TY - JOUR A1 - Cairns, Warren R. L. A1 - Butler, Owen T. A1 - Cavoura, Olga A1 - Davidson, Christine M. A1 - Todolí-Torró, José-Luis A1 - von der Au, Marcus T1 - Atomic spectrometry update – a review of advances in environmental analysis N2 - Highlights in the field of air analysis included: a new focus on measuring micro- and nanoplastic particles in air, the development of hyphenated ICP-MS systems for in situ sampling and measurement of airborne metallic particles and the reported use of wearable black carbon sensors for measuring exposure to diesel fumes within the workplace. Significant advancements in the analysis of waters have been made in developing novel resin materials and new protocols for existing commercially available resins, aimed at the determination and speciation of trace levels of metals and metalloids in water matrices. These developments have been validated for sample purification and pre-concentration. In addition to traditional column chemistry, on-line hyphenated techniques were employed to enhance speciation analysis, with optimized methods enabling faster analysis and facilitating a more holistic approach by allowing the simultaneous detection of multiple species or elements in a single run. Efforts have also been directed towards detecting particles in the micro- and nanometer range, broadening the analytical scope beyond the ionic fraction. This year, the focus shifted from natural and engineered nanoparticles towards the critical field of plastic pollution, with several innovative methodologies introduced. Furthermore, to achieve better precision and lower detection limits in the field of MS/MS, numerous studies explored the behaviour of gases and reactions within reaction cells, contributing to the refinement of these techniques. In the analysis of soils and plants, methods aimed at improving the efficiency of green solvents were again prominent. Developments in AES were largely driven by the desire to create small, low-cost, low-power-consumption instrumentation suitable for field deployment. The study of NPs in soil and plant systems continued to be a focus for sp-ICP-MS. The past year has again seen a large volume of publications featuring LIBS, with particular interest in methods to enhance signal intensity and thereby improve limits of detection. Of interest in XRF was the development of in-house spectrometers for underwater mercury screening and in vivo plant analysis. Developments in geological analysis include new homogeneous natural and synthetic materials that have been developed as reference materials (RMs) in the analysis of geological samples by microanalytical techniques, such as LA-ICP-MS, LIBS and SIMS. Additional information on already existing RMs has been obtained for in situ isotope ratio determinations. Attention has been paid to sample preparation and purification methods able to shorten the analysis time and to improve the accuracy. Much attention has been paid to the use of LA-ICP-MS/MS as a means for removing spectral interferences in the case of in situ localized isotopic analysis and dating of geological materials. The development of new chemometric models as well as software has continued to improve data quality. The use of artificial intelligence is growing and techniques such as machine learning have led to significant improvements in the quality of geochemical results. KW - Review KW - Water KW - Environment PY - 2025 DO - https://doi.org/10.1039/D4JA90056A SN - 0267-9477 VL - 40 IS - 1 SP - 11 EP - 69 PB - Royal Society of Chemistry CY - London AN - OPUS4-62283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tobias, Charlie A1 - Gehrenkemper, Lennart A1 - Bernstein, Thomas A1 - Schlau, Sven A1 - Simon, Fabian A1 - Röllig, Mathias A1 - Meermann, Björn A1 - von der Au, Marcus T1 - Development of a fully automated slurry sampling introduction system for GF-AAS and its application for the determination of cadmium in different matrices N2 - element analysis, offering high sensitivity and precision. However, its effectiveness is limited by sample preparation challenges for solid samples like soils and microplastics. Traditional methods include sample preparation, such as digestion, which is time-consuming and involves reagents, like acids, contributing to measurement uncertainty and higher carbon footprints. Slurry sampling allows direct analysis of suspensions, offering a more efficient alternative. However, maintaining suspension stability is challenging, requiring robust autosampler systems to streamline the process and enhance analytical performance. Results: We present a novel autosampler extension for slurry sample introduction into GF-AAS. This system ensures suspension stability with a stirring device and closed vessels to prevent evaporation and contamination, incorporating a cooling unit to reduce solvent and analyte losses. It installs and removes in minutes without additional connections. Validation with cadmium analysis in BAM-U110 (Soil) and BAM-H010 (ABS) showed high reliability. For BAM-U110 (Soil), we achieved recovery rates of 94 % ± 13 % in water suspension. The recovery rate for BAM-H010 (ABS) was 104 % ±11 % in acetonitrile suspension. These results demonstrate the system’s robustness, versatility, and accuracy for different matrices. Significance: The autosampler extension helps solve key problems in trace element analysis of solid samples, making the process faster and more accurate. It works well with complex materials, making it useful for areas like microplastic or nanoparticle analysis. This improvement also helps meet regulations for monitoring environ mental and polymer samples, offering a reliable and flexible tool for high-throughput analysis with fewer errors. KW - Slurry AAS KW - Soil KW - Cd PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-618531 DO - https://doi.org/10.1016/j.aca.2024.343460 SN - 0003-2670 VL - 1335 SP - 1 EP - 7 PB - Elsevier BV AN - OPUS4-61853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meermann, Björn A1 - Lisec, Jan A1 - Jaeger, Carsten A1 - Saatz, Jessica A1 - Traub, Heike A1 - von der Au, Marcus T1 - Mehr Analyten, kleinere Proben N2 - Molekülmassenspektrometrie entwickelt sich weg von klassischer Target- hin zu Nontarget-Analytik. Elementmassenspektrometrie liefert hohe Ortsauflösung beim Element-Imaging und analysiert einzelne Zellen. Aufgrund der Fortschritte bei den Geräten für Timeof-Flight-Massenspektrometrie mit induktiv gekoppeltem Plasma (ICPToF-MS) lässt sich das gesamte Periodensystem der Elemente in kurzen transienten Signalen quasi-simultan massenspektrometrisch erfassen. KW - Massenspektrometrie KW - Non-target KW - ICP-ToF-MS KW - Laser Ablation/Imaging PY - 2021 VL - 69 IS - Juni SP - 64 EP - 67 PB - Wiley-VCH AN - OPUS4-52800 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinekamp, Christian A1 - Roy, Arkendu A1 - Karafiludis, Stephanos A1 - Kumar, Sourabh A1 - de Oliveira Guilherme Buzanich, Ana A1 - Stawski, Tomasz M. A1 - Miliūtė, Aistė A1 - von der Au, Marcus A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - Zirconium fluoride-supported high-entropy fluoride: a catalyst for enhanced oxygen evolution reaction N2 - Extended hydrogen initiatives promote the urgency of research on water splitting technologies and, therein, oxygen evolution reaction catalysts being developed. A route to access a ZrF4 supported high-entropy fluoride catalyst using a facile sol–gel route is presented. The high-entropy character of the catalyst was confirmed by scanning transmission electron microscopy and energy dispersive X-ray spectroscopy (STEM-EDX) as well as inductively coupled plasma-mass spectrometry (ICP-MS). Additional investigations on the local structure were performed using extended X-ray absorption fine structure spectroscopy (EXAFS) and pair distribution function (PDF) analysis. The catalyst shows significant potential for oxygen evolution reaction (OER) in alkaline media with a current density of 100 mA cm−2 at approximately 1.60 V, thus outperforming benchmark materials such as IrO2, despite a significant reduction in electrochemical mass loading. A potential mechanism is suggested based on free energy calculation using DFT calculations. KW - OER KW - HEA KW - CCMAT PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-637116 DO - https://doi.org/10.1039/D4TA08664C SN - 2050-7488 VL - 13 IS - 26 SP - 20383 EP - 20393 PB - Royal Society of Chemistry (RSC) AN - OPUS4-63711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Borovinskaya, O. A1 - Büchel, C. A1 - Meermann, Björn T1 - Der Fingerabdruck der Kieselalge N2 - Elementanalytische Verfahren werden heute zu mehr eingesetzt als bloß zur Bestimmung von Metallgesamtgehalten in diversen Probenmatrizes. Sie stellen heute ein wichtiges Werkzeug zur Beantwortung lebenswissenschaftlicher Fragen aus Umwelt, Medizin und Biologie dar. In der vorliegenden Arbeit kommt die single-cell-ICP-Flugzeitmassenspektrometrie (single-cell-ICP-TOF-MS) zur Multielementanalytik in einzelnen Kieselalgen (Diatomeen) zum Einsatz und wird zukünftig ein wichtiges Werkzeug z.B. bei der Beantwortung ökotoxikologischer Fragestellung sein. KW - Diatomeenanalytik KW - Single cell-ICP-ToF-MS KW - Multielementanalytik in kurzen transienten Signalen PY - 2019 UR - https://q-more.chemie.de/q-more-artikel/299/der-fingerabdruck-der-kieselalge.html SP - 1 EP - 3 PB - LUMITOS AN - OPUS4-49749 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Meermann, Björn T1 - Screening von Organofluorverbindungen im Oberflächenwasser N2 - Organofluorverbindungen kommen in vielen Bereichen zum Einsatz und gelangen in die aquatische Umwelt. Die Belastungssituation der Gewässer ist bisher wenig untersucht – hier kommt die HR-CS GF MAS als leistungsstarkes Screeningtool zum Einsatz. KW - HR-CS-GFMAS KW - Extrahierbar organisch gebundenes Fluor (EOF) KW - Oberflächengewässer PY - 2019 UR - https://analytik.news/Fachartikel/Volltext/bam5.pdf SP - 1 EP - 3 PB - Dr. Beyer Internet-Beratung AN - OPUS4-49750 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von der Au, Marcus A1 - Schwinn, M. A1 - Kuhlmeier, K. A1 - Büchel, C. A1 - Meermann, Björn T1 - Development of an automated on-line purification HPLC single cell-ICP-MS approach for fast diatom analysis N2 - The most challenging part in performing a single cell ICP-MS (sc-ICP-MS) approach is the sample preparation, in particular the reduction of the ionic background. This step is, in many cases, time-consuming and required for each sample separately. Furthermore, sc-ICP-MS measurements are mostly carried out "manually", given the fact that present systems are not allowing for an automated change of samples. Thus, within this work, we developed an approach based on a HPLC system coupled on-line with sc-ICP-MS via a set of switching valves as well as an in-line filter for automated cell washing. This set-up enables the ionic background removal as well as analysis of single cells completely automated without any manual sample pretreatment. Our approach was applied for the analysis of the single celled diatom species Cyclotella meneghiniana, a marine diatom species, on the basis of Mg24 and facilitates testing in 11 min per sample, requiring only around 10,000 cells in a volume of 10 µL and approx. 10 mL of a 5% MeOH/95% deionized water (v/v) mixture. Even at extremely saline culturing media concentrations (up to 1000 mg L-1 magnesium) our on-line approach worked sufficiently allowing for distinction of ionic and particulate fractions. Furthermore, a set of diatom samples was analyzed completely automated without the need for changing samples manually. So, utilizing this approach enables analyzing a high quantity of samples in a short time and therefore in future the investigation of ecotoxicological effects is simplified for example in terms of metal accumulation by taking biovariability into account. KW - Single cell-ICP-MS KW - Diatoms KW - Ecotoxicology testing KW - Automated system PY - 2019 DO - https://doi.org/10.1016/j.aca.2019.05.045 SN - 1873-4324 VL - 1077 SP - 87 EP - 94 PB - Elsevier AN - OPUS4-48567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cairns, Warren R. L. A1 - Braysher, Emma C. A1 - Butler, Owen T. A1 - Cavoura, Olga A1 - Davidson, Christine M. A1 - Todoli Torro, Jose Luis A1 - von der Au, Marcus T1 - Atomic spectrometry update: review of advances in environmental analysis N2 - This review covers advances in the analysis of air, water, plants, soils and geological materials by a range of atomic spectrometric techniques including atomic emission, absorption, fluorescence and mass spectrometry. KW - Environmental analysis KW - Review KW - Trend Article PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-653977 DO - https://doi.org/10.1039/D5JA90058A SN - 0267-9477 VL - 41 IS - 1 SP - 16 EP - 70 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - Hans, Ann-Kathrin A1 - von der Au, Marcus A1 - Brand, Izabella A1 - Wittstock, Gunther A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - Long-term corrosion studies of CrCoNi and CrMnFeCoNi in sulfuric acid N2 - This study investigates the long-term corrosion behavior of CrCoNi and CrMnFeCoNi MPEAs over 28 d in 1 M H2SO4. Corrosion progression and passive film evolution were analyzed using open circuit potential measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Unlike short-term polarization tests, where CrCoNi exhibited intergranular corrosion, long-term immersion resulted in a stable, Cr-rich passive oxide layer. In contrast, CrMnFeCoNi formed a porous mixed oxide layer, increasing its susceptibility to degradation and revealing a distinct corrosion mechanism. X-ray photoelectron spectroscopy tracking at weekly intervals showed that prolonged immersion led to the transformation of sulfide/sulfite species into a sulfate-containing surface film. This effect was only detectable in long-term corrosion studies. These findings provide new insights into the time-dependent degradation mechanisms of MPEAs and demonstrate that corrosion mechanisms differ significantly from short-term polarization tests. This highlights the need for long-term studies to properly assess material stability in practical applications. KW - Long-term corrosion KW - Multi-principal element alloys (MPEAs) KW - X-ray photoelectron spectroscopy (XPS) PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-636895 DO - https://doi.org/10.1038/s41529-025-00637-z SN - 2397-2106 VL - 9 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-63689 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559902 DO - https://doi.org/10.1016/j.apsusc.2022.154171 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -