TY - THES A1 - Häßler, Dustin T1 - Verhalten reaktiver Brandschutzsysteme auf kreisförmigen Zuggliedern aus Blank- und Baustahl N2 - Im Bauwesen werden Zugglieder aus Stahl in der Regel für Aussteifungsverbände, Abhängungen und Unterspannungen von Trägern verwendet. Die dafür verbauten, meist kreisförmigen Vollprofile dienen häufig der Stabilisierung des Tragwerks. Ein Versagen der Stahlzugglieder kann zu einem Einsturz der gesamten Konstruktion führen. Unter Brandeinwirkung verlieren ungeschützte Stahlkonstruktionen aufgrund der schnellen Erwärmung frühzeitig ihre Tragfähigkeit. Durch den Einsatz reaktiver Brandschutzsysteme auf Stahlbauteilen kann deren Erwärmung verlangsamt und dadurch der Feuerwiderstand verbessert werden. Die Optik der oftmals filigranen Stahlzugglieder bleibt dabei im Wesentlichen unverändert. Für die Anwendung reaktiver Brandschutzsysteme auf Stahlzuggliedern mit Vollquerschnitt gibt es derzeit in den allgemeinen bauaufsichtlichen Zulassungen keine Regelungen. Die an der Bundesanstalt für Materialforschung und –prüfung (BAM) durchgeführten experimentellen und numerischen Untersuchungen [35] sowie die darauf aufbauenden Erkenntnisse dieser Dissertation hinsichtlich des Verhaltens reaktiver Brandschutzsysteme auf Stahlzuggliedern mit Vollprofil bilden die Grundlage für eine Erweiterung des Anwendungsbereiches dieser Produkte. Eine Anwendung ist grundsätzlich möglich. Aufgrund der meist für Zugglieder eingesetzten filigranen Vollquerschnitte sowie der in Bezug auf die Tragfähigkeit fehlenden Umlagerungsmöglichkeit werden besonders hohe Anforderungen an die Wirksamkeit und Zuverlässigkeit von reaktiven Brandschutzsystemen gestellt. Anhand der Ergebnisse aus den Brandversuchen sowie theoretischer Betrachtungen ist festzustellen, dass das auf kreisförmigen, zugbeanspruchten Stahlprofilen aufgebrachte reaktive Brandschutzsystem aufgrund der notwendigen dreidimensionalen Ausdehnungsrichtung der höchst möglichen Beanspruchung ausgesetzt ist. Mit Hilfe von Leistungskriterien zur Bestimmung der Tragfähigkeit, welche im Rahmen der Dissertation entwickelt wurden, lassen sich die in Brandversuchen unter axialer Zugbeanspruchung getesteten Stahlzugglieder mit reaktiver Brandschutzbeschichtung in Feuerwiderstandsklassen einordnen. Für die Beurteilung der thermischen Schutzwirkung des reaktiven Brandschutzsystems werden die Erwärmungsgeschwindigkeit, die maximale Stahltemperatur sowie die Rissbildung und das Rissheilungsvermögen der Beschichtung herangezogen. Die Brandversuche haben gezeigt, dass die Profilgeometrie, die Höhe der Trockenschichtdicke der Beschichtung, die Höhe der aufgebrachten Zugbeanspruchung sowie die Orientierungsrichtung der Zugglieder einen wesentlichen Einfluss auf die thermische Schutzwirkung des reaktiven Brandschutzsystems ausüben. Zudem stehen diese Faktoren in gegenseitiger Wechselwirkung. Durch Abstimmung der genannten Einflussgrößen lässt sich die Wirkung der Brandschutzbeschichtung optimieren. Durch die Vielzahl an reaktiven Brandschutzsystemen und die in den Produkten variierende chemische Zusammensetzung ist deren Aufschäumverhalten und thermische Schutzwirkung sehr unterschiedlich und kaum vorhersagbar. Die Wirksamkeit des reaktiven Brandschutzsystems ist daher für Grenzfälle des vom Hersteller definierten Anwendungsbereichs durch Brandversuche zu überprüfen. Empfehlungen zur Durchführung dieser Versuche sind im Forschungsbericht [35] beschrieben. Bei Verwendung von kaltverformtem Blankstahl für Stahlzugglieder mit Vollprofil sind andere Hochtemperatureigenschaften als bei dem typischerweise für Träger und Stützen eingesetzten warmgewalztem Baustahl zu berücksichtigen. Kaltverformter Blankstahl weist gegenüber herkömmlichem Baustahl einen höheren Wärmeausdehnungskoeffizient und andere temperaturabhängige Abminderungsfaktoren für die Stahlfestigkeit auf. Die in experimentellen Untersuchungen für Blankstahl ermittelten Materialeigenschaften können für die Heißbemessung von Zuggliedern mit Vollprofil aus entsprechendem Material verwendet werden. In Kombination mit Temperaturdaten aus Brandversuchen lässt sich mittels eines auf der Grundlage der Finite-Elemente-Methode (FEM) entwickelten numerischen Berechnungsmodells das Trag- und Verformungsverhalten von Zuggliedern realitätsnah berechnen. Vergleiche zur Stablängsverformung von in Brandversuchen getesteten Zuggliedern zeigen eine hohe Übereinstimmung mit den Ergebnissen aus dem im Rahmen der Dissertation neu entwickelten Bemessungsmodell. T3 - BAM Dissertationsreihe - 149 KW - Brandschutz KW - Stahl KW - Reaktive Brandschutzsysteme KW - Numerische Simulation KW - Brandversuche KW - Materialuntersuchung PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-371495 SN - 978-3-9817853-4-0 SN - 1613-4249 VL - 149 SP - 1 EP - 226 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-37149 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -