TY - JOUR A1 - Was, G.S. A1 - Bahn, C.-B. A1 - Busby, J. A1 - Cui, B. A1 - Farkas, D. A1 - Gussev, M. A1 - Rigen He, M. A1 - Hesterberg, J. A1 - Jiao, Z. A1 - Johnson, D. A1 - Kuang, W. A1 - McMurtrey, M. A1 - Robertson, I. A1 - Sinjlawi, A. A1 - Song, M. A1 - Stephenson, K. A1 - Sun, K. A1 - Swaminathan, Srinivasan A1 - Wang, M. A1 - West, E. T1 - How irradiation promotes intergranular stress corrosion crack initiation JF - Progress in Material Science N2 - Irradiation assisted stress corrosion cracking (IASCC) is a form of intergranular stress corrosion cracking that occurs in irradiated austenitic alloys. It requires an irradiated microstructure along with high temperature water and stress. The process is ubiquitous in that it occurs in a wide range of austenitic alloys and water chemistries, but only when the alloy is irradiated. Despite evidence of this degradation mode that dates back to the 1960s, the mechanism by which it occurs has remained elusive. Here, using high resolution electron backscattering detection to analyze local stress-strain states, high resolution transmission electron microscopy to identify grain boundary phases at crack tips, and decoupling the roles of stress and grain boundary oxidation, we are able to unfold the complexities of the phenomenon to reveal the mechanism by which IASCC occurs. The significance of the findings impacts the mechanical integrity of core components of both current and advanced nuclear reactor designs worldwide. KW - Irradiation KW - Stress corrosion cracking KW - Grain boundaries KW - Oxidation KW - Austenitic alloys PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595748 DO - https://doi.org/10.1016/j.pmatsci.2024.101255 SN - 0079-6425 VL - 143 SP - 1 EP - 15 PB - Elsevier AN - OPUS4-59574 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.Q. A1 - Li, H.M. A1 - Jiao, H. A1 - Guo, Z.H. A1 - Zhang, Q.H. A1 - Kneeteman, L.E. A1 - Lewin, M. A1 - Pires do Rego, E.C. A1 - Leal, R.V. A1 - Violante, F.G.M. A1 - Riedel, Juliane A1 - Koch, Matthias T1 - CCQM Key Comparison track A CCQM-K168: Non-polar analytes in high carbohydrate food matrix: trans-zearalenone in maize powder JF - Metrologia N2 - Demonstrating competency and equivalence for the measurement capacity of contaminants and nutrients in primary foodstuffs is a priority of the OAWG 10-year strategy for Track A core comparisons. Such measurements have posed significant challenges for reference material producers and calibration service providers. This key comparison (KC), under the topic of “non- polar analyte in high carbohydrate food matrix: trans-Zearalenone (trans-ZEN) in maize powder” , was a sector of the model system selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to demonstrate the Calibration and Measurement Capabilities (CMCs) of national metrology institutes (NMIs) and designated institutes (DIs). 17 NMIs and DIs participated in the Track A KC CCQM- 168 “non-polar analyte in high carbohydrate food matrix: trans-ZEN in maize powder” . Participants were requested to evaluate the mass fraction (μg/kg) of trans-ZEN in maize powder material. Methods like liquid-liquid extraction and SPE were applied in the pre-treatment, and HPLC-MS/MS and HPLC-FLD were used for detection by the participants. The mass fractions for trans-ZEN were in the range of (91.8 to 169) μg/kg with standard uncertainties of (1.5 to 24.7) μg/kg, and corresponding relative standard uncertainties from 1.5% to 14.6%. Two labs, INTI and BAM were excluded from the KCRV evaluation. INTI result was identified as an outlier and confirmed their method had insufficient specificity. For BAM the calibration approach they used does not meet the CIPM traceability requirements. The other 15 labs included in the calculation of the consensus KCRV all agreed within their standard uncertainties. Hierarchical Bayes was used as estimators in calculating KCRV and standard uncertainty. Successful participation in CCQM-K168 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 1 μg/kg to 1000 μg/kg in a high carbohydrate food matrix. KW - Metrology KW - Quality Assurance KW - Mycotoxin Analysis KW - Sustainable Food Safety PY - 2023 DO - https://doi.org/10.1088/0026-1394/60/1A/08021 VL - 60 IS - 1a SP - 08021 AN - OPUS4-59059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -