TY - CONF A1 - Yin, Huajie A1 - Konnertz, N. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Mobility and Physical aging of SuperGlassy Polymers for Gas Separation Membranes as revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a cost- and energy efficient solution for gas separation. Recently superglassy polymers with high free volume outperform many conventional dense polymers in terms of gas permeability and selectivity. However, such materials with a high fractional free volume (FFV) are prone to pronounced physical aging. The initial microporous structures approach a denser state via local chain rearrangements which results in a dramatic reduction in the gas permeability. For the first time, dielectric spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate the molecular mobility and physical aging of two representative groups of superglassy polymers: PIMs (PIM-1 & PIM-EA-TB) and Si-containing polynobornenes (PTCNSi1 & PTCNSi2). The dielectric behavior of the solution-cast polymeric films was measured by isothermal frequency scans during the different heating cycles in a broad temperature range. Structural relaxation of the films was observed during the measurements. Multiple dielectric processes following Arrhenius behavior were observed for all the investigated polymers. Moreover, they all showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature especially for PIMs is explained in terms of the formation of local intermolecular agglomerated structures due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - 8th International Conference on Advanced Fibers and Polymer Materials CY - Shanghai, China DA - 08.10.2017 KW - Physical aging KW - Membranes KW - Broadband dielectric spectroscopy KW - Gas separation KW - Molecular mobility PY - 2017 AN - OPUS4-42877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Physical Aging of a Highly Permeable Glassy Polynorbornene as Revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a cost- and energy efficient solution for gas separation. Recently superglassy polymers with high free volume outperform many conventional dense polymers in terms of gas permeability and selectivity. However, such polymers are prone to pronounced physical aging, resulting in a dramatic reduction in the gas permeability. Molecular mobility of polymer segments plays an important role in the physical aging and the gas transport performance of polymeric membranes. Molecular mobility and physical aging of a representative superglassy polynorbornene with very high gas permeability, PTCNSi2g, was monitored by using dielectric spectroscopy with state-of-the-art high-resolution analyzers. This work helps to shed some light on the structure−property relationship of superglassy polymers on a molecular level and to provide practical “design rules” for the development of high performance polymers for gas separation. KW - Molecular mobility KW - Gas separation membrane KW - Broadband dielectric spectroscopy KW - Polymer KW - Physical ageing PY - 2017 DO - https://doi.org/10.1021/acsmacrolett.7b00456 SN - 2161-1653 VL - 6 IS - 8 SP - 813 EP - 818 PB - ACS CY - Washington DC, USA AN - OPUS4-41354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Thermal and dynamic glass transition of ultrathin films of homopolymers and a miscible polymer blend N2 - Despite the decade long controversial discussion on the effect of nanometer confinement on the glass transition temperature (Tg) of ultrathin polymer films, there is still no consistent picture. Here, the dynamic calorimetric glass transition of ultrathin films of a blend, which is miscible in the bulk, is directly investigated by specific heat spectroscopy. By a self-assembling process, a nanometer thick surface layer with a higher molecular mobility is formed at the polymer/air interface. By measuring the dynamic calorimetric Tg in dependence on the film thickness, it was shown that the Tg of the whole film was strongly influenced by that nanometer thick surface layer, with a lower Tg. Since the observed thickness dependence of the dynamic Tg is similar to the thickness dependence of the Tg for thin films of homopolymers, it is concluded that also for homopolymer a highly mobile surface layer is relevant for the widely observed Tg depression. T2 - International Young Scientists Forum on Materials Science and Engineering CY - Shanghai, China DA - 01.06.2017 KW - Glass transition KW - Ultrathin polymer films KW - Specific heat spectroscopy PY - 2017 AN - OPUS4-40809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Konnertz, N. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular mobility of super glassy polymers for gas separation membranes investigated by dielectric spectroscopy N2 - Super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP) or polymers with intrinsic microporosity (PIMs) play an important role in the current development of membrane materials for gas separation because of their high permeability and selectivity. Unfortunately, such materials which have a high fractional free volume (FFV) are prone to pronounced physical aging. The initial microporous structures approach a more dense state via local chain rearrangements which results in a dramatic reduction in the gas permeability. For the first time, broadband dielectric spectroscopy was employed to investigate the molecular dynamics of two representative groups of super glassy polymers: PIMs (PIM-1 & PIM-EA-TB) and Si-containing polynobornenes (PTCNSi1 & PTCNSi2). The dielectric behavior of the solution-cast polymeric films was measured by isothermal frequency scans during the different heating cycles in a broad temperature range. Structural relaxation of the films was observed during the measurements. Molecular relaxation processes following Arrhenius behavior with unusually high activation energies were observed for all the investigated polymers. The PIMs showed furthermore a significant conductivity in the glassy state which is explained with the formation of local intermolecular agglomerated structures due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - 8th International Discussion Meeting on Relaxations in Complex Systems CY - Wisla, Poland DA - 23.07.2017 KW - Broadband dielectric spectroscopy KW - Molecular mobility KW - Physical aging KW - Membranes KW - Gas separation PY - 2017 AN - OPUS4-41162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Charge Transport in Polymers of Intrinsic Microporosity (PIMs) as Revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a low-cost, energy efficient solution for gas separation. Recently polymers of intrinsic microporosity (PIMs) have emerged as prestigious membrane materials featuring a large concentration of pores smaller than 1 nm, a BET surface area larger than 700 m2/g and high gas permeability and selectivity. Unusual chain structure combining rigid segments with sites of contortion gives rise to the intrinsic microporosity. However, this novel class of glassy polymers are prone to pronounced physical aging. The initial microporous structures approach a denser state via local small scale fluctuataions, leading to a dramatic reduction in the gas permeabilities. For the first time, dielectric relaxation spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate three representative PIMs with a systematic change in chain rigidity: PIM-EA-TB 〉 PIM-1 〉 PIM-MDPH-TB. The molecular mobility, the charge transport and their response upon heating (aging) in the polymers were measured in a broad temperature range through isothermal frequency scans during different heating / cooling cycles. Multiple dielectric processes following Arrhenius behavior were observed for the investigated polymers. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxation phenomena were discussed and attempted to be correlated with the structural features of PIMs. Moreover, all PIMs showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature far below the glass transition temperature of PIMs is explained in terms of the loosely packed microporous structure and the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Dielectric spectroscopy KW - Polymeric membrane KW - Polymers of intrinsic microporosity PY - 2019 AN - OPUS4-47805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Probing the glass transition temperature of polymers of intrinsic microporosity (PIMs) by fast scanning calorimeter N2 - High performance polymers of intrinsic microporosity (PIMs) have emerged as novel materials with broad applications from gas separation to electronic devices. Sufficiently rigid, even contorted polymer chains show only limited molecular mobility, therefore undergo inefficient packing and give rise to intrinsic microporosity with pore size generally smaller than 1 nm and BET surface areas larger than 700 m2/g. Further performance optimization and long-term stability of devices incorporating PIMs rely on our understanding of structure-processing-property relationships and physical aging, in which glass transition plays a key role. Up to now no glass transition temperature (Tg) of PIMs could be detected with conventional thermal analysis techniques before degradation. Decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this. This was achieved by employing fast scanning calorimetry (FSC) based on a chip sensor, which is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. FSC provides definitive evidence of glass transition of a series of PIMs with a special consideration on the chain rigidity. The determined glass transition temperature of these PIMs follows the order of the rigidity of their backbone structures. FSC provides the first clear-cut experimental evidence of the glass transition of PIM-EA-TB with a Tg of 663 K, PIM-1 of 644 K and PIM-DMDPH-TB of 630 K at a heating rate of 1Χ104 K/s. Local fluctuations are featured in glass transition of highly rigid PIMs. As conformational changes are prevented by the backbone rigidity, the glass transition must rather be assigned to local small scale fluctuations. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Glass transition KW - Polymers of intrinsic microporosity KW - Fast scanning calorimeter PY - 2019 AN - OPUS4-47806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 DO - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Wood Flour/Polypropylene Composites Using Different Flame Retardants T2 - Kolloquiumsvortrag, Insitute of Chemistry, the Chinese Academy of Sciences CY - Beijing, China DA - 2014-11-26 PY - 2014 AN - OPUS4-32358 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Improvement on the Flame Retardancy of Wood-Plastic Composites (WPCs) Using Different Flame Retardants T2 - Kolloquiumsvortrag, Sichuan University CY - Chendu, China DA - 2014-11-27 PY - 2014 AN - OPUS4-32359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Sypaseuth, Fanni D. A1 - Schubert, M. A1 - Schoch, R. A1 - Bastian, M. A1 - Schartel, Bernhard T1 - Routes to halogen‐free flame‐retardant polypropylene wood plastic composites N2 - Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and Limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency. KW - Flammability KW - Halogen‐free KW - Multicomponent systems KW - Polypropylene KW - Wood plastic composite (WPC) PY - 2019 DO - https://doi.org/10.1002/pat.4458 SN - 1099-1581 SN - 1042-7147 VL - 30 IS - 1 SP - 187 EP - 202 PB - Wiley AN - OPUS4-46909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -