TY - JOUR A1 - Zhang, Kun A1 - Pan, L. A1 - Li, J. A1 - Lin, C. T1 - What is the mechanism of the fiber effect on the rheological behavior of cement paste with polycarboxylate superplasticizer? N2 - Compared with most common construction materials, fiber reinforced cementitious materials are well known to exhibit better physical, working and mechanical properties. In this study, three fibers were selected: polypropylene fiber (PPF) and polyvinyl alcohol fiber (PVAF), which represented synthetic fibers, and sisal fiber (SF), which represented natural fibers. Effects of these fibers on the flowability, rheological properties, and adsorption behavior of the cement paste with polycarboxylate superplasticizer (PCE) were investigated. Furthermore, the above experimental results were verified by measuring the contact angle of the fiber with water and PCE solution and the apparent morphology of the fiber. Results revealed that the addition of fibers significantly reduces the fluidity of the cement paste, while the yield stress and plastic viscosity of the cement paste increase with the addition of fibers. From the contact angle and scanning electron microscope, the surface of SF was relatively rough, and the contact angle of SF with water or PCE solution was the smallest. It can be concluded that the plant fiber has a significant influence on the fluidity and rheology of cement paste. KW - Cement paste KW - Polycarboxylate superplasticizer KW - Polypropylene fiber KW - Polyvinyl alcohol fiber KW - Sisal fiber KW - Rheological property KW - Fluidity KW - Adsorption PY - 2021 DO - https://doi.org/10.1016/j.conbuildmat.2021.122542 SN - 0950-0618 VL - 281 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-56893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Lin, Chang A1 - Pan, Lisha T1 - Effect of sisal fibers on the rheology of cement paste plasticized by polycarboxylate superplasticizer N2 - Sisal fibers (SF) and polycarboxylate superplasticizers (PCE) contribute to the sustainable development of cementitious materials by improving and optimizing their hardening properties. In this study, the impact of SF and PCE on the workability of cement pastes was investigated. The workability was evaluated through spreading diameter, yield stress, and plastic viscosity measurements, and the adsorption behavior of PCE was analyzed. The results showed that the introduction of SF had a negative effect on the workability of PCE plasticized cement pastes, reducing flowability and increasing yield stress and plastic viscosity, regardless of aspect ratio or dosage. A contact angle tester and a scanning electron microscope (SEM) were employed to examine the surface properties of SF. The mechanism behind this interaction of cement-PCE-SF was explored and found to be due to the rough surface of SF, which increased the consumption of PCE, and the formation of hydrogen bonds between PCE and SF. Additionally, PCE modified the interfacial structure between SF and the cement matrix, strengthening the relationship between the different phases. These findings provide new insights into the modification of fiber-reinforced cementitious materials. KW - Cement paste KW - Polycarboxylate KW - Flowability KW - Rheological KW - Sisal fiber (SF) KW - Adsorption PY - 2024 DO - https://doi.org/10.1061/jmcee7.mteng-16789 SN - 0899-1561 VL - 36 IS - 3 SP - 1 EP - 12 PB - American Society of Civil Engineers (ASCE) CY - Reston, VA AN - OPUS4-62893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Carrod, Andrew J. A1 - Del Giorgio, Elena A1 - Hughes, Joseph A1 - Rurack, Knut A1 - Bennet, Francesca A1 - Hodoroaba, Vasile-Dan A1 - Harrad, Stuart A1 - Pikramenou, Zoe T1 - Luminescence Lifetime-Based Sensing Platform Based on Cyclometalated Iridium(III) Complexes for the Detection of Perfluorooctanoic Acid in Aqueous Samples N2 - Luminescence lifetimes are an attractive analytical method for detection due to its high sensitivity and stability. Iridium probes exhibit luminescence with long excited-state lifetimes, which are sensitive to the local environment. Perfluorooctanoic acid (PFOA) is listed as a chemical of high concern regarding its toxicity and is classified as a “forever chemical”. In addition to strict limits on the presence of PFOA in drinking water, environmental contamination from industrial effluent or chemical spills requires rapid, simple, accurate, and cost-effective analysis in order to aid containment. Herein, we report the fabrication and function of a novel and facile luminescence sensor for PFOA based on iridium modified on gold surfaces. These surfaces were modified with lipophilic iridium complexes bearing alkyl chains, namely, IrC6 and IrC12, and Zonyl-FSA surfactant. Upon addition of PFOA, the modified surfaces IrC6-FSA@Au and IrC12-FSA @Au show the largest change in the red luminescence signal with changes in the luminescence lifetime that allow monitoring of PFOA concentrations in aqueous solutions. The platform was tested for the measurement of PFOA in aqueous samples spiked with known concentrations of PFOA and demonstrated the capacity to determine PFOA at concentrations >100 μg/L (240 nM). KW - Perfluorooctanoic Acid (PFOA) KW - Cyclometalated iridium (III) complexes KW - Luminescent lifetime KW - Optically active surfaces KW - ToF-SIMS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594535 UR - https://pubs.acs.org/doi/10.1021/acs.analchem.3c04289 DO - https://doi.org/10.1021/acs.analchem.3c04289 VL - 96 IS - 4 SP - 1565 EP - 1575 PB - American Chemical Society (ACS) AN - OPUS4-59453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Kun A1 - Kong, Deyu A1 - Schmidt, Wolfram A1 - Mezhov, Alexander T1 - Influence of hydroxypropylation of starch on rheological properties of cement paste modified by superplasticizers N2 - Starch is often used as a viscosity modifying agent (VMA) in self-compacting concrete (SCC) and highly flowable concrete. In this paper, starches possessing different degrees of hydroxypropyl substitution (DS) were used to study the shear rheological properties and hydration kinetics of cement paste in the presence of and without polycarboxylate superplasticizer (PCE). The starch with the highest DS increases the yield stress and the plastic viscosity stronger than others. Regardless of the dosage and DS of starch the structural build-up is not affected specifically by the starch during the induction period. During the acceleration period starches reduce the structural build-up, but with the highest DS this effect was less prominent than for the other modifications. In the presence of PCE the addition of starch notably increases the yield stress, whereas the influence on the plastic viscosity is limited. Yet, the combined application of PCE and starch allows to control rheological properties and maintain the structural build-up rate. KW - Modified starch KW - PCE KW - Structural build-up KW - Rheological properties KW - Cement hydration PY - 2025 DO - https://doi.org/10.1016/j.conbuildmat.2025.143646 SN - 1879-0526 VL - 495 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-64168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -