TY - THES A1 - Lohrer, Christian Andreas T1 - Einflussgrößen auf die Selbstentzündung von Schüttgütern und Stäuben - experimentelle Untersuchungen und numerische Simulationen N2 - Selbstentzündungen von brennbaren Materialien können sowohl bei Prozessen in der Verfahrenstechnik als auch beim Transport oder Lagerung von Schüttgütern auftreten. Verschiedene Parameter, wie die Materialeigenschaften, die Lagerungsbedingungen und die Geometrie der Schüttung, beeinflussen den Selbstentzündungsvorgang. Eine zuverlässige Beurteilung der Lagerungs- und Transportsicherheit von Schüttgütern und Stäuben ist mit den bisher erarbeiteten Methoden nicht möglich. In der vorliegenden Arbeit wurde insbesondere der Einfluss der Lagerungsbedingungen auf das Selbstentzündungsverhalten von brennbaren Materialien untersucht. Die Untersuchungen wurden für verschiedene Kohlen und Korkmehl durchgeführt. Folgende Ergebnisse wurden erzielt: 1. Zur besseren Bewertung des Zustandes Zündung und Nicht-Zündung bei Warmlagerungsvorgängen wurde eine verfeinerte Methode vorgeschlagen. Sie besteht aus der Kombination der visuellen Begutachtung einer Probe nach dem Versuch (Verfärbungen, Aschebildungen etc.), dem aufgetretenen Massenverlust und dem Temperatur-Zeitverlauf. 2. Es wurde nachgewiesen, dass eine Reduzierung des Sauerstoffvolumenanteils in der Schüttgutumgebung zu einer Erhöhung der Selbstentzündungstemperatur (SET) führt. 3. Sowohl durch eine Wasserzugabe ("Regen") als auch durch eine rasche Erhöhung der relativen Luftfeuchtigkeit konnte eine zuvor unterkritisch gelagerte Schüttung in einen überkritischen Zustand gebracht werden. Zurückzuführen ist dies auf den zusätzlichen Wärmetransport in das Schüttgut durch Kondensation von Wasserdampf und Adsorption von Wassermolekülen an porösen Partikeloberflächen. 4. Versuche belegten, dass gleichförmige Konvektionsströmungen ("Wind") in der Schüttgutumgebung die SET kaum beeinflussten aber zu einer deutlichen Reduzierung der Induktionszeit führten. Einseitige Anströmungen der Proben sorgten bei überkritischen Lagerungstemperaturen für eine Verschiebung des Zündortes zur windabgeneigten Seite. Diese Ergebnisse bestätigen, dass die Anlaufphase der Selbstentzündung von Schüttgütern kinetisch kontrolliert und somit nicht vom Sauerstofftransport abhängig ist. 5. Es wurde ein mathematisches Modell erarbeitet, mit dessen Hilfe die Vorgänge der Aufwärmung, des Feuchtigkeitstransportes (Verdampfung, Kondensation und Adsorption), der Selbstentzündung sowie die Brandausbreitung von brennbaren Schüttgütern und Stäuben zu berechnen sind. Dieses Modell ermöglicht realistische Schätzungen über die Sicherheit von gelagerten Schüttgütern mit guter Übertragbarkeit auf große, experimentellen Untersuchungen schwer zugänglichen, Schüttungen wie z.B. Kohlenhalden. T3 - BAM Dissertationsreihe - 13 KW - Brennstoffe KW - Explosivstoffe KW - Kraftstoffe PY - 2006 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1454 SN - 978-3-86509-377-9 SN - 1613-4249 VL - 13 SP - 1 EP - 161 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-145 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Dengel, Jörg T1 - Heterogene Explosionen in Gas/Flüssigkeitssystemen mit ruhender Oberfläche: charakteristische Eigenschaften des Explosionsverhaltens und Mechanismen N2 - In dieser Arbeit wurde erstmalig das Explosionsdiagramm des heterogenen Systems Diethylketon/Sauerstoff-Stickstoff in Abhängigkeit vom Gasvordruck und vom Stoffmengenanteil des Sauerstoffs erstellt. Nach den bei Raumtemperatur in einer Rohrstrecke erhaltenen Ergebnissen existieren fünf Bereiche unterschiedlichen Explosionsverhaltens: Pseudogasdeflagrationen, Pseudogasdetonationen, Oberflächendeflagrationen, Oberflächendetonation und ein schmaler Bereich in dem keine Zündung des Systems möglich war. Ein weiteres Ziel dieser Arbeit bestand darin, den Mechanismus von Oberflächenexplosionen zu untersuchen. Durch Explosionsuntersuchungen am heterogenen System Diethylketon/Sauerstoff- Stickstoff wurde dabei festgestellt, dass sich in dem Bereich, in dem Oberflächendeflagrationen entstehen, nach der Zündung eine Diffusionsflamme ausbildet, welche sich auf der Flüssigkeitsoberfläche durch das Rohr bewegt. Bei hohen Sauerstoffkonzentrationen findet eine deflagrative Verbrennung im gesamten Gasraum statt. Solche Oberflächendeflagrationen werden durch die Zerstäubung des Brennstoffes infolge von Stoßwellen mit geringer Intensität hervorgerufen. Bei niedrigen Sauerstoffkonzentrationen in der Gasphase folgt dem Diffusionsflammenstadium ein Abbrandstadium. Durch den Einsatz der laserinduzierten Fluoreszenz konnte die früher von Hofmann publizierte These, dass ein Stofftransport durch die Flammen hindurch stattfindet, für eindimensionale Oberflächenexplosionen widerlegt werden. Experimentelle Untersuchungen am heterogenen System Methanol/Sauerstoff haben gezeigt, dass Oberflächendetonationen ebenfalls durch eine Zerstäubung des Brennstoffs als Folge der Wechselwirkung einer intensiven Gasströmung beziehungsweise der Wechselwirkung von Stoßwellen geringer Intensität mit der Flüssigkeitsoberfläche verursacht werden. Die dadurch gebildeten Aerosole befinden sich nur in einem schmalen Bereich über der Flüssigkeitsoberfläche. Es wurde festgestellt, dass sich die Detonationsfront nur in diesem schmalen Bereich über der Flüssigkeit durch das Rohr bewegt. Berechnungen der Einwirkung einer horizontal über die Flüssigkeit laufenden Stoßwelle bestätigen dieses Modell. Oberflächendetonationen sind außerdem dadurch gekennzeichnet, dass periodische Sekundarexplosionen auftreten. Solche oszillierenden Explosionen entstehen, da die im System befindlichen Reaktanden Sauerstoff und Lösemittel nicht beim ersten Durchlauf der Detonationswelle vollständig umgesetzt werden. Die bei den Explosionsversuchen durchgeführten Druckmessungen haben darüber hinaus gezeigt, dass Detonationen im heterogenen System mit explosionsfähiger Gasphase (Pseudogasdetonationen) sicherheitstechnisch gefährlicher sind als Gasdetonationen. N2 - For the first time, the explosion diagram of a heterogeneous system (represented by diethylketone/oxygen-nitrogen) in dependence on the initial gas pressure and the molar fractions of oxygen and nitrogen was measured in a steel tube. Experiments in such heterogeneous systems showed at room temperature that five ranges of different explosion behaviour in a tube exist: pseudogas deflagrations, pseudogas detonations, surface deflagrations, surface detonations and a small range in which an ignition of the system was impossible. Another aim of this work was to investigate the mechanism of surface explosions. Surface deflagrations are characterised by the formation of a diffusion flame which moves along the liquid surface through the tube after ignition. Measurements performed in the system showed that a combustion occurred in the whole gas phase at a high molar fraction of the oxygen. This surface deflagration is the result of the dispersion of the fuel into aerosol particles induced by shock waves with low intensities. At low molar fractions of the oxygen in the gas phase, the diffusion flame stadium is followed by the a burnout phase. The former published thesis of a mass transfer through the flames during the diffusion flame and burnout phase was rebutted for one dimensional surface explosions (explosions in the heterogeneous systems combustible, organic liquid and gaseous oxidiser in a tube) by using laser-inducedfluorescence (LIF). Surface detonations are caused by dispersion of the liquid phase into aerosol particles as a result of the interaction of shock waves with low intensity and the liquid-surface. The aerosols are located in a small area above the liquid surface. The detonation front moves only in this small area above the liquid surface through the tube. This was shown by high-speed video recordings. Calculations of the impact of a horizontal shock wave moving atop the liquid surface confirm this model. Another property of surface detonations is the occurrence of secondary explosions. Such explosions develop when oxygen and solvent are not completely converted during the first run of the detonation wave. Moreover, it was shown that explosions in heterogeneous systems including an explosive atmosphere (pseudogas explosions) are more dangerous than gas explosions. T3 - BAM Dissertationsreihe - 12 KW - Heterogene Explosionen KW - Explosionsverhaltens und Mechanismen KW - charakteristische Eigenschaften KW - ruhender Oberfläche KW - Gas/Flüssigkeitssystemen PY - 2005 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1462 SN - 978-3-86509-361-2 SN - 1613-4249 VL - 12 SP - 1 EP - 143 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-146 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mitropetros, Konstantinos T1 - Shock induced bubble explosions in liquid cyclohexane N2 - In dieser Arbeit wurde der Einfluss von Stoßwellen auf organische Flüssigkeiten mit und ohne Gasblasen untersucht. In einer neu aufgebauten Apparatur wurden Untersuchungen mit Hilfe der Hochgeschwindigkeitsfotografie und mit Druckmessungen durchgeführt. Die Apparatur bestand aus einem zylindrischen Autoklav mit einem Blasengenerator an seinem Boden. Zur Erzeugung einer Detonationswelle war oberhalb des Autoklavs eine Rohstrecke angeflanscht. Die folgenden Parameter wurden variiert: die Entfernung zwischen benachbarten Gasblasen, die Zusammensetzung der Gasmischung in den Blasen, der Anfangsdruck des Systems, die Anfangsgröße der Blasen und die organische Flüssigkeit. Zwei verschiedene Typen von Blasenexplosionen wurden beobachtet. Ihr Hauptunterschied ist die zeitliche Verzögerung der Zündung. Die Blasenexplosion des Typs I erfolgt während der ersten stoßinduzierten Blasenschwingung. Die Blasenexplosion vom Typ II findet mit einer viel längeren Zündverzögerung statt. Sie wurde nur unter bestimmten Bedingungen beobachtet. Ein Explosionsmechanismus wurde auf der Basis der Beobachtungen vorgeschlagen. Nach diesem Mechanismus können sogar Gasblasen, die anfangs eine nicht explosionsfähige, brennstoffreiche Gasmischung enthalten, durch teilweise Kondensation des Brennstoffs explosionsfähig werden. Weitere Untersuchungen beziehen sich auf Kavitationsphänomene innerhalb der Flüssigkeit und auf die Wechselwirkung zwischen der Flüssigkeitsoberfläche und einer Stoßwelle. Ferner wurden die Explosionsgrenzen von Cyclohexan in reinem Sauerstoff bei erhöhten Drücken und Temperaturen bestimmt. Die sicherheitstechnischen Aspekte der Versuchsergebnisse werden diskutiert. N2 - In this work the influence of shock waves on organic liquids with and without bubbles is investigated. The experiments were performed in a new experimental setup with the help of high speed photography and pressure measurements. The apparatus consisted of a cylindrical autoclave with a bubble generator at its bottom. For the creation of a detonation wave a tube was installed on the top of the autoclave. The following parameters were varied: The distance between neighboring bubbles, the composition of the gaseous mixture inside the bubbles, the initial pressure of the system, the initial bubble size, and the organic liquid (cyclohexane, 2-ethylhexanal, cumene, and methanol). Two different types of bubble explosion were observed. Their main difference is the length of their ignition delay. The bubble explosion type I takes place during the first oscillation after the shock wave impact. Further important results about this type of explosion refer to: - the explosion range in relation to the composition of the gas mixture within the bubble as well as to the initial bubble size. - the direct ignition of a bubble by a shock wave emitted by a nearby bubble explosion. Such a phenomenon is experimentally observed for the first time. - the shock induced ignition of gas bubbles containing an initially non explosive fuel-lean gas mixture. Optical recordings of jet penetration into the bubble prove that shock wave induced enrichment in vapor of the surrounding liquid is an important stage before the ignition. - the observation of bubble explosion type I in all the investigated liquids. - the mechanism of bubble explosion type I. The bubble explosion type II takes place with much longer ignition delay. It was observed under certain conditions only. An explosion mechanism is proposed on the basis of the experimental results. According to this mechanism, even non explosive fuel-rich gaseous bubbles can become explosive due to partial condensation of the fuel. A further group of results refer to cavitation phenomena inside the liquid and to shock induced phenomena on the surface. Additionally, the explosion limits of gaseous cyclohexane in pure oxygen at elevated pressures and temperatures were determined. The safety engineering aspects of the experimental results are discussed. T3 - BAM Dissertationsreihe - 11 KW - bubble explosions KW - liquid cyclohexane PY - 2005 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-1478 SN - 978-3-86509-360-4 SN - 1613-4249 VL - 11 SP - 1 EP - 191 PB - Wirtschaftsverlag NW CY - Bremerhaven AN - OPUS4-147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -