TY - JOUR A1 - Dong, S. A1 - Leng, J. A1 - Feng, Y. A1 - Liu, M. A1 - Stackhouse, C. J. A1 - Schönhals, Andreas A1 - Chiappisi, L. A1 - Gao, L. A1 - Chen, W. A1 - Shang, J. A1 - Jin, L. A1 - Qi, Z. A1 - Schalley, C. A. T1 - Structural water as an essential comonomer in supramolecular polymerization JF - Science Advances N2 - Although the concept of structural water that is bound inside hydrophobic pockets and helps to stabilize protein structures is well established, water has rarely found a similar role in supramolecular polymers. Water is often used as a solvent for supramolecular polymerization, however without taking the role of a comonomer for the supramolecular polymer structure. We report a low–molecular weight monomer whose supramolecular polymerization is triggered by the incorporation of water. The presence of water molecules as comonomers is essential to the polymerization process. The supramolecular polymeric material exhibits strong adhesion to surfaces, such as glass and paper. It can be used as a water-activated glue, which can be released at higher temperatures and reused many times without losing its performance. KW - Supra molecular polymerization PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-432728 DO - https://doi.org/10.1126/sciadv.aao0900 SN - 2375-2548 VL - 3 IS - 11 SP - eaao0900, 1 EP - eaao0900, 8 PB - American Association for the Advancement of Science AN - OPUS4-43272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adwani, D. A1 - Pipintakos, G. A1 - Mirwald, J. A1 - Wang, Y. A1 - Hajj, R. A1 - Guo, M. A1 - Liang, M. A1 - Jing, R. A1 - Varveri, A. A1 - Zhang, Y. A1 - Pei, K. A1 - Xu, X. A1 - Leng, Z. A1 - Li, D. A1 - Villamil, W. A1 - Caro, S. A1 - Chailleux, E. A1 - Cantot, J. A1 - Weigel, Sandra A1 - Škulteckė, J. A1 - Tarsi, G. A1 - Margaritis, A. A1 - Wang, H. A1 - Hu, Y. A1 - Airey, G. A1 - Sreeram, A. A1 - Bhasin, A. T1 - Examining the efficacy of promising antioxidants to mitigate asphalt binder oxidation: Insights from a worldwide interlaboratory investigation JF - International journal of pavement engineering N2 - Oxidative aging induces significant stiffening of asphalt binders that leads to a pronounced reduction in the overall durability of asphalt pavements. The strategic implementation of antioxidant additives provides a potential solution to alleviate this issue. This work presents results from the second phase of the global consortium for antioxidants research aimed at investigating the effectiveness of potential antioxidants in increasing the durability of asphalt binders. Sixteen laboratories around the world participated in this effort and a total of 28 binders from diverse geographical regions were tested. Two promising antioxidants, namely zinc diethyldithiocarbamate (ZDC) and kraft lignin were evaluated in this phase and blended with the binders at specific proportions. Subsequently, a comprehensive investigation was conducted to assess rheological characteristics and chemical properties of the various blends, utilising Dynamic Shear Rheometer (DSR) measurements and Fourier Transform Infrared (FTIR) Spectroscopy. The findings indicate that additives such as ZDC hold considerable promise as an effective antioxidant, particularly when considering a wide diversity of binders. In general, its incorporation does not compromise the rutting performance of the binders and significantly improves fatigue performance. Therefore, research efforts should be focused on exploring additional facets to assess its practical applicability in field. KW - Asphalt oxidation KW - Binder aging KW - Antioxidant additives KW - Binder rheology KW - Binder chemistry KW - Bitumen und bitumenhaltige Bindemittel KW - FTIR-Spektroskopie KW - Anwendungsmöglichkeiten KW - Vergleichsuntersuchung KW - Arbeitsanleitung KW - Präzision PY - 2024 DO - https://doi.org/10.1080/10298436.2024.2332363 SN - 1477-268X VL - 25 IS - 1 SP - 1 EP - 15 PB - Taylor & Francis CY - London AN - OPUS4-59957 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -