TY - JOUR A1 - Villajos Collado, José Antonio T1 - Experimental volumetric hydrogen uptake determination at 77 K of commercially available metal-organic framework materials N2 - Storage is still limiting the implementation of hydrogen as an energy carrier to integrate the intermittent operation of renewable energy sources. Among different solutions to the currently used compressed or liquified hydrogen systems, physical adsorption at cryogenic temperature in porous materials is an attractive alternative due to its fast and reversible operation and the resulting reduction in storage pressure. The feasibility of cryoadsorption for hydrogen storage depends mainly on the performance of the used materials for the specific application, where metal-organic frameworks or MOFs are remarkable candidates. In this work, gravimetric and volumetric hydrogen uptakes at 77 K and up to 100 bar of commercially available MOFs were measured since these materials are made from relatively cheap and accessible building blocks. These materials also show relatively high porous properties and are currently near to large-scale production. The measuring device was calibrated at different room temperatures to calculate an average correction factor and standard deviation so that the correction deviation is included in the measurement error for better comparability with different measurements. The influence of measurement conditions was also studied, concluding that the available adsorbing area of material and the occupied volume of the sample are the most critical factors for a reproducible measurement, apart from the samples’ preparation before measurement. Finally, the actual volumetric storage density of the used powders was calculated by directly measuring their volume in the analysis cell, comparing that value with the maximum volumetric uptake considering the measured density of crystals. From this selection of commercial MOFs, the materials HKUST-1, PCN-250(Fe), MOF-177, and MOF-5 show true potential to fulfill a volumetric requirement of 40 g·L−1 on a material basis for hydrogen storage systems without further packing of the powders. KW - Hydrogen adsorption KW - Commercial metal-organic frameworks KW - Hydrogen uptake reproducibility KW - Volumetric uptake KW - Packing density PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542215 DO - https://doi.org/10.3390/c8010005 SN - 2311-5629 VL - 8 IS - 1 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-54221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zänker, Steffen A1 - Scholz, G. A1 - Marquardt, Julien A1 - Emmerling, Franziska T1 - Structural changes in Ba-compounds of different hardness induced by high-energy ball milling – evidenced by 137Ba NMR and X-ray powder diffraction N2 - Changes in the global bulk and local structures, of three different barium compounds (BaZrO3, BaF2, and BaFCl),were induced by mechanical milling and followed using X-ray powder diffraction (PXRD), subsequent microstructure analysis, and 137Ba solid state NMR spectroscopy. Harder materials like BaZrO3 experience significantly higher structural changes upon milling than softer materials like BaF2. Moreover, soft materials with layered structures, like BaFCl, show a pronounced structural change during the milling process. By combining PXRD and solid state NMR, detailed information on the changes to the global and local structures were obtained, which are of interest for mechanochemical synthesis, mechanically treated catalysts or ionic conductors. KW - Mechanochemistry KW - X-ray diffraction KW - Solid state NMR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547397 DO - https://doi.org/10.1002/zaac.202200026 SN - 0044-2313 VL - 648 IS - 10 SP - 1 EP - 8 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54739 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martins, Ines A1 - Al-Sabbagh, Dominik A1 - Bentrup, U. A1 - Marquardt, Julien A1 - Schmid, Thomas A1 - Scoppola, E. A1 - Kraus, Werner A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Yusenko, Kirill A1 - Weidner, Steffen A1 - Emmerling, Franziska T1 - Formation Mechanism of a Nano-Ring of Bismuth Cations and Mono-Lacunary Keggin-Type Phosphomolybdate N2 - A new hetero-bimetallic polyoxometalate (POM) nano-ring was synthesized in a one-pot procedure. The structure consists of tetrameric units containing four bismuth-substituted monolacunary Keggin anions including distorted [BiO8] cubes. The nano-ring is formed via self-assembly from metal precursors in aqueous acidic medium. The compound (NH4)16[(BiPMo11O39)4] ⋅ 22 H2O; (P4Bi4Mo44) was characterized by single-crystal X-ray diffraction, extended X-ray absorption fine structure spectroscopy (EXAFS), Raman spectroscopy, matrix-assisted laser desorption/ionisation-time of flight mass spectrometry (MALDI-TOF), and thermogravimetry/differential scanning calorimetry mass spectrometry (TG-DSC-MS). The formation of the nano-ring in solution was studied by time-resolved in situ small- and wide-angle X-ray scattering (SAXS/WAXS) and in situ EXAFS measurements at the Mo−K and the Bi−L3 edge indicating a two-step process consisting of condensation of Mo-anions and formation of Bi−Mo-units followed by a rapid self-assembly to yield the final tetrameric ring structure. KW - Bismuth KW - In situ EXAFS KW - In situ SAXS/WAXS KW - Lacunary Keggin ion KW - Polyoxometalates KW - Self-assembly PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546823 DO - https://doi.org/10.1002/chem.202200079 SN - 0947-6539 VL - 28 IS - 27 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Villajos Collado, José Antonio A1 - Feldmann, Ines A1 - Emmerling, Franziska T1 - Mix and wait – a relaxed way for synthesizing ZIF-8 N2 - Herein we report the synthesis of a zeolitic imidazolate framework (ZIF-8) by an easy “mix and wait” procedure. In a closed vial, without any interference, the mixture of 2-methylimidazole and basic zinc carbonate assembles into the crystalline product with approx. 90% conversion after 70 h. The reaction exhibits sigmoidal kinetics due to the self-generated water which accelerates the reaction. KW - In-situ analysis KW - Mechanochemistry KW - MOF KW - Synthesis KW - ZIF-8 PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546841 DO - https://doi.org/10.1039/D2RA00740A VL - 12 SP - 8940 EP - 8944 PB - Royal Society of Chemistry AN - OPUS4-54684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Liehr, Sascha T1 - ANNforPAT - Artificial Neural Networks for Process Analytical Technology N2 - This code accompanies the paper "Artificial neural networks for quantitative online NMR spectroscopy" published in Analytical and Bioanalytical Chemistry (2020). KW - Artificial neural networks KW - Automation KW - Online NMR spectroscopy KW - Process industry KW - Real-time process monitoring PY - 2020 UR - https://github.com/BAMresearch/ANNforPAT PB - GitHub CY - San Francisco AN - OPUS4-54481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Broszies, T. A1 - Zänker, Steffen A1 - Schaudienst, F. A1 - Paul, Andrea A1 - Vogdt, F. U. T1 - Remelting Miwo - Recycling von Mineralwolldämmstoffen, die im Schmelzwannenverfahren hergestellt werden N2 - Rückgebaute Mineralwolledämmstoffe und Baustellenverschnitte werden in der Regel deponiert und damit als Rohstoffe dem Markt entzogen. Ziel dieses Projektes ist es darzulegen, dass das Recycling von Glas- und Steinwolle im großmaßstäblich volumenrelevanten Umfang für das Schmelzwannenverfahren technisch umsetzbar und ökonomisch und ökologisch vorteilhaft ist. Neben verfahrenstechnischen Herausforderungen, gilt es die wirtschaftliche in-situ-Identifikation unbekannter Mineralwolle zu ermöglichen. Dazu wird auf erste erfolgversprechende Tastversuche mit spektroskopischen Methoden weiter aufgebaut. T2 - 18. Projektetage der Bauforschung CY - Online meeting DA - 09.11.2021 KW - Mineralwolle KW - Circular Economy KW - NIR KW - RFA PY - 2021 UR - https://www.zukunftbau.de/veranstaltungen/projektetage-der-bauforschung/rueckblicke#c8553 AN - OPUS4-53982 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Villajos Collado, José Antonio A1 - Zimathies, Annett A1 - Prinz, Carsten T1 - A fast procedure for the estimation of the hydrogen storage capacity by cryoadsorption of metalorganic framework materials from their available porous properties N2 - In order to identify the best porous materials for the cryogenic physisorption of hydrogen, high-throughput calculations are performed starting, i.e., from the collected information in crystallographic databases. However, these calculations, like molecular simulations, require specific training and significant computational cost. Herein, a relatively simple procedure is proposed to estimate and compare hydrogen uptakes at 77 K and pressure values from 40 bar starting from the porous properties of MOF materials, without involving simulation tools. This procedure uses definitions for adsorption and considers the adsorbed phase as an incompressible fluid whose pressure-density change is that for the liquid phase at 19 K. For the 7000 structures from the CoRE MOF database, the average error of the predictions is only of 1% from reference values at 100 bar, with an SD of ±8%. This accuracy is lower than that from simulation tools, but involving lower computational cost and training. KW - Metal-organic frameworks KW - MOF databases KW - Hydrogen cryostorage KW - Supercritical adsorption KW - Absolute adsorption KW - Uptake estimation PY - 2021 DO - https://doi.org/10.1016/j.ijhydene.2020.10.265 SN - 0360-3199 VL - 46 SP - 29323 EP - 29331 PB - Elsevier CY - Oxford AN - OPUS4-53133 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heuser, Lina A1 - Schmid, Thomas A1 - Deubener, J. T1 - An overview of structural, physical and thermal properties of low melting zinc and lead borate glasses N2 - Low melting zinc borate glasses awake interest to replace lead borate glasses in the silver metallization pastes for solar cells or microelectronics. In the current study, characteristic properties of alkali zinc borate glasses (X2O-ZnO-B2O3, X = Li, Na, K, Rb) were compared to an earth alkali zinc borate glass (CaO-ZnO-B2O3). Additionally, zinc oxide is partially substituted by lead oxide or cooper oxide in the borate glasses (Li2O-PbO-B2O3, Na2O ZnO CuO-B2O3). The alkali zinc borate glasses indicate less differences in Raman spectra, and thus in structural properties, in comparison to the Ca and Pb ions influence. LPbB (Tg = 401 °C) has a lower viscosity than LZB (Tg = 468 °C) and CaZB has the highest glass transition temperature (Tg = 580 °C). The Angell plot for the alkali zinc borate glasses shows a high fragility m = 80. Besides Tg, the density measured by means of the Archimedean principle, molar volume, and coefficient of thermal expansion (CTE) of the glasses were investigated. Trends could be found according to alkali ions or intermediate oxides. The density increases with decreasing alkali ion size from KZB (2.632 g/cm3) to LZB (2.829 g/cm3) and increases from LZB to LPbB (3.764 g/cm3). CTE ranges between 7.09 10-6 K-1 for CaZB and 11.5 10 6 K 1 for KZB and RZB. The differential thermal analysis (DTA) and X ray diffraction (XRD) indicate crystallization of various crystalline phases during heating with 5 K/min in most cases. T2 - 94. Glastechnische Tagung CY - Online meeting DA - 10.05.2021 KW - Borate glasses KW - Glass structure KW - Viscosity KW - Young´s Modulus KW - Alkali ions PY - 2021 AN - OPUS4-52867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Horf, M. A1 - Gebbers, R. A1 - Vogel, S. A1 - Ostermann, Markus A1 - Piepel, M.-F. A1 - Olfs, H.-W. T1 - Determination of Nutrients in Liquid Manures and Biogas Digestates by Portable Energy-Dispersive X-ray Fluorescence Spectrometry N2 - Knowing the exact nutrient composition of organic fertilizers is a prerequisite for their appropriate application to improve yield and to avoid environmental pollution by over-fertilization. Traditional standard chemical analysis is cost and time-consuming and thus it is unsuitable for a rapid analysis before manure application. As a possible alternative, a handheld X-ray fluorescence (XRF) spectrometer was tested to enable a fast, simultaneous, and on-site analysis of several elements. A set of 62 liquid pig and cattle manures as well as biogas digestates were collected, intensively homogenized and analysed for the macro plant nutrients phosphorus, potassium, magnesium, calcium, and sulphur as well as the micro nutrients manganese, iron, copper, and zinc using the standard lab procedure. The effect of four different sample preparation steps (original, dried, filtered, and dried filter residues) on XRF measurement accuracy was examined. Therefore, XRF results were correlated with values of the reference analysis. The best R2 s for each element ranged from 0.64 to 0.92. Comparing the four preparation steps, XRF results for dried samples showed good correlations (0.64 and 0.86) for all elements. XRF measurements using dried filter residues showed also good correlations with R2 s between 0.65 and 0.91 except for P, Mg, and Ca. In contrast, correlation Analysis for liquid samples (original and filtered) resulted in lower R2 s from 0.02 to 0.68, except for K (0.83 and 0.87, respectively). Based on these results, it can be concluded that handheld XRF is a promising measuring system for element analysis in manures and digestates. KW - XRF KW - Animal slurry KW - Fertilizer KW - Soil KW - Precision farming PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-527622 DO - https://doi.org/10.3390/s21113892 VL - 21 IS - 11 SP - 3892 PB - MDPI CY - Basel, Switzerland AN - OPUS4-52762 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gentzmann, Marie A1 - Paul, Andrea A1 - Serrano, Juan A1 - Adam, Christian T1 - Understanding scandium leaching from bauxite residues of different geological backgrounds using statistical design of experiments N2 - The leaching behavior of scandium (Sc) from bauxite residues can differ significantly when residues of different geological backgrounds are compared. The mineralogy of the source rock and the physicochemical environment during bauxitization affect the association of Sc in the bauxite i.e., how Sc is distributed amongst different mineral phases and whether it is incorporated in and/or adsorbed onto those phases. The Sc association in the bauxite is in turn crucial for the resulting Sc association in the bauxite residue. In this study systematic leaching experiments were performed on three different bauxite residues using a statistical design of experiments approach. The three bauxite residues compared originated from processing of lateritic and karstic bauxites from Germany, Hungary, and Russia. The recovery of Sc and Fe was determined by ICP-OES measurements. Mineralogical changes were analyzed by X-ray-diffraction and subsequent Rietveld refinement. The effects of various parameters including temperature, acid type, acid concentration, liquid-to-solid ratio and residence time were studied. A response surface model was calculated for the selected case of citric acid leaching of Hungarian bauxite residue. The investigations showed that the type of bauxite residue has a strong influence. The easily leachable fraction of Sc can vary considerably between the types, reaching ~20–25% in German Bauxite residue and ~50% in Russian bauxite residue. Mineralogical investigations revealed that a major part of this fraction was released from secondary phases such as cancrinite and katoite formed during Bayer processing of the bauxite. The effect of temperature on Sc and Fe recovery is strong especially when citric acid is used. Based on the exponential relationship between temperature and Fe-recovery it was found to be particularly important for the selectivity of Sc over Fe. Optimization of the model for a maximum Sc recovery combined with a minimum Fe recovery yielded results of ~28% Sc recovery at <2% Fe recovery at a temperature of 60 ◦C, a citric acid normality of 1.8, and a liquid-to-solid ratio of 16 ml/g. Our study has shown that detailed knowledge about the Sc association and distribution in bauxite and bauxite residue is key to an efficient and selective leaching of Sc from bauxite residues. KW - Bauxite residue KW - Scandium KW - Leaching KW - Design of experiments KW - Red mud PY - 2022 DO - https://doi.org/10.1016/j.gexplo.2022.107041 SN - 0375-6742 VL - 2022 IS - 240 SP - 1 EP - 13 PB - Elsevier Science CY - Amsterdam AN - OPUS4-55531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -