TY - JOUR A1 - Beyer, S. A1 - Kimani, Martha Wamaitha A1 - Zhang, Y. A1 - Verhassel, A. A1 - Sternbæk, L. A1 - Wang, T. A1 - Persson, J. L. A1 - Härkönen, P. A1 - Johansson, E. A1 - Caraballo, R. A1 - Elofsson, M. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Ohlsson, L. A1 - El-Schich, Z. A1 - Gjörloff Wingren, A. A1 - Stollenwerk, M. M. T1 - Fluorescent Molecularly Imprinted Polymer Layers against Sialic Acid on Silica-coated Polystyrene Cores - Assessment of the Binding Behavior to Cancer Cells JF - Cancers N2 - Sialic acid (SA) is a monosaccharide usually linked to the terminus of glycan chains on the cell surface. It plays a crucial role in many biological processes, and hypersialylation is a common feature in cancer. Lectins are widely used to analyze the cell surface expression of SA. However, these protein molecules are usually expensive and easily denatured, which calls for the development of alternative glycan-specific receptors and cell imaging technologies. In this study, SA-imprinted fluorescent core-shell molecularly imprinted polymer particles (SA-MIPs) were employed to recognize SA on the cell surface of cancer cell lines. The SA-MIPs improved suspensibility and scattering properties compared with previously used core-shell SA-MIPs. Although SA-imprinting was performed using SA without preference for the alpha-2,3- and alpha-2,6-SA forms, we screened the cancer cell lines analyzed using the lectins Maackia Amurensis Lectin I (MAL I, alpha-2,3-SA) and Sambucus Nigra Lectin (SNA, alpha-2,6-SA). Our results show that the selected cancer cell lines in this study presented a varied binding behavior with the SA-MIPs. The binding pattern of the lectins was also demonstrated. Moreover, two different pentavalent SA conjugates were used to inhibit the binding of the SA-MIPs to breast, skin, and lung cancer cell lines, demonstrating the specificity of the SA-MIPs in both flow cytometry and confocal fluorescence microscopy. We concluded that the synthesized SA-MIPs might be a powerful future tool in the diagnostic analysis of various cancer cells. KW - Cancer KW - Imprinting KW - Molecularly imprinted polymers KW - SA conjugates KW - Sialic acid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546625 DO - https://doi.org/110.3390/cancers14081875 SN - 2072-6694 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-54662 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shinde, S. A1 - El-Schich, Z. A1 - Malakpour, A. A1 - Wan, Wei A1 - Dizeyi, N. A1 - Mohammadi, R. A1 - Rurack, Knut A1 - Gjörloff Wingren, A. A1 - Sellergren, B. T1 - Sialic acid-imprinted fluorescent core-shell particles for selective labeling of cell surface glycans JF - Journal of the American Chemical Society : JACS N2 - The expression of cell surface glycans terminating with sialic acid (SA) residues has been found to correlate with various disease states there among cancer. We here report a novel strategy for specific fluorescence labeling of such motifs. This is based on sialic acid-imprinted core–shell nanoparticles equipped with nitrobenzoxadiazole (NBD) fluorescent reporter groups allowing environmentally sensitive fluorescence detection at convenient excitation and emission wavelengths. Imprinting was achieved exploiting a hybrid approach combining reversible boronate ester formation between p-vinylphenylboronic acid and SA, the introduction of cationic amine functionalities, and the use of an NBD-appended urea-monomer as a binary hydrogen-bond donor targeting the SA carboxylic acid and OH functionalities. The monomers were grafted from 200 nm RAFT-modified silica core particles using ethylene glycol dimethacrylate (EGDMA) as cross-linker resulting in a shell thickness of ca. 10 nm. The particles displayed strong affinity for SA in methanol/water mixtures (K = 6.6 × 105 M-1 in 2% water, 5.9 × 103 M-1 in 98% water, Bmax ≈ 10 µmol g-1), whereas binding of the competitor glucuronic acid (GA) and other monosaccharides was considerably weaker (K (GA) = 1.8 × 103 M-1 in 98% water). In cell imaging experiments, the particles selectively stained different cell lines in correlation with the SA expression level. This was further verified by enzymatic cleavage of SA and by staining using a FITC labeled SA selective lectin. KW - Glycoproteine KW - Biomarker KW - Fluoreszenz KW - Polymere KW - Krebsdiagnostik PY - 2015 DO - https://doi.org/10.1021/jacs.5b08482 SN - 0002-7863 SN - 1520-5126 VL - 137 IS - 43 SP - 13908 EP - 13912 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-35227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Beyer, S. A1 - El-Schich, Z. A1 - Gawlitza, Kornelia A1 - Rurack, Knut A1 - Gjörloff-Wingren, A. T1 - Imprinted Particles for Direct Fluorescence Detection of Sialic Acid in Polar Media and on Cancer Cells with Enhanced Control of Nonspecific Binding JF - ACS Applied Polymer Materials N2 - Glycoproteins are abundant on the cell surface of mammals, providing structural support, modulating cell Membrane properties, and acting as signaling agents. Variation of glycosylation patterns has been found to indicate various disease states, including cell malignancy. Sialic acid (SA) is present as a terminating group on cell-surface glycans, and its overexpression has been linked to several types of cancer. Detection of SA on the cell surface is therefore critical for detection of cancer in its early stages. In this work, a fluorescent molecularly imprinted polymer layer targeting SA was synthesized on the surface of silica-coated polystyrene (PS) particles. Compared to previous works, a PS core supplies a lighter, lower-density support for improved suspension stability and scattering properties. Moreover, their smaller size provides a higher surface-area-to-volume ratio for binding. The incorporation of a fluorescent monomer in the MIP shell allowed for simple and rapid determination of binding specificity in polar media due to a deprotonation−reprotonation interaction mechanism between the fluorescent monomer and SA, which led to spectral changes. Upon titration of the MIP particles with SA in suspension, an increase in fluorescence emission of the particles was observed, with the MIP particles binding SA more selectively compared to the nonimprinted polymer (NIP) control particles. In cell staining experiments performed by flow cytometry, the binding behavior of the MIP particles compared favorably with that of SA-binding lectins. NIPs prepared with a “dummy” template served as a better negative control in cell binding assays due to the favorable inward orientation of template-binding functional groups in the polymer shell, which reduced nonspecific binding. The results show that fluorescent MIPs targeting SA are a promising tool for in vitro fluorescence staining of cancerous cells and for future diagnosis of cancer at early stages. KW - Flow cytometry KW - Sialic acid KW - Fluorescence KW - Molecularly imprinted polymers KW - Cancer cells PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-525216 DO - https://doi.org/10.1021/acsapm.0c01353 VL - 3 IS - 5 SP - 2363 EP - 2373 PB - American Chemical Society AN - OPUS4-52521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sjöberg, T. A1 - El-Schich, Z. A1 - Rurack, Knut A1 - Gjörloff Wingren, A. T1 - Colorectal Cancer Cell Spheroids Co-Cultured with Molecularly Imprinted Fluorescent Particles Targeting Sialic Acid Show Preserved Cell Viability JF - Applied Sciences N2 - In vitro cultured 3D models of CRC have been demonstrated to hold considerable worth in drug discovery, drug resistance analysis, and in studying cell-cell and cell-matrix interactions that occur in the tumor microenvironment. The 3D models resemble the in vivo physiological microenvironment by replicating the cell type composition and tissue architecture. Molecularly imprinted polymers (MIPs) have been investigated for use instead of antibodies against small nonimmunogenic structures, such as sialic acid (SA). Glyco-conjugates including SA are present on all cells, and often deregulated on cancer cells. Here, we present a novel approach for targeting and detecting colorectal cancer cells (CRC) by using in vitro cultured HT29 3D spheroids co-cultured in vitro with either fluorescent MIPs targeting SA, SA-MIPs, or the two lectins targeting SA, MAL I, and SNA. Both formaldehyde-fixed and viable HT29 3D spheroids with or without SA-MIPs were imaged in 3D by confocal microscopy. The results revealed a preserved cell morphology and viability of the HT29 3D spheroids co-cultured in vitro with SA-MIPs. However, the lectins MAL I and SNA targeting the alpha-2,3 or alpha-2,6 SA glycosidic linkages, respectively, affected the cell viability when co-cultured with the viable HT29 3D spheroids, and no living cells could be detected. Here, we have shown that the SA-MIPs could be used as a safe and low-cost diagnostic tool for targeting and detecting cancer cells in a physiologically relevant 3D cancer model in vitro. KW - Molecularly Imprinted Polymers KW - Durchflusszytometrie KW - Zellanalytik KW - Fluoreszenz KW - Mikroskopie PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573840 DO - https://doi.org/10.3390/app13095330 VL - 13 IS - 9 SP - 1 EP - 6 PB - MDPI CY - Basel AN - OPUS4-57384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -