TY - JOUR A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Schimanski, A. A1 - Jäger, Christian A1 - Friedrich, Jörg Florian T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes N2 - Mixtures of hexamethyldisiloxane (HMDSO) and oxygen have been used for deposition of SiO2-like layers by plasma polymerization under low-pressure conditions onto polyethylene and polystyrene used as basecoat. Water glass was cast onto these 0.5 µm plasma thick siloxane-like layers with a thickness of 5 to 40 µm. The adhesion of these bilayer systems and their flame resistance were tested. The effect of different plasma parameters such as monomer/gas ratio, pressure and power input into the discharge on the deposition rate and the composition of the formed layers was studied. Characterization and chemical composition of the formed films were performed using infrared, X-ray photoelectron and solid state nuclear magnetic resonance spectroscopy. Peel strengths of composites were measured and the locus of peel front propagation was detected. Thermal properties of composites were analyzed by thermo-gravimetric analysis. Finally, the fire-retardant properties of thick coated polymers were determined by exposure to flames and the behavior of coatings on the polymers during flaming was observed visually. KW - Plasma polymerization KW - Hexamethyldisiloxane plasma polymer KW - Polystyrene KW - Polyethylene KW - Flame retardancy PY - 2013 DO - https://doi.org/10.1016/j.surfcoat.2013.04.039 SN - 0257-8972 VL - 228 SP - 266 EP - 274 PB - Elsevier B.V. CY - Lausanne AN - OPUS4-28735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Friedrich, Jörg F. T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes T2 - 2. vfdb Workshop Brandschutzforschung CY - Magdeburg, Germany DA - 2013-03-21 PY - 2013 AN - OPUS4-27919 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Friedrich, Jörg Florian T1 - Deposition of thick polymer or inorganic layers with flame-retardant properties by combination of plasma and spray processes N2 - Mixtures of hexamethyldisiloxane (HMDSO) and oxygen have been used for deposition of SiO2-like layers by plasma polymerization under low-pressure conditions onto polyethylene and polystyrene used as basecoat. Water glass was cast onto these 0.5 pm plasma thick siloxane-like layers with a thickness of 5 to 40 mu m. The adhesion of these bilayer systems and their flame resistance were tested. The effect of different plasma parameters such as monomer/gas ratio, pressure and power input into the discharge on the deposition rate and the composition of the formed layers was studied. Characterization and chemical composition of the formed films were performed using infrared, X-ray photoelectron and solid state nuclear magnetic resonance spectroscopy. Peel strengths of composites were measured and the locus of peel front propagation was detected. Thermal properties of composites were analyzed by thermo-gravimetric analysis. Finally, the fire-retardant properties of thick coated polymers were determined by exposure to flames and the behavior of coatings on the polymers during flaming was observed visually. T2 - 3. Magdeburger Brand- und Explosionsschutztag / vfdb-Workshop CY - Magdeburg, Germany DA - 21.03.2013 KW - Polymer KW - Plasmatechnologie KW - Analytik PY - 2013 SN - 978-3-00-041601-9 SP - 1 EP - 11 AN - OPUS4-27988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohamed, Zeinab A1 - Friedrich, Jörg F. A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Berger, Anka T1 - Deposition of thick polymer or inorganic layers with flame retardant properties by combination of plasma and spray processes T2 - Polymerwissenschaftliches Seminar der Polymertechnik und -physik, TU Berlin CY - Berlin, Germany DA - 2012-11-07 PY - 2012 AN - OPUS4-26971 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Adhesion promotion of thick fire-retardant melamine polymer dip-coatings at polyolefin surfaces by using plasma polymers N2 - Melamine and melamine resins are widely used as fire retardants for polymer materials used in pharmaceutical, plastic, textile, rubber, and construction industry. Melamine-based flame retardants act by blowing off intumescent layers, char formation, and emission of quenching ammonia gas and diluent molecular nitrogen. Special advantages are: low cost, low smoke density and toxicity, low corrosive activity, safe handling, and environmental friendliness. Methylated poly(melamine-co-formaldehyde) (mPMF) was used as thick (≥40 µm) fire-retardant coating for plasma pretreated polymers. A combined low-pressure plasma pretreatment consisting of oxygen plasma exposure followed by deposition of thin poly(allylamine) (ppAAm) and poly(allyl alcohol) (ppAAl) plasma polymers as adhesion promoters have improved the adhesion of thick mPMF coatings strongly. Chemical structure and composition of deposited polymer films were characterized by infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). After peeling, the peeled layer surfaces were also investigated for identification of the locus of failure and their topography using optical microscopy and XPS. Often the adhesion promotion was so efficient that the peeling of coating was not possible. Thermal properties of plasma polymers and dip-coating films were analyzed by thermogravimetric analysis. Significant improvement of fire-retardant properties of coated polymers was confirmed by flame tests. KW - Adhesion KW - Thick melamine layers KW - Plasma polymerization KW - Dip-coating KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Fire retardant KW - Melamine resin KW - Polymer KW - Plasma PY - 2014 DO - https://doi.org/10.1080/01694243.2014.943339 SN - 0169-4243 SN - 1568-5616 VL - 28 IS - 21 SP - 2113 EP - 2132 PB - VNU Science Press CY - Utrecht AN - OPUS4-31485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Friedrich, Jörg F. T1 - Thick coating of polyolefins T2 - Polydays 2014 CY - Berlin, Germany DA - 2014-09-30 PY - 2014 AN - OPUS4-31603 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Mohamed, Zeinab T1 - Synthesis and characterization of fire-retardant layers onto polyolefin substrates N2 - First goal of this work was to produce thick fire-resistant coatings, which are able to withdraw the direct contact to flames. Preliminary tests had shown that thicknesses more than 10 μm are needed to measure effects on flammability. Here, 40 μm thick layers are prepared. The adhesion of such thick layers mainly depends on the use of surface treatment of polyolefin substrates. Plasma exposure and deposition of plasma polymer layers are easiest and most efficient methods to promote the adhesion of thick layers used for the fire protection of materials. Indeed, plasma processing doesn’t modify the intrinsic properties of materials such as the mechanical properties, easily processed, and can be applied over a wide range of materials even though for metals. To achieve very high adhesion of such thick coatings to the polymer substrates it has to be considered that the chemical nature of coating and polymers is different, strong different thermal expansion coefficients exist and therefore adhesion was most oftenabsent. KW - Polymer KW - Plasma KW - Dip coating KW - Fire retardant PY - 2014 SN - 978-3-89574-873-8 SP - 1 EP - 147 PB - Dr. Köster CY - Berlin AN - OPUS4-33109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone A1 - Farouk, M. A1 - Moustapha, M.E. T1 - Plasma deposition of adhesion-promoting polymer layers onto polypropylene for subsequent covering with thick fire retardant coatings N2 - Melamine resins were used as 50-µm-thick fire retardant coatings for polypropylene (PP). Preceding deposition, low-pressure plasma polymer films of allyl alcohol were coated onto PP to improve the adhesion between PP and melamine resin coatings. The efficiency of such fire retardant coatings was confirmed by flame tests. The plasma-deposited polymer and the dip-coated melamine resin films were characterized by Fourier transform infrared-attenuated total reflectance spectroscopy and X-ray photoelectron spectroscopy (XPS). The adhesion of coatings was measured using a 90° peel test with a doubled-faced adhesive tape. To detect the locus of failure, the peeled layer surfaces were inspected using optical microscopy and XPS. Thermal properties of PP thick melamine resin-coated films were analyzed by thermogravimetric analysis. KW - Polymer KW - Plasma KW - Polypropylene KW - Fire retardant KW - Melamine precursors KW - Plasma polymerization KW - Allyl alcohol KW - Flame retardants KW - Curing PY - 2015 DO - https://doi.org/10.1080/01694243.2015.1033878 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 14 SP - 1522 EP - 1533 PB - VNU Science Press CY - Utrecht AN - OPUS4-33112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mohamed, Zeinab A1 - Krüger, Simone A1 - Hidde, Gundula A1 - Friedrich, Jörg F. T1 - Synthesis and Characterization of Fire-Retardant Layers on to Polyolefin T2 - Seminarveranstaltung des Fachbereiches Polymerphysik und Polymertechnik der TU Berlin CY - TU Berlin, Deutschland DA - 2014-11-05 PY - 2014 AN - OPUS4-32355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohamed, Zeinab A1 - Friedrich, Jörg Florian A1 - Krüger, Simone T1 - Cured melamine systems as thick fire-retardant layers deposited by combination of plasma technology and dip-coating N2 - Melamine and melamine resins are widely used as fire-retardants for polymer building materials. Cured melamine systems are used in heat-sensitive items, such as furniture and window frames and sills. In this work, differently cured methylated poly(melamine-co-formaldehyde) (cmPMF) resins were used as fire-retardant coverage for poly(styrene) (PS) and poly(ethylene) (PE) building materials. Such polymer layers should have several tenths of micrometers thickness to produce sufficient fire retardancy. These thick layers were produced by dip-coating. To promote sufficient adhesion of such thick coating to the polyolefin substrates, also in the case of high temperatures occurring at fire exposure, the polymer substrates were firstly coated with a few hundred nanometer thick adhesion-promoting plasma polymer layer. Such thin plasma polymer layers were deposited by low-pressure plasma polymerization of allyl alcohol (ppAAl). It was assumed that the hydroxyl groups of ppAAl interact with the melamine resin; therefore, ppAAl was well suited as adhesion promoter for thick melamine resin coatings. Chemical structure and composition of polymer films were investigated using infrared-attenuated total reflectance and X-ray photoelectron spectroscopy (XPS). Peel strengths of coatings were measured. After peeling, the peeled polymer surfaces were also investigated using optical microscopy and XPS the layers for identification of the locus of peel front propagation. Thermal properties were analyzed using TGA (thermo-gravimetric analyses). Finally, the fire-retardant properties of such thick coated polymers were evaluated by exposure to flames. KW - Plasma polymerization KW - Dip-coating KW - Curing KW - Methylated poly(melamine-co-formaldehyde) KW - Polystyrene KW - Polyethylene KW - Flame retardancy KW - Polymer KW - Plasma KW - Melamine resin KW - Fire retardant PY - 2015 DO - https://doi.org/10.1080/01694243.2014.995911 SN - 0169-4243 SN - 1568-5616 VL - 29 IS - 9 SP - 807 EP - 820 PB - VNU Science Press CY - Utrecht AN - OPUS4-32795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -