TY - JOUR A1 - Zhang, X. A1 - Zhang, S. A1 - Lu, J. A1 - Tang, F. A1 - Dong, K. A1 - Yu, Z. A1 - Hilger, A. A1 - Osenberg, M. A1 - Markötter, Henning A1 - Wilde, F. A1 - Zhang, S. A1 - Zhao, J. A1 - Xu, G. A1 - Manke, I. A1 - Sun, F. A1 - Cui, G. T1 - Unveiling the Electro-Chemo-Mechanical Failure Mechanism of Sodium Metal Anodes in Sodium–Oxygen Batteries by Synchrotron X-Ray Computed Tomography N2 - Rechargeable sodium–oxygen batteries (NaOBs) are receiving extensive research interests because of their advantages such as ultrahigh energy density and cost efficiency. However, the severe failure of Na metal anodes has impeded the commercial development of NaOBs. Herein, combining in situ synchrotron X-ray computed tomography (SXCT) and other complementary characterizations, a novel electro-chemo-mechanical failure mechanism of sodium metal anode in NaOBs is elucidated. It is visually showcased that the Na metal anodes involve a three-stage decay evolution of a porous Na reactive interphase layer (NRIL): from the initially dot-shaped voids evolved into the spindle-shaped voids and the eventually-developed ruptured cracks. The initiation of this three-stage evolution begins with chemical-resting and is exacerbated by further electrochemical cycling. From corrosion science and fracture mechanics, theoretical simulations suggest that the evolution of porous NRIL is driven by the concentrated stress at crack tips. The findings illustrate the importance of preventing electro-chemo-mechanical degradation of Na anodes in practically rechargeable NaOBs. KW - Synchrotron radiation KW - X-ray imaging KW - NaO-battery PY - 2024 DO - https://doi.org/10.1002/adfm.202402253 SN - 1616-301X SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-59820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, J. A1 - Zhang, S. A1 - Yao, J. A1 - Guo, Z. A1 - Osenberg, M. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Manke, I. A1 - Zhang, X. A1 - Sun, F. A1 - Cui, G. T1 - Synergistic Effect of CO2 in Accelerating the Galvanic Corrosion of Lithium/Sodium Anodes in Alkali Metal−Carbon Dioxide Batteries N2 - Rechargeable alkali metal−CO2 batteries, which combine high theoretical energy density and environmentally friendly CO2 fixation ability, have attracted worldwide attention. Unfortunately, their electrochemical performances are usually inferior for practical applications. Aiming to reveal the underlying causes, a combinatorial usage of advanced nondestructive and postmortem characterization tools is used to intensively study the failure mechanisms of Li/Na−CO2 batteries. It is found that a porous interphase layer is formed between the separator and the Li/Na anode during the overvoltage rising and battery performance decaying process. A series of control experiments are designed to identify the underlying mechanisms dictating the observed morphological evolution of Li/Na anodes, and it is found that the CO2 synergist facilitates Li/Na chemical corrosion, the process of which is further promoted by the unwanted galvanic corrosion and the electrochemical cycling conditions. A detailed compositional analysis reveals that the as-formed interphase layers under different conditions are similar in species, with the main differences being their inconsistent quantity. Theoretical calculation results not only suggest an inherent intermolecular affinity between the CO2 and the electrolyte solvent but also provide the most thermodynamically favored CO2 reaction pathways. Based on these results, important implications for the further development of rechargeable alkali metal−CO2 batteries are discussed. The current discoveries not only fundamentally enrich our knowledge of the failure mechanisms of rechargeable alkali metal−CO2 batteries but also provide mechanistic directions for protecting metal anodes to build high-reversible alkali metal−CO2 batteries. KW - Alkali metal batteries KW - Synchrotron X-ray computed tomography KW - Lithium/sodium−carbon dioxide batteries KW - Battery failure mechanisms KW - Alkali metal anodes PY - 2024 DO - https://doi.org/10.1021/acsnano.4c02329 SP - 1 EP - 16 AN - OPUS4-59922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qu, R. A1 - Maaß, Robert A1 - Liu, Z. A1 - Tönnies, D. A1 - Tian, L. A1 - Ritchie, R. A1 - Zhang, Z. A1 - Volkert, A. T1 - Flaw-insentive fracture of a micrometer-sized brittle metallic glass N2 - Brittle materials, such as oxide glasses, are usually very sensitive to flaws, giving rise to a macroscopic fracture strength that is much lower than that predicted by theory. The same applies to metallic glasses (MGs), with the important difference that these glasses can exhibit certain plastic strain prior to catas- trophic failure. Here we consider the strongest metallic alloy known, a ternary Co 55 Ta 10 B 35 MG. We show that this macroscopically brittle glass is flaw-insensitive at the micrometer scale. This discovery emerges when testing pre-cracked specimens with self-similar geometries, where the fracture stress does not de- crease with increasing pre-crack size. The fracture toughness of this ultra-strong glassy alloy is further shown to increase with increasing sample size. Both these findings deviate from our classical under- standing of fracture mechanics, and are attributed to a transition from toughness-controlled to strength- controlled fracture below a critical sample size. KW - Metallic glass KW - Fracture toughness KW - Size effect KW - Small-scale PY - 2021 DO - https://doi.org/10.1016/j.actamat.2021.117219 VL - 218 PB - Elsevier Ltd. AN - OPUS4-53097 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Meng, M. A1 - Zhang, T. A1 - Wang, J. A1 - Cheng, Z. A1 - Li, Z. A1 - Qiao, X. A1 - Wen, J. A1 - Resch-Genger, Ute A1 - Long, W. A1 - Ou, Jun T1 - Preparation of NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles and application of their fluorescence temperature sensing properties N2 - The NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles were successfully prepared by the solvothermal method, and the samples were pure hexagonal phase with good crystallinity and homogeneous size, asevidenced by XRD and TEM analysis. The FT-IR analysis shows that β-CD is successfully encapsulated on the surface of NaYF4: Yb3+/Tm3+@NaYF4 nanoparticles. The fluorescence intensity 3and lifetime were significantly increased after coating the inert layer on the surface of core nanoparticles. After further surface modification of β-CD, the fluorescence intensity and fluorescence lifetime were reduced, but the overall fluorescence was stronger. Temperature measurements using the fluorescence intensity ratio technique were found to have relatively low reliability and absolute sensitivity for temperature measurements using thermally coupled energy levels. However, the reliability of temperature measurements using non-thermally coupled energy levels is significantly higher and the absolute sensitivity is much higher than for measurements at thermally coupled levels. Since the maximum absolute sensitivity, maximum relative sensitivity and minimum temperature resolution are determined to be 0.1179 K-1, 2.19 %K􀀀 1 and 0.00019 K, respectively, NaYF4: Yb3+/Tm3+@NaYF4@β-CD upconversion nanoparticles are expected to be widely used in the biomedical field due to their feasibility, reliability, non-toxicity and harmlessness. KW - Upconversion KW - Surface modification KW - Fluorescence intensity ratio KW - Thermally coupled levels KW - Non-thermally coupled levels PY - 2023 DO - https://doi.org/10.1016/j.optmat.2022.113389 SN - 0925-3467 VL - 136 SP - 1 EP - 11 PB - Elsevier B.V. AN - OPUS4-57105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, H. A1 - Song, W. A1 - Gröninger, Delia A1 - Zhang, L. A1 - Lu, Y. A1 - Chan, K. S. A1 - Zhou, Z. A1 - Rurack, Knut A1 - Shen, Z. T1 - Real-time monitoring of newly acidified organelles during autophagy enabled by reaction-based BODIPY dyes N2 - Real-time monitoring of newly acidified organelles during autophagy in living cells is highly desirable for a better understanding of intracellular degradative processes. Herein, we describe a reaction-based boron dipyrromethene (BODIPY) dye containing strongly electron-withdrawing diethyl 2-cyanoacrylate groups at the α-positions. The probe exhibits intense red fluorescence in acidic organelles or the acidified cytosol while negligible fluorescence in other regions of the cell. The underlying mechanism is a nucleophilic reaction at the central meso-carbon of the indacene core, resulting in the loss of π-conjugation entailed by dramatic spectroscopic changes of more than 200 nm between its colorless, non-fluorescent leuco-BODIPY form and its red and brightly emitting form. The reversible transformation between red fluorescent BODIPY and leuco-BODIPY along with negligible cytotoxicity qualifies such dyes for rapid and direct intracellular lysosome imaging and cytosolic acidosis detection simultaneously without any washing step, enabling the real-time monitoring of newly acidified organelles during autophagy. KW - Autophagy KW - BODIPY KW - Fluorescence KW - Lysosome KW - Real-time imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498358 UR - https://www.nature.com/articles/s42003-019-0682-1 DO - https://doi.org/10.1038/s42003-019-0682-1 SN - 23993642 VL - 2 SP - 442 PB - Nature Research CY - London AN - OPUS4-49835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, L. A1 - Darvishi Kamachali, Reza A1 - Li, Z. A1 - Zhang, Z. T1 - Grain boundary energy effect on grain boundary segregation in an equiatomic high-entropy alloy N2 - Grain boundary (GB) Segregation has a substantial effect on the microstructure evolution and properties of polycrystalline alloys. The mechanism of nanoscale segregation at the various GBs in multicomponent alloys is of great challenge to reveal and remains elusive so far. To address this issue, we studied the GB segregation in a representative equiatomic FeMnNiCoCr high-entropy alloy (HEA) aged at 450 °C. By combining transmission Kikuchi diffraction, atom probe tomography analysis and a density-based thermodynamics modeling, we uncover the nanoscale segregation behavior at a series of well-characterized GBs of different characters. No segregation occurs at coherent twin boundaries; only slight nanoscale segregation of Ni takes place at the low-angle GBs and vicinal \Sigma 29b coincidence site lattice GBs. Ni and Mn show cosegregation of high levels at the general high-angle GBs with a strong depletion in Fe, Cr, and Co. Our density-based thermodynamic model reveals that the highly negative energy of mixing Ni and Mn is the main driving force for nanoscale cosegregation to the GBs. This is further assisted by the opposite segregation of Ni and Cr atoms with a positive enthalpy of mixing. It is also found that GBs of higher interfacial energy, possessing lower atomic densities (higher disorder and free volume), show higher segregation levels. By clarifying the origins of GB segregations in the FeMnNiCoCr HEA, the current work provides fundamental ideas on nanoscale segregation at crystal defects in multicomponent alloys. KW - Thermodynamics KW - High-Entropy Alloys KW - Grain Boundary Segregation PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-508827 DO - https://doi.org/10.1103/PhysRevMaterials.4.053603 VL - 4 IS - 5 SP - 053603 PB - American Physical Society AN - OPUS4-50882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Klein, P. A1 - Zhang, Z. A1 - Friedrich, K. A1 - Theiler, Geraldine A1 - Hübner, Wolfgang T1 - Zur Bildung von Transferfilmen bei ausgewählten PTFE-Compounds T2 - Tribologie-Fachtagung 2002 CY - Göttingen, Deutschland DA - 2002-09-23 PY - 2002 SN - 3-00-003404-8 VL - 1 SP - 8-1-8-11 PB - GfT CY - Moers AN - OPUS4-1867 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klein, P. A1 - Zhang, Z. A1 - Friedrich, K. A1 - Theiler, Géraldine A1 - Hübner, Wolfgang T1 - Zur Bildung von Transferfilmen bei ausgewählten PTFE-Compounds KW - Wear KW - Transfer film KW - Polytetrafluoroethylene KW - Composites PY - 2003 SN - 0724-3472 VL - 50 IS - 4 SP - 32 EP - 36 PB - Expert Verlag CY - Renningen AN - OPUS4-12663 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Klein, P. A1 - Theiler, Geraldine A1 - Hübner, Wolfgang T1 - Sliding performance of polymer composites in liquid hydrogen and liquid nitrogen N2 - Outstanding features favour the application of polymers and polymer composites in low-temperature technology. The booming hydrogen technology is a challenge for these materials, which are considered as seals and bearings in cryogenic pumps. In the present study, three types of thermoplastics, i.e., polyetheretherketone (PEEK), polyetherimide (PEI) and polyamide 6,6 (PA6,6), and one epoxy were considered as matrix materials. Micron-sized fillers, i.e., short carbon fibres, graphite flakes, and PTFE powders, were incorporated into these polymers together with nano-sized TiO2 particles. Optimised compositions of each matrix were selected from our previous works at room temperature in order to be studied at very low temperature conditions. In particular, frictional tests were carried out with polymer composite pins against polished steel surfaces under constant load over a certain distance in liquid hydrogen and liquid nitrogen. Afterwards, worn surfaces were analysed by using scanning electron microscopy (SEM). It was found out that the tribological properties in liquid hydrogen are dominated by the matrix materials, in particular thermoplastics perform generally slightly better than thermosetting resins. PY - 2004 SN - 0957-4530 SN - 1573-4838 VL - 39 IS - 9 SP - 2989 EP - 2995 PB - Springer CY - Norwell, Mass. AN - OPUS4-12664 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Dong, K. A1 - Mazzio, K. A. A1 - Hilger, A. A1 - Markötter, Henning A1 - Wilde, F. A1 - Heinemann, T. A1 - Manke, I. A1 - Adelhelm, P. T1 - Phase transformation and microstructural evolution of CuS electrodes in solid-state batteries probed by in situ 3D X-ray tomography N2 - Copper sulfide shows some unique physico-chemical properties that make it appealing as a cathode active material (CAM) for solid-state batteries (SSBs). The most peculiar feature of the electrode reaction is the reversible formation of μm-sized Cu crystals during cycling, despite its large theoretical volume change (75%). Here, the dynamic microstructural evolution of CuS cathodes in SSBs is studied using in situ synchrotron X-ray tomography. The formation of μm-sized Cu within the CAM particles can be clearly followed. This process is accompanied by crack formation that can be prevented by increasing the stack pressure from 26 to 40 MPa. Both the Cu inclusions and cracks show a preferential orientation perpendicular to the cell stack pressure, which can be a result of a z-oriented expansion of the CAM particles during lithiation. In addition, cycling leads to a z-oriented reversible displacement of the cathode pellet, which is linked to the plating/stripping of the Li counter electrode. The pronounced structural changes cause pressure changes of up to 6 MPa within the cell, as determined by operando stack pressure measurements. Reasons for the reversibility of the electrode reaction are discussed and are attributed to the favorable combination of soft materials. KW - Copper sulfide KW - Crack evolution KW - Digital volume correlation KW - Phase transformation KW - Solid-state batteries PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564577 DO - https://doi.org/10.1002/aenm.202203143 IS - 2203143 SP - 1 EP - 12 PB - Wiley VHC-Verlag AN - OPUS4-56457 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -