TY - JOUR A1 - Hoffmann, Holger A1 - Knizia, Christian A1 - Kuhne, Maren A1 - Panne, Ulrich A1 - Schneider, Rudolf T1 - LC–ELISA as a contribution to the assessment of matrix effects with environmental water samples in an immunoassay for estrone (E1) JF - Accreditation and Quality Assurance N2 - Estrone (E1), a metabolite of the estrogenic hormones 17β-estradiol (β-E2) and 17α-estradiol (α-E2), is itself a potent estrogen which can have a significant impact on the hormonal balance. Due to ist high potential for adverse effects on human health and aquatic life even at pg/L to ng/L levels, its appearance in water should be monitored. E1 has also been considered a marker substance for the presence of other estrogens. This study presents a newly developed direct competitive enzymelinked immunosorbent assay (ELISA) for quantification of E1 in environmental water samples using new monoclonal antibodies. The quantification range of the ELISA is 0.15 μg/L to 8.7 μg/L E1, and the limit of detection is around 60 ng/L for not pre-concentrated water samples. A pre-concentration step after careful selection of suitable phases for SPE was developed, too. The influence of organic solvents and natural organic matter on the ELISA was assessed. The high selectivity of the monoclonal antibody was demonstrated by determining the cross-reactivity against 20 structurally related compounds. For the assessment of matrix effects, a concept (“LC–ELISA”) is thoroughly exploited, i.e., separating complex samples by HPLC into 0.3 min fractions and determination of the apparent E1 concentration. Furthermore, fractions with interferences for nontarget/suspected-target analysis can be assigned. A dilution approach was applied to distinguish between specific interferences (cross-reactants) and non-specific interferences (matrix effects). In the determination of 18 environmental samples, a good agreement of the E1 concentration in the respective fractions was obtained with mean recoveries of 103 % to 132 % comparing ELISA to LC–MS/MS. KW - Validierung KW - Immunoassay KW - Matrixeffekte KW - Abwasser KW - Oberflächenwasser KW - ELISA KW - LC-MS/MS KW - Hormone KW - Endokrine Disruptoren PY - 2018 DO - https://doi.org/10.1007/s00769-018-1351-7 SN - 1432-0517 SN - 0949-1775 VL - 23 IS - 6 SP - 349 EP - 364 PB - Springer CY - Heidelberg AN - OPUS4-46891 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Löhr, Konrad A1 - Borovinskaya, O. A1 - Tourniaire, G. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Arraying of single cells for quantitative high throughput laser ablation ICP-TOF-MS JF - Analytical Chemistry N2 - Arraying of single cells for mass spectrometric analysis is a considerable bioanalytical challenge. In this study, we employ a novel single cell arraying technology for quantitative analysis and isotopic fingerprinting by laser ablation inductively coupled plasma time-of-flight mass spectrometry (LA-ICP-TOF-MS). The single cell arraying approach is based on a piezo-acoustic microarrayer with software for automated optical detection of cells within the piezo dispense capillary (PDC) prior to arraying. Using optimized parameters, single cell occupancy of >99%, high throughput (up to 550 cells per hour), and a high cell recovery of >66% is achieved. LA-ICP-TOF-MS is employed to detect naturally occurring isotopes in the whole mass range as fingerprints of individual cells. Moreover, precise quantitative determination of metal-containing cell dyes is possible down to contents of ∼100 ag using calibration standards which were produced using the same arrayer. KW - Laser ablation KW - Cell KW - Array KW - ICP-MS PY - 2019 DO - https://doi.org/10.1021/acs.analchem.9b00198 SN - 0003-2700 SN - 1520-6882 VL - 91 IS - 18 SP - 11520 EP - 11528 PB - American Chemical Society (ACS Publications) CY - Washington AN - OPUS4-48985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - New photodegradation products of the fungicide fluopyram: Structural elucidation and mechanism identification JF - Molecules N2 - Identifying the fate of agrochemicals is important to understand their potential risk for living organisms. We report here new photodegradation products (PPs) of the fungicide fluopyram. The PPs were produced by irradiating a fluopyram standard in 0.1% acetonitrile aqueous media by a 150-W medium pressure Hg-lamp that emits wavelengths between 200–280 nm. The structural elucidation of PPs was achieved by combining the retention time, isotopic pattern, targeted fragmentation, and accurate mass measurements using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and high resolution-MS (HRMS). In addition to previously known PPs, seven new PPs of fluopyram were identified in this work: mainly dihydroxyl and hydroxylimide fluopyram as well as mono, di, and trihydroxyl lactam. Additionally, two PPs were found to be formed by rearrangement after the loss of H2C=CH2. Hence, the results of the work contribute to extending the current knowledge regarding the photoinduced fate of agrochemicals, and fluopyram in particular. KW - Photodegradation KW - Transformation products KW - LC-MS/MS KW - HRMS KW - Fungicide PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-466347 DO - https://doi.org/10.3390/molecules23112940 SN - 1420-3049 VL - 23 IS - 11 SP - 2940, 1 EP - 13 PB - MDPI CY - Basel AN - OPUS4-46634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Glucosylation and Glutathione Conjugation of Chlorpyrifos and Fluopyram Metabolites Using Electrochemistry/Mass Spectrometry JF - Molecules N2 - Xenobiotics and their reactive metabolites are conjugated with native biomolecules such as glutathione and glucoside during phase II metabolism. Toxic metabolites are usually detoxified during this step. On the other hand, these reactive species have a potential health impact by disrupting many enzymatic functions. Thus, it is crucial to understand phase II conjugation reactions of xenobiotics in order to address their fate and possible toxicity mechanisms. Additionally, conventional methods (in vivo and in vitro) have limitation due to matrix complexity and time-consuming. Hence, developing fast and matrix-free alternative method is highly demandable. In this work, oxidative phase I metabolites and reactive species of chlorpyrifos (insecticide) and fluopyram (fungicide) were electrochemically produced by using a boron-doped diamond electrode coupled online to electrospray mass spectrometry (ESI-MS). Reactive species of the substrates were trapped by biomolecules (glutathione and glucoside) and phase II conjugative metabolites were identified using liquid chromatography (LC)-MS/MS, and/or Triple time of flight (TripleTOF)-MS. Glutathione conjugates and glucosylation of chlorpyrifos, trichloropyridinol, oxon, and monohydroxyl fluopyram were identified successfully. Glutathione and glucoside were conjugated with chlorpyrifos, trichloropyridinol, and oxon by losing a neutral HCl. In the case of fluopyram, its monohydroxyl metabolite was actively conjugated with both glutathione and glucoside. In summary, seven bioconjugates of CPF and its metabolites and two bioconjugates of fluopyram metabolites were identified using electrochemistry (EC)/MS for the first time in this work. The work could be used as an alternative approach to identify glutathione and glucosylation conjugation reactions of other organic compounds too. It is important, especially to predict phase II conjugation within a short time and matrix-free environment. KW - Pesticide KW - Bioconjugation KW - Oxidative metabolism KW - EC/MS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475932 DO - https://doi.org/10.3390/molecules24050898 VL - 24 IS - 5 SP - 898 EP - 910 PB - MDPI AN - OPUS4-47593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Michalik-Onichimowska, Aleksandra A1 - Beitz, T. A1 - Panne, Ulrich A1 - Löhmannsröben, H.-G. A1 - Riedel, Jens T1 - Laser ionization ion mobility spectrometric interrogation of acoustically levitated droplets JF - Analytical and Bioanalytical Chemistry N2 - Acoustically levitated droplets have been suggested as compartmentalized, yet wall-less microreactors for high-throughput reaction optimization purposes. The absence of walls is envisioned to simplify up-scaling of the optimized reaction conditions found in the microliter volumes. A consequent pursuance of high-throughput chemistry calls for a fast, robust and sensitive analysis suited for online interrogation. For reaction optimization, targeted Analysis with relatively low sensitivity suffices, while a fast, robust and automated sampling is paramount. To follow this approach, in this contribution, a direct coupling of levitated droplets to a homebuilt ion mobility spectrometer (IMS) is presented. The sampling, Transfer to the gas phase, as well as the ionization are all performed by a single exposure of the sampling volume to the resonant output of a mid-IR laser. Once formed, the nascent spatially and temporally evolving analyte ion cloud needs to be guided out of the acoustically confined trap into the inlet of the ion mobility spectrometer. Since the IMS is operated at ambient pressure, no fluid dynamic along a pressure Gradient can be employed. Instead, the transfer is achieved by the electrostatic potential gradient inside a dual ring electrode ion optics, guiding the analyte ion cloud into the first stage of the IMS linear drift tube accelerator. The design of the appropriate atmospheric pressure ion optics is based on the original vacuum ion optics design of Wiley and McLaren. The obtained experimental results nicely coincide with ion trajectory calculations based on a collisional model. KW - Ambient pressure laser ionization KW - Ionmobility spectrometry KW - Acoustic levitation KW - ion optics PY - 2019 DO - https://doi.org/10.1007/s00216-019-02167-5 VL - 411 IS - 30 SP - 8053 EP - 8061 PB - Springer CY - Heidelberg AN - OPUS4-50132 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, M. A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Panne, Ulrich T1 - Singlet oxygen generation potential of porphyrin-sensitized magnetite nanoparticles: Synthesis, characterization and photocatalytic application JF - Applied Catalysis B: Environmental N2 - Singlet oxygen generation potential of two novel free-base-porphyrin photocatalysts was investigated. The freebase-porphyrin-sensitized Fe3O4 magnetic nanoparticles (MNPs) were tested for the degradation of the model pollutant Bisphenol A (BPA) in aqueous solution, for the first time. MNPs with either cubic or spherical shape were synthesized using the sonochemical approach, followed by sensitizing with photoactive 4,4′,4′′,4′′′- (Porphine-5,10,15,20-tetrayl)tetrakis(benzoic acid) (TCPP). The resulted photocatalysts were characterized in detail by scanning and transmission electron microscopy, Brunauer–Emmett–Teller analysis, spectral techniques and vibrating sample magnetometry. The electron spin resonance experiments have confirmed the high activity of the photocatalysts through the efficient formation of singlet oxygen in solution. The optimum operational parameters for BPA degradation were established as follows: 1.0 μmol L−1 BPA, 1.0 g L−1 of photocatalyst, 100 μmol L−1 H2O2, under UVA irradiation. In these conditions, the results for both photocatalysts revealed that after only 10 min of reaction, over 64% and ca. 90% of BPA have been removed from solution in the absence and presence of H2O2, respectively. Whereas after 60 minutes of treatment, only 24% of BPA in real wastewater effluent samples were removed under UVA irradiation in the absence of H2O2, showing the high complexity of real wastewater. Moreover, both photocatalysts were successfully used for BPA removal in three consecutive runs, without significant loss of catalytic features. KW - Bisphenol A KW - Magnetpartikel KW - Photooxidation KW - Singulettsauerstoff KW - TEM KW - SEM KW - Brunauer-Emmett-Teller KW - Katalysator KW - Abwasser KW - ESR PY - 2018 DO - https://doi.org/10.1016/j.apcatb.2018.03.079 SN - 0926-3373 VL - 232 SP - 553 EP - 561 PB - Elsevier B.V. CY - Amsterdam, NL AN - OPUS4-45267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Ababei, G. A1 - Panne, Ulrich T1 - Photocatalysis of γ-cyclodextrin-functionalised Fe3O4 nanoparticles for degrading Bisphenol A in polluted waters JF - Environmental Chemistry N2 - The efficiency, relatively low cost and eco-friendly nature of hydrogen peroxide-assisted photocatalysis treatment procedures are significant advantages over conventional techniques for wastewater remediation. Herein, we evaluate the behaviour of g-cyclodextrin (g-CD) immobilised on either bare or chitosan (CS)–functionalised Fe3O4 nanoparticles, for photodegrading Bisphenol A (BPA) in ultrapure water and in real wastewater samples. The BPA removal efficiencies with Fe3O4/g-CD and Fe3O4/CS/g-CD were compared with those of Fe3O4/b-CD, and were monitored under UVA irradiation at near-neutral pH. The addition of H2O2 at low concentrations (15 mmol L-1) significantly increased BPA photodegradation in the presence of each nanocomposite. The highest catalytic activity was shown by both Fe3O4/g-CD and Fe3O4/CS/g-CD nanocomposites (,60 and 27%BPA removal in ultrapure water and real wastewater effluent, respectively). Our findings reveal the superior performance of g-CD-functionalised Fe3O4 relative to that of Fe3O4/b-CD. The use of CD-based nanocomposites as photocatalytic materials could be an attractive option in the pre- or post-treatment stage of wastewaters by advanced oxidation processes before or after biological treatment. KW - Photooxidation KW - Sonochemical synthesis KW - Wastewater PY - 2019 DO - https://doi.org/10.1071/EN18181 SN - 1448-2517 VL - 16 IS - 2 SP - 125 EP - 136 PB - CSIRO Publishing CY - Clayton South AN - OPUS4-48316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neamtu, Mariana A1 - Nadejde, C. A1 - Hodoroaba, Vasile-Dan A1 - Schneider, Rudolf A1 - Verestiuc, L. A1 - Panne, Ulrich T1 - Functionalized magnetic nanoparticles: Synthesis, characterization, catalytic application and assessment of toxicity JF - Scientific Reports N2 - Cost-effective water cleaning approaches using improved Treatment technologies, for instance based on catalytic processes with high activity catalysts, are urgently needed. The aim of our study was to synthesize efficient Fenton-like photo-catalysts for rapid degradation of persistent organic micropollutants in aqueous medium. Iron-based nanomaterials were chemically synthesized through simple procedures by immobilization of either iron(II) oxalate (FeO) or iron(III) citrate (FeC) on magnetite (M) nanoparticles stabilized with polyethylene glycol (PEG). Various investigation techniques were performed in order to characterize the freshly prepared catalysts. By applying advanced oxidation processes, the effect of catalyst dosage, hydrogen peroxide concentration and UV-A light exposure were examined for Bisphenol A (BPA) conversion, at laboratory scale, in mild conditions. The obtained results revealed that BPA degradation was rapidly enhanced in the presence of low-concentration H2O2, as well as under UV-A light, and is highly dependent on the surface characteristics of the catalyst. Complete photo-degradation of BPA was achieved over the M/PEG/FeO catalyst in less than 15 minutes. Based on the catalytic performance, a hierarchy of the tested catalysts was established: M/PEG/FeO > M/PEG/FeC > M/PEG. The results of cytotoxicity assay using MCF-7 cells indicated that the aqueous samples after treatment are less cytotoxic. KW - Bisphenol A KW - Magnetic nanocatalyst KW - Endocrine disruptor KW - Nanoparticle KW - Photodegradation KW - Fenton PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-448297 DO - https://doi.org/10.1038/s41598-018-24721-4 SN - 2045-2322 VL - 8 SP - Article 6278, 1 EP - 11 PB - Springer Nature CY - London AN - OPUS4-44829 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, P. A1 - Panne, Ulrich A1 - Traub, Heike A1 - Pfeifer, Jens A1 - Vogl, Jochen T1 - Quantification of sulphur in copper and copper alloys by GDMS and LA-ICP-MS, demonstrating metrological traceability to the international system of units JF - Journal of Analytical Atomic Spectrometry N2 - The quantification of the sulphur mass fraction in pure copper and copper alloys by GDMS and LA-ICP-MS revealed a lack of traceability mainly due to a lack of suitable certified reference materials for calibrating the instruments. Within this study GDMS and LA-ICP-MS were applied as routine analytical tools to quantify sulphur in copper samples by applying reference materials as calibrators, which were characterized for their sulphur mass fraction by IDMS beforehand. Different external calibration strategies were applied including a matrix cross type calibration. Both techniques with all calibration strategies were validated by using certified reference materials (others than those used for calibration) and good agreement with the reference values was achieved except for the matrix cross type calibration, for which the agreement was slightly worse. All measurement results were accompanied by an uncertainty statement. For GDMS, the relative expanded (k = 2) measurement uncertainty ranged from 3% to 7%, while for LA-ICP-MS it ranged from 11% to 33% when applying matrix-matched calibration in the sulphur mass fraction range between 25 mg kg-1 and 1300 mg kg-1. For cross-type calibration the relative expanded (k = 2) measurement uncertainty need to be increased to at least 12% for GDMS and to at least 54% for LA-ICP-MS to yield metrological compatibility with the reference values. The so obtained measurement results are traceable to the international system of units (SI) via IDMS reference values, which is clearly illustrated by the unbroken chain of calibrations in the metrological traceability scheme. KW - Sulfur KW - Copper KW - GDMS KW - LA-ICP-MS KW - Uncertainty KW - Traceability KW - SI PY - 2021 DO - https://doi.org/10.1039/d1ja00137j SN - 0267-9477 VL - 36 IS - 11 SP - 2404 EP - 2414 PB - Royal Society of Chemistry AN - OPUS4-53412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Phukphatthanachai, Pranee A1 - Vogl, Jochen A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Panne, Ulrich T1 - A new approach of using polyethylene frits for the quantification of sulphur in copper metals by isotope dilution LA-ICP-MS and comparison with conventional IDMS techniques JF - Journal of Analytical Atomic Spectrometry N2 - Polyethylene (PE) frits were used to quantify sulphur in copper and its alloys by isotope dilution combined with LA-ICP-MS as an alternative approach to conventional sample preparation: the copper samples were spiked, the spiked samples were dissolved, the resulting solutions were absorbed in the PE frits and finally the PE frits were analysed by LA-ICP-MS. A prerequisite for such a support material is a low sulphur blank and thus PE was selected for this purpose. The absorption efficiency of the PE frits was studied for varying sulphur amounts ranging from 2 mg S to 80 mg S showing that more than 99.5% of the loaded sulphur was absorbed by the frit. The so prepared PE frits were measured by LA-ICP-MS and yielded a good linearity (R2 ¼ 0.999) for the sulphur ion intensities corresponding to sulphur amounts up to 40 mg S; the associated sensitivity is approximately 3.4 x 10⁴ cps μg⁻¹ for ³²S. For the validation of the developed procedure the reference materials BAM-M376a, BAM-228 and BAM-227 were applied such that 2 μg S, 5 μg S and 11 μg S were absorbed in the PE frits, respectively. These samples were pre-quantified for the adsorbed sulphur amount by external calibration LA-ICP-MS yielding sulphur amounts of 0.9 μg, 5.1 μg and 8.5 μg (quantified for ³²S only), respectively. Relative Standard deviations of the isotope ratios were below 5% in average (n ¼ 3 lines) in all cases (except for the pure spike solution). These samples were then analysed by LA-ICP-IDMS and the measurement results were validated by comparing them with the results obtained by conventional ICP-IDMS. The obtained relative expanded measurement uncertainties ranged between 10% and 26%. Pearson's coefficient was used to express the correlation between both techniques; the obtained value was 0.999 demonstrating a strong correlation. Contrary to most published LA-ICP-IDMS procedures, the developed procedure enables SI-traceability for the measurement results. The metrological traceability to the SI for the sulphur mass fractions in copper was established by an unbroken chain of comparisons, each accompanied by an uncertainty budget. Thus, the measurement results are considered reliable, acceptable and comparable within the stated measurement uncertainty. The metrological traceability chain from the kg down to mass fraction in the samples obtained by LA-ICP-IDMS is presented as well. KW - Laser ablation KW - IDMS KW - Traceability KW - Uncertainty KW - Purity PY - 2018 DO - https://doi.org/10.1039/c8ja00116b SN - 0267-9477 SN - 1364-5544 VL - 33 IS - 9 SP - 1506 EP - 1517 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-45899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -