TY - JOUR A1 - Nikfalazar, M. A1 - Kohler, C. A1 - Heunisch, Andreas A1 - Wiens, A. A1 - Zheng, Y. A1 - Schulz, Bärbel A1 - Mikolajek, M. A1 - Sohrabi, M. A1 - Rabe, Torsten A1 - Binder, R. A1 - Jakoby, R. T1 - LTCC phase shifters based on tunable ferroelectric composite thick films JF - Frequenz N2 - This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors. KW - Ferroelectric KW - LTCC KW - Phase shifter KW - Fully printed component KW - BST PY - 2015 DO - https://doi.org/10.1515/freq-2015-0082 SN - 0016-1136 SN - 2191-6349 VL - 69 IS - 11-12 SP - 451 EP - 455 PB - De Gruyter CY - Berlin ; Boston, Mass. AN - OPUS4-34949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xue, Boyang A1 - You, Yi A1 - Gornushkin, Igor B. A1 - Zheng, R. A1 - Riedel, Jens T1 - High-throughput underwater elemental analysis by μJ-laser-induced breakdown spectroscopy at kHz repetition rates: part I, ultrasound-enhanced optical emission spectroscopy towards application perspectives JF - Journal of Analytical Atomic Spectrometry N2 - In recent years, laser-induced breakdown spectroscopy (LIBS) has gained significant attention as a means for simple elemental analyses. The suitability of LIBS for contactless analysis allows it to be a perfect candidate for underwater applications. While the majority of LIBS systems still rely upon sub-kHz pulsed lasers, this contribution introduces 10s-kHz low pulse-energy lasers into underwater LIBS to improve the throughput and statistical validity. Interestingly, the spectral component significantly changed above a critical laser repetition-rate threshold. Spectral lines of atomic hydrogen and oxygen stemming from water become visible beyond a ∼10 kHz repetition rate. This observation suggests a different plasma dynamic compared to low repetition rates. When the pulse-to-pulse interval becomes sufficiently short, a cumulative effect begins to be significant. Apparently, the new phenomena occur on a timescale corresponding to a threshold rate of ∼10 kHz, i.e. ∼100 μs. Analytically, the high repetition rates result in improved statistical validity and throughput. More plasma events per unit time allowed the use of low efficiency Echelle spectrometers without compromising on the analytical performance. Meanwhile, the presence of H I and O I out of the water (as the matrix) also offers internal standardization in underwater elemental analysis. Since the laser fluence was on the lower edge of the plasma threshold, an additional ultrasound source was introduced to induce external perturbation, which significantly improved the plasma formation stability. A huge advantage of LIBS is the possibility of detecting almost all elements within a sample simultaneously. Throughout the periodic table, chlorine is one of the most challenging elements. Consequently, Ca2+ and Na+ were used as samples to demonstrate the capability of this high repetition-rate LIBS platform. As an ambitious benchmark for our system, chlorine detection in water was also discussed. KW - High repetition rate KW - Laser-induced breakdown spectroscopy PY - 2020 DO - https://doi.org/10.1039/D0JA00290A VL - 35 IS - 12 SP - 2901 EP - 2911 PB - The Royal Society of Chemistry AN - OPUS4-51564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Monavari, Mahshid A1 - Homaeigohar, Shahin A1 - Medhekar, Rucha A1 - Nawaz, Qaisar A1 - Monavari, Mehran A1 - Zheng, Kai A1 - Boccaccini, Aldo R. T1 - A 3D-Printed Wound-Healing Material Composed of Alginate Dialdehyde–Gelatin Incorporating Astaxanthin and Borate Bioactive Glass Microparticles JF - ACS Applied Materials & Interfaces N2 - In this study, a wound dressing composed of an alginate dialdehyde−gelatin (ADA-GEL) hydrogel incorporated by astaxanthin (ASX) and 70B (70:30 B2O3/CaO in mol %) borate bioactive glass (BBG) microparticles was developed through 3D printing. ASX and BBG particles sti.ened the composite hydrogel construct and delayed its in vitro degradation compared to the pristine hydrogel construct, mainly due to their cross-linking role, likely arising from hydrogen bonding between the ASX/BBG particles and ADA-GEL chains. Additionally, the composite hydrogel construct could hold and deliver ASX steadily. The composite hydrogel constructs codelivered biologically active ions (Ca and B) and ASX, which should lead to a faster, more e.ective wound-healing process. As shown through in vitro tests, the ASX-containing composite hydrogel promoted fibroblast (NIH 3T3) cell adhesion, proliferation, and vascular endothelial growth factor expression, as well as keratinocyte (HaCaT) migration, thanks to the antioxidant activity of ASX, the release of cell-supportive Ca2+ and B3+ ions, and the biocompatibility of ADA-GEL. Taken together, the results show that the ADA-GEL/BBG/ASX composite is an attractive biomaterial to develop multipurposed wound-healing constructs through 3D printing. KW - General Materials Science PY - 2023 DO - https://doi.org/10.1021/acsami.2c23252 SP - 1 EP - 12 PB - American Chemical Society (ACS) AN - OPUS4-58548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -