TY - CONF A1 - Maiwald, Michael T1 - Niederfeld-NMR-Spektroskopie: Ein universelles Werkzeug für automatisierte, kontinuierliche Produktion von Chemikalien und Pharmazeutika N2 - Um in einem veränderten Umfeld erfolgreich bestehen zu können, müssen Chemieunternehmen neue Pfade beschreiten. Dazu gehört insbesondere das Potential digitaler Technologien. Mit flexiblen, modularen chemischen Vielzweck-Produktionsanlagen lassen sich häufig wechselnde Produkte mit kürzeren Vorlauf- und Stillstandzeiten zwischen den Kampagnen und dennoch hoher Qualität realisieren. Intensivierte, kontinuierliche Produktionsanlagen erlauben auch den Umgang mit schwierig zu handhabenden Substanzen. Grundvoraussetzung für solche Konzepte ist eine hochautomatisierte "chemische" Prozesskontrolle zusammen mit Echtzeit-Qualitätskotrolle, die "chemische" Informationen über den Prozess bereitstellt. In einem Anwendungsbeispiel wurde eine pharmazeutische Lithiierungsreaktion aus einer modularen Pilot-Anlage betrachtet und dabei die Vorzüge eines vollautomatischen NMR-Sensors untersucht. Dazu wurde ein kommerziell erhältliches Benchtop-NMR-Spektrometer mit Permanentmagnet auf die industriellen Anforderungen, wie Explosionsschutz, Feldkommunikation und vollautomatischer, robuster Datenauswertung angepasst. Der NMR-Sensor konnte schließlich erfolgreich im vollautomatischen Betrieb nach fortschrittlichen Regelkonzepten und für die Echtzeitoptimierung der Anlage getestet werden. Die NMR-Spektroskopie erwies sich als hervorragende Online-Methode und konnte zusammen mit einer modularen Datenauswertung sehr flexibel genutzt werden. Die Methode konnte überdies als zuverlässige Referenzmethode zur Kalibrierung konventioneller Online-Analytik eingesetzt werden. Zukünftig werden voll integrierte und intelligent vernetzte "smarte" Sensoren und Prozesse eine kontinuierliche Produktion von Chemikalien und Pharmazeutika mit vertretbaren Qualitätskosten möglich machen. T2 - GDCh-Kolloquium des Ortsverbands Magdeburg CY - Magdeburg, Germany DA - 04.07.2019 KW - Online-NMR-Spektroskopie KW - Smarte Sensoren KW - Prozessindustrie KW - Digitalisierung KW - Fresenius PY - 2019 AN - OPUS4-48414 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael T1 - Voll integrierte und intelligent vernetzte Systeme und Prozesse – Perspektive: Smarte Sensorik, Aktorik und Kommunikation N2 - Um in einem veränderten Umfeld erfolgreich bestehen zu können, müssen Chemieunternehmen neue Pfade beschreiten. Dazu gehört insbesondere das Potential digitaler Technologien. Mit flexiblen, modularen chemischen Vielzweck-Produktionsanlagen lassen sich häufig wechselnde Produkte mit kürzeren Vorlauf- und Stillstandzeiten zwischen den Kampagnen und dennoch hoher Qualität realisieren. Intensivierte, kontinuierliche Produktionsanlagen erlauben auch den Umgang mit schwierig zu handhabenden Substanzen. Grundvoraussetzung für solche Konzepte ist eine hochautomatisierte "chemische" Prozesskontrolle zusammen mit Echtzeit-Qualitätskotrolle, die "chemische" Informationen über den Prozess bereitstellt. In einem Anwendungsbeispiel wurde eine pharmazeutische Lithiierungsreaktion aus einer modularen Pilot-Anlage betrachtet und dabei die Vorzüge eines vollautomatischen NMR-Sensors untersucht. Dazu wurde ein kommerziell erhältliches Benchtop-NMR-Spektrometer mit Permanentmagnet auf die industriellen Anforderungen, wie Explosionsschutz, Feldkommunikation und vollautomatischer, robuster Datenauswertung angepasst. Der NMR-Sensor konnte schließlich erfolgreich im vollautomatischen Betrieb nach fortschrittlichen Regelkonzepten und für die Echtzeitoptimierung der Anlage getestet werden. Die NMR-Spektroskopie erwies sich als hervorragende Online-Methode und konnte zusammen mit einer modularen Datenauswertung sehr flexibel genutzt werden. Die Methode konnte überdies als zuverlässige Referenzmethode zur Kalibrierung konventioneller Online-Analytik eingesetzt werden. Zukünftig werden voll integrierte und intelligent vernetzte "smarte" Sensoren und Prozesse eine kontinuierliche Produktion von Chemikalien und Pharmazeutika mit vertretbaren Qualitätskosten möglich machen. T2 - Kolloquium im Rahmen der Innovationskampagne CY - Karlsruhe, Germany DA - 18.07.2019 KW - Prozessanalytik KW - Prozesskontrolle KW - Digitalisierung KW - Prozessindustrie KW - Smarte Sensoren KW - Automation PY - 2019 AN - OPUS4-48513 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Bornemann-Pfeiffer, Martin A1 - Wander, Lukas T1 - Integrierte und vernetzte Systeme und Prozesse – Prozessnahe Sensorik für die digital transformierte Prozessindustrie N2 - Unternehmen der Prozessindustrie müssen neue Wege finden, um in einem sich wandelnden Umfeld erfolgreich zu überleben, und gleichzeitig flexiblere Wege der Produkt- und Prozessentwicklung finden, um ihre Produkte schneller auf den Markt zu bringen – insbesondere hochwertige, hochwertige Produkte wie Feinchemikalien oder Arzneimittel. Dies wird zukünftig durch Veränderungen in den Wertschöpfungsketten entlang einer potenziellen Kreislaufwirtschaft erschwert. Anhand von Beispielen wird in diesem Vortrag ein möglicher ganzheitlicher Ansatz zur Digitalisierung und zum Einsatz maschineller Verfahren in der Produktion von Spezialchemikalien durch die Einführung integrierter und vernetzter Systeme und Prozesse skizziert. Es wird auch auf die aktuelle Technologie-Roadmap „Prozess-Sensoren 2027+“ eingegangen, die Ende 2021 erschienen ist. Im Zentrum dieser Roadmaps stehen Sensoren zur Erfassung von physikalischen und chemischen Messgrößen mittels spezifischer und unspezifischer Messverfahren, die zur Steuerung und dem besseren Verständnis von Prozessen dienen. Die Roadmap fasst die gemeinsame Technologie- und Marktsicht von Anwendern, Herstellern und Forschungs¬einrichtungen im Bereich Prozess-Sensorik in der verfahrenstechnischen Industrie zusammen. Digitalisierung und Nachhaltigkeit sind übergreifende Kernthemen der künftigen Entwicklung. T2 - 11. Fachtagung Prozessnahe Röntgenanalytik PRORA CY - Berlin, Germany DA - 24.11.2022 KW - Digital Transformatioin KW - Prozessindustrie KW - Sensorik KW - Prozessanalytik KW - Industrie 4.0 KW - PRORA PY - 2022 AN - OPUS4-56391 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alfeld, M. A1 - Eckhardt, H.-S. A1 - Kraft, J. A1 - Maiwald, Michael A1 - Meermann, Björn A1 - Merz, K. A1 - Prikler, S. A1 - Richert, J. A1 - Steiner, G. A1 - von Tümpling, W. T1 - Trendbericht Analytische Chemie N2 - Zusätzlich zu Methodenentwicklung, Miniaturisierung und Kopplungsverfahren zeigen sich die Hyperspektroskopie zusammen mit Imaging‐Verfahren, der Einzelmolekülnachweis und der Einsatz von 3‐D‐Druckern als neue Schwerpunkte. Hinzu kommen künstliche Intelligenz bei Sensoren, Bildgebungsverfahren und Prozesssteuerung sowie die Vernetzung von Analyse‐ und Laborgeräten. Trends und Forschungsthemen aus der analytischen Chemie, zusammengestellt von elf Autoren, koordiniert von Günter Gauglitz. KW - Multielementanalytik KW - Multimodale Analytik KW - Kristallolgraphie KW - Prozessanalytik KW - Prozessindustrie KW - Industrielle Analytik KW - Chemometrik KW - Chemometrie PY - 2020 U6 - https://doi.org/10.1002/nadc.20204095786 SN - 1868-0054 VL - 68 IS - 4 SP - 52 EP - 60 PB - Wiley CY - Weinheim AN - OPUS4-50609 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Maiwald, Michael A1 - Bassler, M. A1 - Deilmann, M. A1 - Ens, W. A1 - Frenzel, F. A1 - Gerlach, M. A1 - Großmann, J. A1 - Grümbel, F. A1 - Heisterkamp, M. A1 - Kaiser, U. A1 - Lambrecht, A. A1 - Ohlenkamp, R. A1 - Pötter, T. A1 - Pyka, P. A1 - Roos, E. A1 - Schmidt, A. A1 - Schünemann, U. A1 - Theuer, M. A1 - Tukle, A. A1 - Weber, N. T1 - Technologie-Roadmap „Prozess-Sensoren 2027+“ N2 - Die Technologie-Roadmap „Prozess-Sensoren 2027+“ ist eine Weiterentwicklung vorgängiger Technologie-Roadmaps. Im Zentrum dieser Roadmaps stehen Sensoren zur Erfassung von physikalischen und chemischen Messgrößen mittels spezifischer und unspezifischer Messverfahren, die zur Steuerung und dem besseren Verständnis von Prozessen dienen. Die Roadmap fasst die gemeinsame Technologie- und Marktsicht von Anwendern, Herstellern und Forschungseinrichtungen im Bereich Prozess-Sensorik in der verfahrenstechnischen Industrie zusammen. Sie beschreibt die wesentlichen Trends im Bereich Prozess-Sensorik und künftige Handlungsbedarfe für Hersteller, Anwender sowie für Einrichtungen der Forschung und Lehre. Für die aktuellen und zukünftigen Anforderungen an Prozess-Sensoren werden 19 Thesen formuliert. Die Thesen basieren auf den Thesen der vorangegangenen Roadmaps, wobei die aus heutiger Sicht erforderlichen Anpassungen, Ergänzungen und teilweise auch Streichungen vorgenommen wurden. Die Thesen sind in 5 Themencluster eingeordnet. Digitalisierung und Nachhaltigkeit sind übergreifende Kernthemen der künftigen Entwicklung. KW - Technologie-Roadmap Prozess-Sensoren KW - Prozessindustrie KW - Prozessanalytik KW - Sensorik KW - Digitalisierung KW - NAMUR PY - 2021 SP - 1 EP - 63 AN - OPUS4-53741 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Engell, S. A1 - Gottu Mukkula, A. R. A1 - Kern, Simon A1 - Guhl, Svetlana A1 - Meyer, Klas A1 - Maiwald, Michael A1 - Holtkamp, M. T1 - PAT‐basierte iterative Optimierung der Fahrweise eines kontinuierlichen organischen Syntheseprozesses N2 - Generell ist es Ziel der Prozessführung, Reaktions- und Trennprozesse wirtschaftlich optimal zu betreiben. Hierzu werden in großen Anlagen modellbasiere Echtzeitoptimierungsverfahren (Real-time Optimization, RTO) eingesetzt. Die Qualität der Ergebnisse der Optimierung hängt dabei entscheidend von der Güte des verwendeten Modells ab. Die Entwicklung hochgenauer Modelle ist allerdings aufwändig, was für kleine Produktionsvolumina ein wesentliches Hindernis zur Nutzung solcher Methoden darstellt. Mit Hilfe der sogenannten Modifier-Adaptation ist eine iterative Betriebspunktoptimierung auch mit ungenauen Modellen möglich, wenn Messungen der für die Bewertung relevanten Größen (beispielsweise Produktkonzentrationen im Ausgangsstrom) verfügbar sein. Für eine Lithiierungsreaktion in einem bei INVITE kontinuierlich betriebenen Reaktor wurde im Rahmen des EU-Projekts CONSENS eine solche iterative Optimierung auf der Grundlage einer Messung der Zusammensetzung des Ausgangsstroms des Reaktors mit einem Online-NMR-Spektrometer realisiert. Das Spektrometer wurde an den Betrieb in einer explosionsgefährdeten Umgebung angepasst. Es konnte gezeigt werden, dass die Messdaten genau genug sind, um darauf eine Optimierung der Produktausbeute aufzubauen. Die iterative Optimierung führt den Prozess ausgehend vom mit dem Modell berechneten Betriebspunkt schrittweise zum wirtschaftlichen Optimum für die reale Anlage. Dabei reagiert die Optimierung auch auf unbekannte Abweichungen im Prozess (wie die Zusammensetzung des Feeds) und fährt iterativ den jeweils optimalen Betriebspunkt an. Die Arbeiten wurden im Rahmen des EU-SPIRE-Projekts CONSENS, Förderkennzeichen 636942, durchgeführt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessindustrie KW - Prozessanalytik KW - Betriebspunktoptimierung KW - Quadratic approximation (MAWQA) KW - Modellbasierte Optimierung KW - CONSENS PY - 2018 AN - OPUS4-46020 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maiwald, Michael A1 - Meyer, Klas A1 - Bornemann-Pfeiffer, Martin A1 - Guhl, Svetlana A1 - Wander, L. A1 - Kern, S. T1 - Integrierte und vernetzte Systeme und Prozesse – Eine Perspektive für die smarte Laborinfrastruktur N2 - Chemie- und Pharmaunternehmen müssen neue Wege gehen, um in einem sich wandelnden Umfeld erfolgreich zu überleben, und gleichzeitig flexiblere Wege der Produkt- und Prozessentwicklung finden, um ihre Produkte schneller auf den Markt zu bringen - vor allem hochwertige High-End-Produkte wie Feinchemikalien oder Arzneimittel. Dazu gehört auch das Potenzial der digitalen Technologien, um ein umfassenderes Wissensmanagement zu ermöglichen. Eine wichtige Wissensquelle sind analytische Labors, die Unternehmensweit aktiv sind – von F&E bis zur Produktion. Die ganzheitliche Einbindung von analytischen Labors und ein unternehmensweites Daten- und Wissensmanagement sind wichtige Bausteine zur Integration und Vernetzung aller Systeme und Prozesse. Das Potenzial von Daten aus der Produktion mit ihren Kontextinformationen wird heute oft noch nicht konsequent für ein umfassendes Verständnis der Produktion genutzt. Dieser Beitrag skizziert anhand von Beispielen einen möglichen ganzheitlicheren Ansatz zur Digitalisierung und zum Einsatz maschineller Verfahren in der Produktion von Spezialchemikalien und Pharmazeutika durch die Einführung integrierter und vernetzter Systeme und Prozesse. T2 - 6. Analytik-Tag des Institut für Energie- und Umwelttechnik e.V. (IUTA) CY - Duisburg, Germany DA - 10.11.2022 KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Prozessanalytik KW - Digitalisierung KW - Datenauswertung KW - IUTA PY - 2022 AN - OPUS4-56226 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maiwald, Michael A1 - Klaer, R.-H. A1 - Wagner, A. T1 - 100 % Digital in der Prozessindustrie - Tutzing-Symposion Teil 3: Intelligente Nutzung von Daten und Bausteinen der Digitalisierung N2 - Digitalisierung und Industrie 4.0 verändern komplette Geschäftsmodelle, heben neue Effizienzpotenziale und stärken die Wettbewerbsfähigkeit. Auf dem 57. Tutzing-Symposion vom 15.–18.04.2018 wurde mit Vorträgen und Kreativworkshops erkundet, welche speziellen Anforderungen die Prozessindustrie hat, welche digitalen Innovationen bereits umgesetzt wurden und wo noch Handlungsbedarf besteht. Ein Workshop befasste sich mit den Themenfeldern Datenkonzepte, Datenanalyse, Big Data und künstliche Intelligenz. Es geht nicht um die Digitalisierung von heute. Im Angesicht der wachsenden Digitalisierung unserer Prozesse stellt sich die Frage, ob wir den Prozess wirklich gut kennen. Ob alle Verfahrensschritte detailliert hinterlegt wurden. Nur mit einem heuristischen Ansatz kann das vorhandene Wissen nicht digitalisiert werden. Sehr schnell werden die Mechanismen eines Massenmarktes mit denen einer Nische verwechselt. Nicht jeder Mechanismus, den wir von großen Suchmaschinen oder Einkaufsportalen kennen, gibt uns einen Hinweis auf Nutzen und Verfügbarkeit für die Prozess- oder pharmazeutische Industrie. Eine gute Analyse der Anforderungen in der Zukunft mit einem Abgleich der derzeitigen technischen Möglichkeiten ist Voraussetzung für eine Verbesserung der derzeitigen digitalen Umsetzung. Dabei ist es sinnvoll unkonventionelle Methoden einzusetzen. KW - Digitalisierung KW - Prozessindustrie KW - Tutzing-Symposion KW - Datenkonzepte KW - Datenanalyse KW - Big Data KW - Künstlicher Intelligenz PY - 2018 UR - https://www.chemanager-online.com/themen/produktion/100-digital-der-prozessindustrie SN - 1436-2597 VL - 21 IS - 9 SP - 6 EP - 9 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45861 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Maiwald, Michael A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Übergang von der aktuellen Automatisierungslandschaft zur nächsten Generation von Automatisierungskonzepten für die Prozessindustrie hat bereits begonnen. Intelligente Funktionen der Sensoren vereinfachen ihre Anwendung und ermöglichen eine Plug-and-Play-Integration, auch wenn sie auf den ersten Blick komplexer erscheinen mögen. Dies ist die Basis für die Digitalisierung der Prozessindustrie und hilft uns, komplexere Prozesse schneller umzusetzen. Der Vortrag fasst die derzeit diskutierten allgemeinen Anforderungen an „Smarte Feldgeräte“ zusammen und diskutiert dieses am Beispiel eines smarten Online-NMR-Sensors. NMR-Spektroskopie bietet sich durch den Vorteil der direkten Vergleichsmethode (ohne Kalibrierung) für die Prozess-Steuerung an und verringert somit die Rüstzeiten. Zudem basiert der Sensor auf physikalisch motivierten Modellen (Indirect Hard Modeling, IHM), die sich modular kombinieren lassen. Die Methoden wurden anhand eines vorgegebenen pharmazeutischen Reaktionsschrittes im Rahmen des „Horizon 2020“-Projekts CONSENS der Europäischen Union demonstriert und validiert. Zuletzt werden Anforderungen an die Weiterentwicklung der Datenauswertemethoden diskutiert, um letztlich die semantische Information aus den Messdaten herauszulesen oder das in der Industrie 4.0 geforderte „durchgehende Engineering“ für die Automatisierungskomponenten zu ermöglichen. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessindustrie KW - Prozessanalytik KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. AN - OPUS4-45934 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Guhl, Svetlana A1 - Kern, Simon A1 - Meyer, Klas A1 - Wander, Lukas A1 - Bornemann-Pfeiffer, Martin A1 - Maiwald, Michael T1 - Produzieren Sie schon oder kalibrieren Sie noch? – Online-NMR-Spektrometer als Smarte Feldgeräte N2 - Der Vortrag zeigt allgemeine Anforderungen an "smarte Feldgeräte" und deren Entwicklung in den vergangenen Jahren. Am Beispiel eines smarten Online-NMR-Sensors, der in einem EU-Projekt von der BAM entwickelt wurde, wird die Umsetzung der Anforderung aufgezeigt. Schließlich werden weitere Technologieanforderungen und Lösungsansätze vorgestellt. T2 - ProcessNet-Jahrestagung und 33. DECHEMA-Jahrestagung der Biotechnologen CY - Aachen, Germany DA - 10.09.2018 KW - Prozessanalytik KW - Prozessindustrie KW - Online-NMR-Spektroskopie KW - Datenkonzepte KW - Datenanalyse KW - CONSENS PY - 2018 UR - https://onlinelibrary.wiley.com/doi/abs/10.1002/cite.201855229 U6 - https://doi.org/10.1002/cite.201855229 SN - 0009-286X N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 90 IS - 9 SP - 1236 EP - 1236 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-45901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -