TY - THES A1 - Ecker, Melanie T1 - Development, Characterization and Durability of Switchable Information Carriers based on Shape Memory Polymers N2 - The aim of this thesis was the development of switchable information carriers based on shape memory polymers (SMPs) and the investigation of their durability. Deployed as a new kind of security label, such technology may be an effective tool to prevent counterfeiting and product piracy. Thermoplastic as well as thermoset SMPs turned out to be applicable as a specific substrate for the fabrication of switchable information carriers. In particular, a physically cross-linked and semi-crystalline poly(ester urethane) (PEU), and a chemically cross-linked epoxy-based polymer were investigated. Both SMPs were able to undergo distinct changes in shape upon triggering, which is commonly known as the shape memory effect (SME). A key step for the fabrication of switchable information carriers was the development of a suitable technique for a surface-specific coloring of the polymeric base material. In particular, it was necessary to have a thin coat of paint in order to assure sufficient surface contrasts within the subsequently laser-engraved barcodes (e.g. quick response (QR) codes). In detail, coloring was conducted by diffusion of staining solutions, based on organic dyes, into the polymeric matrix. As a result of properly selected exposure times, homogenous layers of paint having thicknesses of about 100 μm, could be produced. In order to obtain room temperature stable, temporary shapes with non-decipherable code information, various programming procedures were applied to the information carriers. These were either based on tensile or on compressive deformation. For instance, when using plane steel plates in the course of compressive deformation, code areas were randomly distorted. By contrast, selective distortions could be achieved using a steel ball type indenter. However, the triggering of the SME resulted in almost complete shape recoveries. As a result, the information carriers could reliably be switched back to readable states. Before the developed information carriers can be brought onto the market, it is important to evaluate their durability against various environmental impacts. Artificial weathering was conducted exemplarily on blue and black colored QR code carriers based on PEU. Various scenarios were selected: exposure to UVA irradiation and aging in aqueous solution. In both cases, the durability was investigated at temperatures below and above the switching temperature of the employed SMP. It turned out, that the limiting factor for the usage of switchable information carriers was a lack of contrast and thus was dye-related. In the case of UV irradiation, the color of the dyes started fading, culminating in unreadable QR codes. For hydrolytic degradation, the non-colored code regions were stained in the course of aging. This originates from the fact that the organic dyes used for coloring were soluble in water. As a consequence, they were able to diffuse easily in and out of the swollen polymeric matrix. For both scenarios, aging at elevated temperature caused acceleration of the observed effects. However, the shape memory properties of the PEU were only slightly influenced by the applied aging scenarios. Next, an additional thermo-responsive security feature was added to the information carriers. Therefore, thermochromic pigments (T-PIGs) were embedded into a PEU matrix. However, in contrast to the organic dyes, the size of the thermochromics microcapsules was too large to diffuse into the polymeric matrix. Thus, another procedure for a surface-specific coloring of the PEU was developed. This mainly included the preparation of a PEU-paste doped with T-PIG by solution mixing. The thermochromic paste was deposited by means of a solvent casting technique as thin layer atop the PEU plaque. After solvent evaporation, tightly connected PEU/PEU-T-PIG laminates were obtained. Beyond that, the layer thickness was adjustable by using a doctor blade for the paste deposition. Subsequent laser ablation finalized the QR code carriers. These were readable at room temperature, but unreadable above the color switching temperature of the employed T-PIGs due to a lack of contrast. Hence, the obtained multifunctional information carriers were characterized by distinct shape memory properties and tunable color switching performances. Furthermore, the combination of several T-PIGs having different colors and switching temperatures resulted in surfaces with multiple and unique temperature-dependent changes in color. Besides that, information carriers with temporarily concealed information could be obtained by covering the QR code with an additional layer doped with T-PIG. N2 - Ziel der Arbeit war es, schaltbare Informationsträger aus Formgedächtnispolymer (FGP) zu entwickeln, und diese auf ihre Beständigkeit gegenüber unterschiedlichen Umwelteinflüssen zu untersuchen. Eingesetzt als neuartige Etiketten könnten diese zur fälschungssicheren Kennzeichnung von Waren verwendet werden. Sowohl thermoplastische als auch duroplastische FGPs waren geeignete Ausgangsmaterialien für solche Informationsträger. Im Speziellen wurde sowohl ein physikalisch quervernetztes, semikristallines Poly(ester urethan) (PEU), als auch ein chemisch quervernetztes, amorphes FGP auf Epoxidbasis näher untersucht. Ein wichtiger Schritt für die Entwicklung von schaltbaren Informationsträgern aus FGP war die Entwicklung eines Färberverfahrens, bei dem das Polymer nur oberflächennah eingefärbt wird. So konnten ausreichend hohe Kontraste in den anschließend mittels Lasergravur eingebrachten Barcodes (z.B. QR engl. quick response Codes) erreicht werden. Die Färbung der Polymeroberflächen durch Diffusion von organischen Färbelösungen in die Polymermatrix stellte sich als probate Methode heraus. Dabei konnte die Eindringtiefe der Farbstoffe durch die Einwirkzeit auf etwa 100 μm eingestellt werden. Um die Informationsträger in stabile, temporäre Formen mit unlesbarer Information zu überführen, wurden unterschiedliche thermomechanische Programmierungsmethoden angewendet. Sowohl Druck- als auch Zugverformung stellten sich hierfür als geeignet heraus. In beiden Fällen waren die Informationen im programmierten Zustand aufgrund zu großer Verzerrungen der QR Codes unlesbar. Durch den Einsatz von konfigurierbaren Stempelwerkzeugen während der Druckverformung war es darüber hinaus möglich, selektive Verformung der Oberfläche zu erreichen. Nach dem Auslösen des Formgedächtniseffektes kehrten die Etiketten nahezu in ihre ursprüngliche Form zurück, sodass die Information dann in jedem Fall wieder lesbar war. Um die Haltbarkeit der neu entwickelten Informationsträger gegenüber Umwelteinflüssen besser beurteilen zu können, wurden gefärbte Etiketten aus PEU künstlich bewittert. Hierfür wurden zwei Alterungsszenarien gewählt: die Degradation durch UVA-Strahlung und die Beständigkeit in wässrigem Medium. In beiden Fällen wurde die Bewitterung unterhalb und oberhalb der Schalttemperatur des Polymers durchgeführt. Die UV-Alterung führte zum Ausbleichen der Farben und somit zum Verlust der Lesbarkeit durch die Abnahme des QR Code Kontrastes. Während der Alterung in Wasser wurden die anfangs ungefärbten Domänen innerhalb des QR Codes nach und nach gefärbt, was ebenfalls zu einem Kontrastverlust führte. Das rührte daher, dass die organischen Farbstoffe wasserlöslich waren und somit in das gequollene Polymer hinein- und hinausdiffundieren konnten. Lagerung bei erhöhter Temperatur führte in beiden Fällen zu einer Beschleunigung der beobachteten Phänomene. Im Gegensatz dazu wurde während der untersuchten Alterungszenarien die Formgedächtnis-Funktionalität des Polymers kaum beeinflusst. Anschließend wurden die Informationsträger mit einem weiteren thermoresponsiven Sicherheitsmerkmal kombiniert. Die hierfür verwendeten thermochromen Pigmente (T-PIGs) waren im Vergleich zu den vorher verwendeten Farbstoffen jedoch zu groß, um in die Polymermatrix hineinzudiffundieren. Daher wurde eine weitere Methode zur oberflächenspezifischen Einfärbung von Polymeren entwickelt. Hierzu wurde zunächst eine viskose PEU-Lösung hergestellt, die im Anschluss mit den T-PIGs vermengt wurde. Die so erhaltene Paste wurde mittels der sogenannten „solvent cast“ Technik als dünner Film auf die Polymeroberfläche aufgebracht. Dabei konnte die Schichtdicke durch den Einsatz eines „doctor blades“ eingestellt werden. Nach dem vollständigen Abdampfen des Lösungsmittels wurden fest verbundene PEU/PEU-T-PIG Laminate erhalten. Die anschließende Lasergravur führte zu Informationsträgern, die bei Raumtemperatur lesbar waren. Oberhalb der Farbumschlagstemperatur der eingesetzten T-PIGs wurden diese jedoch aufgrund von Kontrastverlusten unlesbar. Die so erhaltenen multifunktionalen Informationsträger waren demzufolge neben ihren Formgedächtniseigenschaften durch einstellbare, temperaturabhängige Farbänderungen charakterisiert. Darüber hinaus war es möglich, Informationsträger mit mehreren Farbumschlägen zu erhalten, indem T-PIGs mit unterschiedlichen Farben und Farbumschlagstemperaturen während der Herstellung eingesetzt wurden. In einem weiteren Szenario wurden Informationsträger mit einer Schicht aus thermochromer Paste überdeckt. Als Folge war der Barcode bei Raumtemperatur unter dieser Schicht verborgen und wurde erst beim Erwärmen oberhalb der Schalttemperatur sichtbar und lesbar. T3 - BAM Dissertationsreihe - 132 KW - durability KW - smart materials KW - Shape memory polymers KW - QR codes KW - thermochromism PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-5086 VL - 132 SP - 1 EP - 202 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-508 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mirtschin, Nikolaus T1 - Thermomechanisches Verhalten von semikristallinem Polyester-Urethan N2 - Formgedächtnispolymere werden durch thermomechanische Vorbehandlung, die Programmierung, in eine temporäre Form überführt. In die Ursprungsform kehren sie dann erst nach externer Stimulierung, durch Auslösen des Formgedächtniseffekts, wieder zurück. Um diesen Effekt zu optimieren, werden in dieser Arbeit thermomechanische Designoptionen analysiert und Stellschrauben der Programmierung diskutiert. Quantifiziert wird das Materialverhalten eines physikalisch vernetzten Polyurethans mit semikristalliner Polyester-Weichsegmentphase (PEU) in thermomechanischen Messungen, in denen das Polymer Dehnungen bis über 1000% fixiert. Deformationen im breiten Schmelzübergangsbereich der Weichsegmentphase ermöglichen die präzise Kontrolle über die Temperaturen der Dehnungs- und Spannungsrückstellung, den bekannten Temperaturgedächtniseffekt (TGE). Erst durch eine neuartige Programmierung wird jedoch der Beginn der Rückstellung einstellbar. Für diesen Onset-TGE wird das PEU direkt nach dem Recken entlastet und danach unter die Kristallisationstemperatur abgekühlt. In situ Röntgenstreuung zeigt, dass durch den frühen Entlastungszeitpunkt nur der Teil der kristallinen Weichsegmentphase zur Fixierung beiträgt, der auch beim Recken kristallin ist. Die Kristallinität bietet daher eine Stellschraube, um das thermomechanische Verhalten zu veredeln. Über die Optimierungsparameter Reckrate, Temperaturhaltezeit und maximale Dehnung erzielt das PEU hohe Fixierbarkeiten und Rückstellspannungen, ohne die Rückstellung und den Onset-TGE zu beeinträchtigen. Durch die Erweiterung der Programmierung des Onset-TGEs hin zu einer zweiten Deformation und Entlastung innerhalb des Schmelzübergangs zeigt das PEU einen bisher nicht berichteten zweistufigen Spannungsanstieg während der Rückstellung. Ein Temperaturlimit für den Onset-TGE stellt die Peak-Schmelztemperatur aus der dynamischen Differenzkalorimetrie dar. Durch die verbleibende Kristallinität oberhalb dieser Temperatur führt die Deformation und Entlastung direkt zur thermoreversiblen Aktuation mit Dehnungsänderungen bis zu 28%. Die Ergebnisse werden auf einen Miniaturisierungsansatz für schaltbare Informationsträger übertragen, mit denen eine maschinenlesbare Information von nichtlesbar nach lesbar geschaltet werden kann. In einer Machbarkeitsstudie wird der für Sensoranwendungen vielversprechende Onset-TGE genutzt, um die Lesbarkeit der Informationsträger bei einer vordefinierten Temperatur zu schalten. Das erweitert das potentielle Anwendungsfeld der Technologie vom Produkt- und Markenschutz zur Überwachung von Kühlketten. N2 - Shape memory polymers are able to change their shape upon application of an external stimulus. This behavior requires a thermomechanical treatment, so-called programming, to establish a temporary shape. To optimize the shape memory performance, thermomechanical design options will be analyzed and programming parameters discussed in the present thesis. The material behavior of a physically crosslinked polyurethane with semicrystalline polyester soft segments (PEU) is quantified by thermomechanical measurements, where the polymer fixes strains of above 1000%. The deformation within the broad melting transition of the soft segment phase enables the precise control over the temperatures of strain and stress recovery, also known as temperature-memory effect (TME). But only the herein introduced programming route, consisting in elongation and unloading prior to cooling below the crystallization transition, allows for fine-tuning the beginning of recovery. For the resulting onset-TME in situ X-ray scattering indicates that only soft segment crystals contribute to fixation, which are crystalline during deformation. Therefore, the crystallinity opens the door for gaining precisely control over the thermomechanical behavior. Optimization parameters for reaching high strain fixities and recovery stresses without compromising recovery nor the onset-TME are found in the strain rate, temperature holding time and maximum strain. When extending the programming route for onset-TMEs towards a second deformation and unloading step of PEU within the melting transition, an unreported two-step stress recovery is rendered possible. However, the peak melting temperature determined from differential scanning calorimetry represents a temperature limit for the onset control. Through the residual crystallinity above that temperature, deformation and unloading yield thermoreversible actuation with strain changes up to 28%. The findings are transferred to a miniaturization approach for switchable information carriers for switching encoded information from machine-unreadable to readable. In a proof-of-concept study the onset-TME – promising for sensor applications – can be exploited in order to predefine a temperature threshold value for readability of information carriers. This behavior widen their potential applicability from product and brand protection to cold chain supervision. T3 - BAM Dissertationsreihe - 156 KW - Formgedächtnispolymere KW - Temperaturgedächtnispolymere KW - Polyester-Urethan KW - Thermomechanische Eigenschaften KW - Programmierung PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-399648 SN - 978-3-9818270-5-7 SN - 1613-4249 VL - 156 SP - iii EP - 150 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-39964 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -