of high-performance, integrated silicon photonic sensors. T2 - SPIE Optics + Optoelectronics 2025 CY - Prague, Czech Republic DA - 23.05.2025 KW - Rib and strip waveguides KW - Wet and dry etching KW - Microfluidics KW - Biosensor KW - Germanium photodiode KW - Q-Factor PY - 2025 UR - https://www.spiedigitallibrary.org/conference-proceedings-of-spie/13527/135270U/Optimization-of-local-backside-released-micro-ring-resonators-for-sensing/10.1117/12.3056481.short DO - https://doi.org/10.1117/12.3056481 AN - OPUS4-63571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -