TY - JOUR A1 - Paul, Andrea A1 - Liestmann, Zoe A1 - Zaenker, Steffen A1 - Vogel, Kristin A1 - Broszies, Tanja A1 - Ostermann, Markus T1 - How reliable is the X‐ray fluorescence‐based differentiation between glass wool and rock wool and the age classification of rock wool? N2 - AbstractA prerequisite for the recycling of mineral wool is information about the type of material, that is, whether it is glass wool or rock wool. As mineral wool produced before the year 2000 can be potentially carcinogenic, it is furthermore important to distinguish between “old” and “new” wool when handling the material. Based on VDI 3492, it is possible to determine the material and, in the case of rock wool, the age by analyzing the mass fractions of eight oxides, which are the main components of mineral wool. This study presents the X‐ray fluorescence (XRF) analyses of 141 man‐made mineral fibers collected in Germany. Only in a few cases it was not possible to clearly assign the material type. In contrast, the identification of “old” and “new” rock wool posed a challenge as there were many borderline samples. Based on the available data, a chemometric model was developed that can classify “old” and “new” RW with a sensitivity of 93% and 89% and with a specificity of 100% in both cases. However, care must be taken when oxide contents are close to the specification limits. The reason for this mainly lies in the overlapping intervals of key oxides as suggested by VDI 3492, and, to a lesser extent, in the uncertainties typically occurring in the XRF‐based analysis of oxides. With this study, a comprehensive collection and evaluation of XRF data on mineral wool is made available, which can serve as a reference database for future users. KW - Mineral wool KW - RFA KW - Multivariate data analysis KW - VDI 3492 PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610285 DO - https://doi.org/10.1002/xrs.3451 SN - 1097-4539 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-61028 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Nadejde, C. A1 - Brinza, L. A1 - Dragos, O. A1 - Gherghel, D. A1 - Paul, Andrea T1 - Iron phthalocyanine-sensitized magnetic catalysts for BPA photodegradation N2 - The catalytic behavior of iron phthalocyanine (FePc)-sensitized magnetic nanocatalysts was evaluated for their application in the oxidative treatment of Bisphenol A (BPA) under mild environmental conditions. Two types of FePc (Fe(II)Pc and Fe(III)Pc), which are highly photosensitive compounds, were immobilized on the surface of functionalized magnetite. The nanomaterials were characterized by high resolution transmission electron microscopy (HR-TEM), X-ray difraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analyses (TGA). The generation of singlet Oxygen by nanomaterials was also investigated. In the presence of UVA light exposure (365nm) and 15mM H2O2, the M@Fe(III)Pc photocatalyst gave the best results; for a catalyst concentration of 2.0gL −1, around 60% BPA was removed after 120min of reaction. These experimental conditions were further tested under natural solar light exposure, for which also M@Fe(III)Pc exhibited enhanced oxidative catalytic activity, being able to remove 83% of BPA in solution. The water samples were less cytotoxic after treatment, this being confrmed by the MCF-7 cell viability assay. KW - Photosensitization KW - magnetic nanocatalysts KW - BPA removal PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-506368 DO - https://doi.org/10.1038/s41598-020-61980-6 VL - 10 IS - 1 SP - 5376 AN - OPUS4-50636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhuang, Y. A1 - Spahr, S. A1 - Lutze, H.V. A1 - Reith, C.J. A1 - Hagemann, N. A1 - Paul, Andrea A1 - Haderlein, S.B. T1 - Persulfate activation by biochar and iron: Effect of chloride on formation of reactive species and transformation of N,N-diethyl-m-toluamide (DEET) N2 - Fenton-like processes using persulfate for oxidative water treatment and contaminant removal can be enhanced by the addition of redox-active biochar, which accelerates the reduction of Fe(III) to Fe(II) and increases the yield of reactive species that react with organic contaminants. However, available data on the formation of non-radical or radical species in the biochar/Fe(III)/persulfate system are inconsistent, which limits the evaluation of treatment efficiency and applicability in different water matrices. Based on competition kinetics calculations, we employed different scavengers and probe compounds to systematically evaluate the effect of chloride in presence of organic matter on the formation of major reactive species in the biochar/Fe(III)/persulfate system for the transformation of the model compound N,N‑diethyl-m-toluamide (DEET) at pH 2.5. We show that the transformation of methyl phenyl sulfoxide (PMSO) to methyl phenyl sulfone (PMSO2) cannot serve as a reliable indicator for Fe(IV), as previously suggested, because sulfate radicals also induce PMSO2 formation. Although the formation of Fe(IV) cannot be completely excluded, sulfate radicals were identified as the major reactive species in the biochar/Fe(III)/persulfate system in pure water. In the presence of dissolved organic matter, low chloride concentrations (0.1 mM) shifted the major reactive species likely to hydroxyl radicals. Higher chloride concentrations (1 mM), as present in a mining-impacted acidic surface water, resulted in the formation of another reactive species, possibly Cl2•−, and efficient DEET degradation. To tailor the application of this oxidation process, the water matrix must be considered as a decisive factor for reactive species formation and contaminant removal. KW - Water treatment KW - Organic contaminants KW - Fenton-like systems KW - Radicals KW - ESR PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-608677 DO - https://doi.org/10.1016/j.watres.2024.122267 SN - 0043-1354 VL - 265 SP - 1 EP - 8 PB - Elsevier Ltd. AN - OPUS4-60867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea T1 - Raman spectroscopy for online monitoring of a homogeneous hydroformylation process in microemulsion N2 - An important industrial reaction is hydro¬formylation for the production of aldehydes from alkenes and syngas on the basis of homogeneous catalysis. The main cost factors of the processes currently used are product selectivity and the loss of the catalysts used. Therefore, various concepts for the hydroformylation of long-chain olefins have been developed, including hydroformylation in microemulsions, which is being investigated on a mini-plant scale at the Technical University of Berlin [1]. In this study, online Raman spectroscopy of the reaction of 1-dodecene to 1-tri¬decanal in a microemulsion was performed [2]. First, an experimental design was used to obtain a good representation of the operating range in the mini plant with respect to the concentrations of five reactants in a laboratory setup [3]. Based on the Raman spectra, Partial Least Squares (PLS) models for the prediction of 1-dodecene and 1-tride-decanal were calibrated and with these the reactions were predicted on a laboratory scale. In the next step, the PLS models were applied to online spectra from a mini-plant. This resulted in promising estimates of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions. The predictive power of PLS models in this particular case was limited by unexpected by-product formation which, however, can easily be compensated by an extended calibration. Hence, Raman spectroscopy is a promising technique for process analysis in microemulsions. T2 - EuroPACT2021 CY - Online meeting DA - 15.11.2021 KW - Raman KW - Process analytics KW - Inline measurement PY - 2021 AN - OPUS4-53767 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea T1 - Schnelle Identifizierung von Mineralwolle mittels Nah-Infrarot-Spektroskopie N2 - Künstliche Mineralfasern (KMF) werden weltweit in vielfältiger Weise als Dämmstoffe verwendet. Jährlich fallen in Deutschland ungefähr 20 Millionen Tonnen KMF an, die nach dem Abriss auf Deponien entsorgt werden müssen. Grundsätzlich besteht jedoch die Möglichkeit der Rückführung dieser Materialien in den Produktionsprozess. Dafür ist es notwendig, anfallende KMF sowohl nach Material (Glaswolle, Steinwolle) als auch nach Alter zu sortieren. Auf der Suche nach einer Methode, die es grundsätzlich gestattet eine schnelle Untersuchung vor Ort auf einer Baustelle durchzuführen, wurde die Nah-Infrarot (NIR) Spektroskopie unter Verwendung eines Prozessspektrometers mit Reflexionssonde getestet. Anhand von Laboruntersuchungen an 70 KMF Proben, die entweder betriebsneu waren oder bundesweit auf Baustellen gesammelt wurden, konnte eine NIR-basierte Methode zur Unterscheidung in Glas- und Steinwolle entwickelt werden. Mittels Partial Least Square Diskriminanzanalyse (PLS-DA) der NIR Spektren wurde basierend auf 40 zufällig ausgewählten Proben ein chemometrisches Modell kalibriert, das erfolgreich zur Klassifizierung der verbleibenden 30 Proben eingesetzt werden konnte. Unabhängig von Farbe, Dichte oder Alter der untersuchten KMF Proben war es möglich, eine 100% korrekte Zuordnung des Materials zu erzielen. Die nötigen Referenzwerte wurden unter Nutzung eines Röntgenfluoreszenzspektroskopischen Verfahrens über den Elementgehalt nach VDI 3492 ermittelt. Insgesamt ist der experimentelle Aufwand für die Durchführung und Auswertung der NIR Messungen gering und manifestiert sich vor allem in der Kalibrierphase, die in diesem Fall die Untersuchung von 8-fach aliquotierten Probestücken der 70 KMF umfasste. Nur bei deutlich feuchtem Material muss ein zusätzlicher Trocknungs-schritt berücksichtigt werden. Das vorgestellte Verfahren wurde nachfolgend zu einem Patent angemeldet. Untersuchungen zu einer weiteren Unterscheidung der KMF nach Alter sind geplant. T2 - 16. Kolloquium Prozessanalytik der GDCh & Dechema CY - Online meeting DA - 23.11.2020 KW - Mineralwolle KW - NIR KW - Chemometrie PY - 2020 AN - OPUS4-51731 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea T1 - Remelting Miwo - Methoden für die Vor-Ort Analytik N2 - In Deutschland werden jährlich rund 20 Millionen Tonnen künstliche Mineralwolle für die Dämmung von Dächern und Fassaden sowie für Brandschutzprodukte verwendet. Um künstliche Mineralwolle aus Rückbaumaßnahmen in den Produktionsprozess zurückführen zu können, ist eine Trennung in Glas- und Steinwolle erforderlich, um eine Vermischung der beiden Produkte, die unterschiedliche Schmelztemperaturen aufweisen, zu vermeiden. Anstatt die Mineralwolle in spezielle Labors zu schicken, was zeitaufwendig und teuer ist, wurde das Potenzial eines tragbaren Nahinfrarot-Spektrometers (NIR) für den Einsatz vor Ort getestet. 140 verschiedene Mineralwolleproben wurden untersucht, um eine NIR-basierte Methode für die Vor-Ort-Unterscheidung zwischen Glas- und Steinwolle zu etablieren. Die Validierung der Methode mit Testproben und die Anwendung auf Materialien, die aus BigBags für Deponien entnommen wurden, haben gezeigt, dass die Methode präzise und robust ist. Als Referenzmethode wurde die Röntgenfluoreszenzspektroskopie (RFA) mit einer Kalibrierung auf der Grundlage der VDI 3492 verwendet. T2 - 23. Projektetage der Bauforschung CY - Online meeting DA - 14.03.2023 KW - NIR KW - RFA KW - Mineralwolle PY - 2023 AN - OPUS4-57372 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea T1 - Potential of multivariate data analysis (MVA) in X-ray fluorescence analysis N2 - X-ray fluorescence spectrometry (XRF) is used, for example, in geochemistry, archaeology, materials science and agriculture to analyze the elemental composition of various samples [1]. Quantitative spectrum analysis typically applies methods such as fundamental parameters or intensity correction [1, 2]. However, there are also approaches to analyze XRF spectra using data-driven MVA approaches that are not based on a physical model. Principal component analysis (PCA) enables the visualization of data and the discovery of hidden relationships between analytical signals and sample parameters [1, 3]. Classification methods, e.g. PCA, cluster or discriminant analysis, can help to distinguish samples based on various complex integral features such as authenticity or origin of the sample [3]. MVA can also be used to correlate various external factors with elemental composition. In addition to classifying mineral wool into different material types based on characteristic oxides, PCA also enables the visualization of problem cases and supports the detection of possible outliers [4]. Multivariate regression methods such as partial least squares regression (PLSR) are a powerful tool for the quantitative analysis of spectra. In contrast to univariate analysis, in which only one characteristic is used as the basis for the regression, entire spectra or spectral ranges are analyzed here. It has been shown that the quantitative determination of C, H, N and O in polymers based on WDXRF spectra can be achieved by PLSR [5]. However, in the presence of complex matrix effects, the limitations of PLSR become clear, as was shown in a reference case (EDXRF spectra of steel and ore samples) [2]. Here, PLSR still outperformed the fundamental parameter approach, but proved to be less accurate than an intensity correction approach. Neural networks, which are better able to deal with nonlinear effects, are only an alternative if both a large number of calibration samples are available for adequate network training and a lot of time is available for network optimization. Despite limitations, it can be summarized that MVA, if used correctly, can contribute to increasing the informative value of XRF and to opening up new fields of application in areas of growing economic importance [1-5]. T2 - 12. PRORA Fachtagung Prozessnahe Röntgenanalytik CY - Berlin, Germany DA - 28.11.2024 KW - Chemometrics KW - Mineral wool KW - Data analysis KW - X-ray fluorescence PY - 2024 AN - OPUS4-62032 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Paul, Andrea T1 - Kombinierte Bestimmung von Wasserstoff in Gasgemischen mittels Raman- und NMR-Spektroskopie N2 - Vorgestellt wird die Nutzung von Online tauglichen Raman- und NMR-Spektrometern zur Quantifizierung des Wasserstoffmolanteils in gravimetrisch hergestellten Primärgasstandards unter Labor-Bedingungen. Es zeigte sich, dass Matrixeffekte insbesondere bei der Raman-Spektroskopie vernachlässigbar sind für die Quantifizierung von H2. Aufgrund der leichten Handhabbarkeit und der geringen Messunsicherheiten ergibt sich eine potenzielle Anwendung von Raman- und NMR-Spektroskopie unter Feldbedingungen als Online-Messeinheit im Bereich 5-100 cmol/mol Wasserstoff. T2 - 19. PAT Erfahrungsaustauschtreffen CY - Basel, Switzerland DA - 17.09.2024 KW - Raman KW - NMR KW - Wasserstoff PY - 2024 AN - OPUS4-62035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhuang, Yiling A1 - Haderlein, Stefan B. A1 - Hagemann, Nikolas A1 - Grafmüller, Jannis A1 - Gogler, Karolin A1 - Paul, Andrea A1 - Fink, Friedrich A1 - Spahr, Stephanie T1 - Activation of persulfate by biochar and iron: role of biochar pyrolysis conditions and ash amendments N2 - Redox-active biochars can enhance contaminant transformation in persulfate-based Fenton-like water treatment by facilitating Fe(III) reduction to Fe(II). However, biochar properties vary greatly depending on both feedstock selection and pyrolysis conditions. Best suited biochars for Fe(III) reduction and persulfate activation have yet to be identified. Here, we investigated eight biochars for their ability to activate persulfate with Fe(III) to transform N,N-diethyl-m-toluamide (DEET) in water. Four of the biochars were produced from beech wood under different pyrolysis conditions (450–750 °C, high and low nitrogen flow rate in the reactor) and four biochars were produced from softwood amended with 0 – 43 weight percent (wt%) wood ash prior to pyrolysis at 500 °C. Beech wood biochar produced at 450 °C transformed DEET most efficiently with a half-life time of 39 ± 4 min, likely due to the high concentration of surface oxygen functional groups and persistent free radicals that accelerated Fe(III) reduction and formation of reactive species. Among the ash-amended biochars, biochar with 16 wt% ash amendment showed the most efficient DEET transformation with a half-life time of 27 ± 0.6 min, which is 10-times faster compared to a non-ash-amended biochar produced from the same biomass under similar pyrolysis conditions. Ash amendment led to the formation of crystalline iron minerals in biochars, which likely promoted Fe(III) reduction and persulfate activation. Our results highlight the potential for fine-tuning the redox properties of biochar, e.g., by ash amendment to a woody feedstock, enabling tailored performance for specific water treatment applications. KW - Persistent free radicals KW - Redox-active moieties KW - Fenton-like systems PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634504 DO - https://doi.org/10.1016/j.seppur.2025.133634 SN - 1383-5866 VL - 374 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-63450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Golub, Tino Petar A1 - Meyer, Klas A1 - Paul, Andrea A1 - Kipphardt, Heinrich A1 - Tuma, Dirk T1 - Exploring the potential of a setup for combined quantification of hydrogen in natural gas – Raman and NMR spectroscopy N2 - An accurate measurement of the amount fraction of hydrogen in gas mixtures is mandatory for practical applications, requiring methods that are fast, continuous, robust, and cost-effective. This study compares the performance of Raman and benchtop NMR process spectroscopy for determining the hydrogen amount fraction in gas mixtures. A setup was designed to integrate both techniques, enabling measurements of the same sample. Tests were conducted with gravimetrically prepared gas mixtures of reference quality ranging from 1.20 cmol/mol to 85.83 cmol/mol of hydrogen. The results demonstrate that Raman spectroscopy provides superior performance, with a minimal root mean square error (RMSE) of 0.22 cmol/mol and excellent linearity. In contrast, benchtop NMR spectroscopy faced challenges, such as overlapping peaks and longer measurement times, resulting in a higher RMSE of 0.71 cmol/mol. Raman spectroscopy proves to be particularly well-suited for practical applications due to its high accuracy and linearity. Meanwhile, benchtop NMR spectroscopy holds potential for future enhancements through ongoing technological advances, such as higher magnetic field strengths. In summary, the results from our study indicate that Raman spectroscopy is already a serviceable method for precise hydrogen quantification, whereas benchtop NMR spectroscopy can be attributed potential for future applications. KW - Hydrogen amount fraction KW - Raman spectroscopy KW - NMR spectroscopy KW - Field applicability PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-610093 DO - https://doi.org/10.1016/j.saa.2024.125087 SN - 1386-1425 VL - 325 SP - 1 EP - 9 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-61009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -