TY - THES A1 - Dümichen, Erik T1 - Einsatz neuer thermoanalytischer Verfahren zur Untersuchung thermischer und thermo-oxidativer Degradationsmechanismen sowie dem Netzwerkaufbau von Polymeren N2 - Die Anwendung thermoanalytischer Methoden für die Polymercharakterisierung hat aufgrund der makromolekularen Struktur von Polymere Vorteile. Es wurden zwei neue thermoanalyti-sche Verfahren entwickelt und deren Einsatz anhand von Anendungsbeispielen demons-triert, sowie mit etablierten, thermoanalytischen Methoden verglichen. Für die thermische- und thermo-oxidative Zersetzungsgasanalytik wurde die Thermogravi-metrie (TGA) gekoppelt mit der Thermodesoptions-Gaschromatographie-Massenspektrometrie (TDS-GC-MS). Die Zersetzungsgase der TGA wurden dafür über ei-nen Festphasenadsorber geleitet, auf dem eine repräsentative Auswahl von polymerspezifi-schen Analyten adsorbiert wurde. Die thermische Extraktion der Analyten erfolgte in der TDS-GC-MS. Dies ermöglichte die Trennung der Analyten sowie die eindeutige Identifizie-rung mittels charakteristischer Massenfragmentmuster. Sie wurde als TED-GC-MS bezeichnet. Es stellte sich heraus, dass sie sich besonders für die Analyse von komplexen Kohlen-wasserstoffgemischen mit Molmassen von mehr als 100 g/mol eignet. In Kombination mit anderen Kopplungstechniken wie beispielsweise die TGA-FTIR/MS, die speziell für die Ana-lyse von kleineren Molekülen verwendet wurde, konnten neue grundlegende Zersetzungs-mechanismen entwickelt werden. Es wurde beispielsweise sichtbar, dass sowohl bei der thermischen als auch bei der thermo-oxidativen Degradation von Polyamid 66 (PA 66) Kon-densationsreaktionen eine wichtige Rolle spielen. Die Methode erwies sich darüber hinaus als besonders geeignet für die Identifizierung und Quantifizierung von Polymeren in Umweltproben. Es entstand dazu eine erste grundlegende Arbeit für die quantitative Bestimmung von Polyethylen (PE) Mikroplastik in Umweltproben. Im zweiten Teil der Arbeit wurde eine steuerbare beheizbare Zelle eingeführt. Mit ihr war es möglich, mit Hilfe der Nahinfrarotspektroskopie (NIR), sich verändernde Netzwerkstrukturen während der Härtung sichtbar zu machen. Vergleichend dazu wurden etablierte, kalorische Messungen durchgeführt. Somit konnten für verschiedene Epoxidsysteme die Aushärtegrade während der Härtung mit variablen Heizraten bestimmt werden. Dadurch konnten Aushär-tungskinetiken erstellt werden, die durch isotherme und komplexe Aushärtungsszenarien validiert wurden. KW - Thermische Methoden KW - Polymer KW - Analytik PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000100982-9 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000100982 SP - 1 EP - 65 PB - FU Berlin CY - Berlin AN - OPUS4-42171 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Hahn, Marc Benjamin T1 - Quantifizierung der Schädigung von DNA in wässriger Lösung unter direkter Elektronenbestrahlung N2 - Bei der Behandlung von Krebs wird Strahlentherapie zur Zerstörung von Tumorzellen eingesetzt. Der zugrunde liegende Wirkmechanismus ist die durch ionisierende Strahlung verursachte Schädigung an Biomolekülen. Dabei kommt den Schädigungsprozessen an DNA aufgrund ihrer zentralen Rolle in Mutation und Zelltod eine besondere Bedeutung zu. Durch den hohen Wasseranteil in menschlichen Zellen findet ein Großteil der inelastischen Streuprozesse an Wassermolekülen statt und führt zur deren Radiolyse. Die so entstehenden Radiolyseprodukte sind für einen Großteil des Schadens an DNA verantwortlich. Ein detailliertes Verständnis der zugrunde liegenden molekularen Interaktion ist die Voraussetzung um effizientere Therapien zu entwickeln. Ziel dieser Arbeit ist es, die Schädigung von DNA durch ionisierende Strahlung in Abhängigkeit der inelastischen Streuevents und des Energieeintrags innerhalb des biologisch relevanten mikroskopischen Treffervolumens zu quantifizieren. Die Bestrahlungen müssen dazu in Flüssigkeit, unter Berücksichtigung der chemischen Umgebung durchgeführt werden, welche die indirekten Schäden vermittelt. Deshalb wurde eine neuartige Kombination aus Experiment und Monte- Carlo-Simulationen entworfen und angewandt. Um Elektronenbestrahlung flüssiger Lösungen innerhalb eines Rasterelektronenmikroskops zu ermöglichen, wurde ein Probenhalter mit einer für Elektronen durchlässigen Nanomembran entwickelt. So können Bestrahlungen an DNA, Proteinen, und Zellen bei verschiedenen pH-Werten, Salzkonzentrationen oder in Anwesenheit von Kosoluten durchgeführt werden. Für ein Modellsystem aus Plasmid-DNA in Wasser wurde damit die mittlere letale Dosis aus der Kombination der experimentellen Daten, Partikelstreusimulationen (Geant4-DNA) und Diffusionsberechnungen zu D1/2 = 1.7 ± 0.3 Gy bestimmt. Aus der Konvolution der Plasmidpositionen mit dem durch Elektronenstreusimulationen bestimmten ortsaufgelösten Energieeintrag wurde dessen Häufigkeitsverteilung im Targetvolumen der Plasmide sowie der mittlere mikroskopische letale Energieeintrag berechnet als E1/2 = 6 ± 4 eV . Es wurde gefolgert, dass weniger als zwei Ionisationsprozesse im sensitiven Targetvolumen der DNA im Mittel zu einem Einzelstrangbruch führen. Das für mikrodosimetrische Modellierungen wichtige Verhältnis von Einzelstrangbrüchen (SSB) zu Doppelstrangbrüchen (DSB) wurde als SSB : DSB = 12 : 1 bestimmt. Die vorgestellte Methode zur Bestimmung mikroskopischer Schaden-Dosis Relationen wurde auf weitere Klassen von Bestrahlungsexperimenten verallgemeinert. Dadurch ist die Methode unabhängig von der verwandten Primärstrahlung, der Probengeometrie und den Diffusionseigenschaften der untersuchten Moleküle anwendbar. So wird eine Vergleichbarkeit experimenteller Systeme mit inhomogenen Energieverteilungen erreicht, die bei ausschließlicher Betrachtung makroskopischer, gemittelter Größen nicht gegeben ist. Des weiteren wurden die Strahlenschutzfunktionen des kompatiblen Soluts Ectoine und sein Einfluss auf Wasser und Biomoleküle untersucht. Mittels Ramanspektroskopie wurde ein kon-zentrationsabhängiger Anstieg des Anteils der Kollektivmoden des Wassers der OH-Streckschwingungen und dessen Unabhängigkeit von der Natriumchloridkonzentration beobachtet. Molekulardynamik-Simulationen zeigten, dass die zwitterionischen Eigenschaften zur Bildung einer half-chair Konformation Ectoines führen. Die Wasserstoffbrückenbindungen in der ersten Hydrationshülle sind signifikant stabiler und besitzen höhere Lebensdauern als das Bulk-Wasser. Bestrahlung von DNA in Anwesenheit von 1 M Ectoine führt zu einer Erhöhung der Überlebensrate um den Faktor 1,41. Die Schutzfunktion wurde auf die Erhöhung des Streuquerschnitts niederenergetischer Elektronen an den akustischen Vibrationsmoden des Wasser durch Ectoine und seine Wirkung als OH-Radikalfänger zurückgeführt. Dies wurde mittels Ramanspektroskopie und Elektronenspinresonanzmessungen (ESR) nachgewiesen. N2 - To cure cancer radiation therapy is used to kill tumor cells. It is based on radiation induced damage to biomolecules. Especially DNA damage is of key interest due to its central role in apoptosis and mutation. Because of the high amount of water in biological tissue, most of the damage is caused by the secondary particles produced by the inelastic scattering of ionizing radiation and water. A detailed understanding of the underlying molecular processes under physiological conditions is the prerequisite to develop more efficient therapies. Goal of this work is to quantify the DNA damage caused by ionizing radiation in dependence of the inelastic scattering events and the energy deposit within the microscopic target volume of biological relevance. The irradiations have to be performed in liquid, under consideration of the chemical environment. Therefore, a new combination of experiment and Monte-Carlo simulations was developed and tested. To make it possible to irradiate liquids with electrons within scanning electron microscopes a new sample holder was constructed incorporating an electron transparent nanomembrane. It makes it possible to irradiate DNA, proteins or cells at different pH, salinity and in the presence of cosolutes. The median lethal dose for a model system of plasmid DNA and water was determined by the combination of experimental data, particle scattering simulations (Geant4-DNA) and Diffusion calculations as D1/2 = 1.7 ± 0.3 Gy. From the convolution of plasmid positions and the spatially resolved energy deposit, as determined by electron scattering simulations, the histogram of the energy deposit within the target volume of the plasmids and the microscopic median lethal energy deposit was calculated as E1/2 = 6 ± 4 eV . It could be deduced that on average less than two ionization events are sufficient to cause a single-strand-break. The relation of single- strand-breaks (SSB) to double-strand-breaks (DSB), which is of importance for microdosimetric modeling, was determined as SSB : DSB = 12 : 1. The presented method for the determination of microscopic dose-damage relations was further extended to be applicable for general irradiation experiments. It becomes independent of the type of primary radiation used, the experimental geometry, and the diffusional properties of the molecules under investigation. This way different experimental systems with varying, inhomogeneous energy deposit characteristics become comparable with each other, which is not possible when only macroscopic averaged values are taken into account. In addition, the radiation protection properties of the compatible solute ectoine, as well as ist influence on the water properties and biomolecules were investigated. Raman spectroscopy revealed a concentration dependent increase of the collective water modes in the OH-stretching region, which was found to be independent of the sodium chloride concentration. Molecular dynamic simulations showed that the zwitterionic properties of ectoine lead to its half-chair conformation. The hydrogen bonds in the first hydration shell are more stable and have an increased lifetime compared to the bulk water. Irradiation experiments with DNA in the presence of 1 M ectoine revealed an increase of the survival rate by a factor of 1.41 as compared to the absence of ectoine. The protective properties of ectoine result from the increase of the inelastic scattering probabilities of low energy electrons at the acoustic vibrational modes of water and its properties as OH-radical scavenger. This was shown by Raman spectroscopy and electron paramagnetic resonance measurements (EPR). KW - DNA KW - Radiation KW - Radiation damage KW - Dosimetry KW - Microdosimetry KW - DNA damage KW - DNA radiation damage KW - Low energy electrons KW - Electron irradiation KW - Hydroxyl radicals KW - Ectoine KW - Ectoine protein interaction KW - Ectoine DNA interaction KW - Ectoine radiation protection KW - Ectoine salt KW - Cancer therapy KW - Radiation therapy KW - Ectoin PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:188-fudissthesis000000106497-4 UR - http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000106497 SP - 1 EP - 108 CY - Berlin AN - OPUS4-44510 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Schröter, Maria-Astrid T1 - Untersuchung schwingender Mikrostrukturen mittels dynamischer Rasterelektronenmikroskopie: Experiment und Theorie N2 - Die vorgelegte Arbeit zeigt die Ausarbeitung und die Überprüfung einer Theorie, mit welcher die Ergebnisse aus einem neu entwickelten Mess-Verfahren (DySEM-Technik) beschrieben werden können. Mit dem Begriff “DySEM“ (Dynamic Scanning Electron Microscopy) wird ein experimentelles Verfahren bezeichnet, bei dem ein Elektronenstrahl als Mess-Sonde über einem mikroskaligen Schwinger verfahren wird, wobei die Schwingung durch eingesetzte Lock-In Technik frequenzaufgelöst dargestellt werden kann. Neben dem klassischen Sekundärelektronen-Signal wird zur Bildgebung auch der Anteil aus dem Signal genutzt, der sich anregungssynchron ändert. Die DySEM-Technik ermöglicht eine direkte Visualisierung der Schwingungsdynamik der oszillierenden Struktur, da zwischen unterschiedlichen Eigenmoden (flexural, torsional) als auch den jeweiligen höheren Harmonischen optisch eindeutig unterschieden werden kann. Damit bietet sich dieses Verfahren als ein Werkzeug der Modal-Analyse mikroskaliger Schwinger an, welche in mikro- bzw. nanoelektromechanischen Systemen (MEMS bzw. NEMS) häufig Verwendung finden und bei denen eine Optimierung der Designparameter oft erst durch die Bildgebung der Schwingung zu erreichen ist. Zusätzlich zeigen die DySEM-Bilder charakteristische Amplituden-abhängige Bildmerkmale, die theoretisch verstanden werden müssen. Prinzipiell ist die DySEM-Technik nicht an den Elektronenstrahl als Mess-Sonde gekoppelt. Allerdings erweist sich gerade im Zuge fortschreitender Miniaturisierung mit immer kleinskaligeren Schwingern eine elektronenoptische Orts-Auflösung als günstig. Bei der theoretischen Analyse des Abbildungsmechanismus liegt der Fokus auf der Untersuchung der raum-zeitlichen Dynamik der Wechselwirkung zwischen Elektronenstrahl und der periodisch darunter hinweg schwingenden Mikrostruktur, für die erstmals ein umfängliches Modell abgeleitet werden konnte, wodurch die detaillierte Interpretation der experimentellen Ergebnisse möglich wurde. Zusätzlich spielen lokale Eigenschaften (Materialeigenschaften) des Schwingers eine Rolle. Ebenso müssen die Beiträge von Energieverlustmechanismen zur Bildgebung berücksichtigt werden. Um die bildgebenden Gleichungen explizit ableiten zu können, beschränkt sich die mathematische Analyse in dieser Arbeit auf die Annahme eines frei oszillierenden, einseitig geklemmten Schwingers ohne Wechselwirkung mit Materie, wie es im DySEM-Experiment durch die Bildgebung im Hochvakuum angenähert wird. Die aufgrund dieses Modells simulierten DySEM-Bilder stimmen mit den experimentell gewonnenen Ergebnissen qualitativ und quantitativ gut überein. N2 - The thesis presented shows the development and verification of a theory, with which the results of a newly developed measuring method (DySEM technique) can be described. The term ”DySEM” (Dynamic Scanning Electron Microscopy) denotes an experimental procedure for measuring the vibrational dynamics of a microscale oscillator using a scanning electron beam. In addition to the classical secondary electron (SE) signal, the dynamic part of the signal can be obtained using a lock-in amplifier synchronized to the excitation frequency. The DySEM technique enables the direct observation of freely vibrating structures, including several modes in the normal and torsional direction as well as their higher harmonics. Thus, this method is a tool of modal analysis of microscale structure in oscillation, which is frequently used in micro- and nanoelectromechanical systems (MEMS and NEMS) and where an optimization of the design parameters often only can be achieved by imaging the vibration. Additionally, the DySEM images contain characteristic amplitude-dependent image features that need to be understood theoretically. Thanks to the precise local definition of electron beam and to lock-in technique the vibration images exhibit high spatial resolution. Thus, in the framework of progressing miniaturization of vibrating structures an electron-optical resolution is proved to be advantageously. In this framework a new quantitative theoretical model is proposed for the interpretation of the characteristic properties of the obtained measurements. The model of imaging generating mechanism relates the experimental images to the spatio-temporal interaction between electron beam and periodically vibrating microstructure. So, for the first time the detailed interpretation of the experimental results was possible. In addition, local properties (material properties) of the micro-oscillator are important. Similarly, the contributions of energy loss mechanisms must be considered for imaging. To explicitly derive the imaging equations, the mathematical analysis is limited in this work to the adoption of a free oscillating unilaterally clamped oscillator without interaction with matter, as it is approximated in DySEM experiment by imaging in high vacuum. Simulated images show very good qualitatively and quantitatively correspondence to the experimental data. First the theoretical model of the imaging process makes it possible to use the DySEM-technique as a quantitative analysis tool. Without such an understanding of the relationship between image contrast and interaction geometry, a quantitative interpretation of the DySEM images is hardly possible. The advantage of DySEM technique is the ability to distinguish between artefacts based on the imaging process and features which carry relevant VII information (i.e. nonlinear mechanical behavior of the micro-oscillator). The analysis of the imaging of oscillating microstructures by means of scanning electron microscopy is thereby achieved in this work presented as a combination of experiment, theory and simulation. T3 - BAM Dissertationsreihe - 124 KW - Dynamische Rasterelektronenmikroskopie (DySEM) KW - Bildgebung schwingender Mikrostrukturen KW - Modalanalyse KW - Federbalken KW - Theoretisches Modell der Bildentstehung PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-4644 SN - 978-3-9816668-3-0 VL - 124 SP - 1 EP - 134 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-464 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -