TY - GEN A1 - Yin, Huajie A1 - Madkour, Sherif Aly Hassan Aly A1 - Schönhals, Andreas ED - Kremer, F. T1 - Glass transition of ultra-thin polymer films: A combination of relaxation spectroscopy with surface analytics T2 - Dynamics in geometrical confinement N2 - The glass transition behavior of ultra-thin supported polymer films is discussed controversially in the literature for around 20 years. Substantial efforts have been archived to understand it. In this contribution, a combination of methods sensitive to bulk properties of a system, like dielectric or specific heat spectroscopy with surface analytics, for instance, atomic force microscopy (AFM), contact angle measurements, and X-ray photoelectron spectroscopy (XPS) were employed to study the glass transition of ultra-thin supported films. All investigations were carried out on identically prepared and treated samples. Different systems with different complexities going from more or less flexible homopolymers over rigid main chain macromolecules to polymer blends have been studied. For the investigated flexible macromolecules, the dynamic glass transition temperature estimated within the frame of the linear response approach is independent of the film thickness down to several nanometers and identical to the bulk value. For polystyrene it was found the thermal glass transition temperatures can depend on the film thickness. This different behavior is not well understood till now and needs further experimental clarification. For the investigated main chain polymers polycarbonate and polysulfone. Dynamic and thermal glass transition temperature estimated from the dielectric measurements increases with decreasing film thickness. This is discussed in the frame of a strong interaction of the polymer segments with the surface of the substrate. In general for homopolymers, the interaction energy of the polymer segments with the substrate surface cannot be considered as the only parameter, which is responsible for the change in the thermal glass transition with the film thickness. For the investigated miscible blend system of polystyrene/poly(vinyl methyl ether) at a composition of 50/50 wt-% a decrease of the dynamic glass transition temperature with decreasing film thickness is found. This is explained by the formation of a poly(vinyl methyl ether)-rich surface layer with a higher molecular mobility. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Photoelectron spectroscopy KW - Contact angle measurements KW - Polystyrene KW - Poly(vinyl methyl ether) KW - Poly(2-vinylpyridine) KW - Polycarbonate KW - Polysulfone KW - Polystyrene/ Poly(vinyl methyl ether) blend PY - 2014 SN - 978-3-319-06099-6 SN - 978-3-319-06100-9 DO - https://doi.org/10.1007/978-3-319-06100-9_2 SN - 2190-930X SN - 2190-9318 SP - 17 EP - 59 PB - Springer AN - OPUS4-31078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Influence of differently structured aluminium-polypropylene interfaces on adhesion JF - Journal of adhesion science and technology N2 - Polar groups were introduced on polypropylene surfaces for increasing the surface energy and the peel strength to evaporated aluminium layers. Three kinds of plasma processes were used for introducing such functional groups to polyolefin surfaces: low-pressure radio-frequency (RF) O2 plasma exposure, atmospheric-pressure dielectric-barrier discharge (DBD) treatment in air, and the deposition of allylamine plasma polymer. The amino groups of the allylamine plasma polymer were also used as anchoring points for chemical introduction of covalently bonded spacer molecules equipped with reactive endgroups. Thus, silanol endgroups of a covalently bonded spacer were able to interact with the evaporated metal layer. The Al-PP composites achieved a maximal peel strength of 470 N/m by exposing the polymer to the lowpressure O2 plasma and 500 N/m on exposure to the atmospheric DBD plasma. After allylamine plasma polymerization and grafting of spacers, the peel strength was usually higher than 1500 N/m and the composites could not be peeled. KW - Polypropylene KW - Low-pressure RF oxygen plasma KW - Dielectric barrier discharge (DBD) KW - Pulsed plasma polymerization KW - Surface wettability KW - Peel strength PY - 2011 DO - https://doi.org/10.1163/016942410X511132 SN - 0169-4243 SN - 1568-5616 VL - 25 IS - 8 SP - 799 EP - 818 PB - VNU Science Press CY - Utrecht AN - OPUS4-23990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Glass Transition of Thin Poly(bisphenol A carbonate) Films Studied by Dielectric Spectroscopy T2 - DPG-Spring-Meeting 2011 T2 - DPG-Spring-Meeting 2011 CY - Dresden, Germany DA - 2011-03-13 PY - 2011 AN - OPUS4-23363 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric Glass Transition of Thin Poly(bisphenol A carbonate) Films T2 - DPG-Spring-Meeting 2011 T2 - DPG-Spring-Meeting 2011 CY - Dresden, Germany DA - 2011-03-13 PY - 2011 AN - OPUS4-23345 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif Aly Hassan Aly A1 - Yin, Huajie A1 - Füllbrandt, Marieke A1 - Schönhals, Andreas T1 - Calorimetric evidence for a mobile surface layer in ultrathin polymeric films: poly(2-vinyl pyridine) JF - Soft matter N2 - Specific heat spectroscopy was used to study the dynamic glass transition of ultrathin poly(2-vinyl pyridine) films (thicknesses: 405–10 nm). The amplitude and the phase angle of the differential voltage were obtained as a measure of the complex heat capacity. In a traditional data analysis, the dynamic glass transition temperature Tg is estimated from the phase angle. These data showed no thickness dependency on Tg down to 22 nm (error of the measurement of ±3 K). A derivative-based method was established, evidencing a decrease in Tg with decreasing thickness up to 7 K, which can be explained by a surface layer. For ultrathin films, data showed broadening at the lower temperature side of the spectra, supporting the existence of a surface layer. Finally, temperature dependence of the heat capacity in the glassy and liquid states changes with film thickness, which can be considered as a confinement effect. PY - 2015 DO - https://doi.org/10.1039/c5sm01558h SN - 1744-683X VL - 11 IS - 40 SP - 7942 EP - 7952 PB - RSC Publ. CY - Cambridge AN - OPUS4-34605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Thermal and Dynamic Glass Transition of Ultrathin Films of Homopolymers and Their Blends T2 - 27th GCCCD Annual Conference T2 - 27th GCCCD Annual Conference CY - Jena, Germany DA - 2015-08-28 PY - 2015 AN - OPUS4-34589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorn, R. A1 - Yin, Huajie A1 - Lohstroh, W. A1 - Harrison, W. A1 - Budd, P.M. A1 - Pauw, Brian Richard A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Anomalies in the low frequency vibrational density of states for a polymer with intrinsic microporosity - the Boson peak of PIM-1 JF - Physical Chemistry Chemical Physics N2 - Polymers with intrinsic microporosity are promising candidates for the active separation layer in gas separation membranes. Here, the vibrational density of states (VDOS) for PIM-1, the prototypical polymer with intrinsic microporosity, is investigated by means of inelastic neutron scattering. The results are compared to data measured for a more conventional high-performance polyimide used in gas separation membranes (Matrimid). The measured data show the characteristic low frequency excess contribution to VDOS above the Debye sound wave level, generally known as the Boson peak in glass-forming materials. In comparison to the Boson peak of Matrimid, that of PIM-1 is shifted to lower frequencies. This shift is discussed considering the microporous, sponge-like structure of PIM-1 as providing a higher compressibility at the molecular scale than for conventional polymers. For an annealed PIM-1 sample, the Boson peak shifts to higher frequencies in comparison to the un-annealed sample. These changes in the VDOS of the annealed PIM-1 sample are related to changes in the microporous structure as confirmed by X-ray scattering. KW - Polymers KW - Boson peak KW - Neutron scattering KW - Physical aging KW - Polymer of intrinsic microporosity PY - 2018 DO - https://doi.org/10.1039/C7CP07141H SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 3 SP - 1355 EP - 1363 PB - The Royal Society of Chemistry AN - OPUS4-43808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Harrison, W. A1 - Budd, P. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - First clear cut experimental evidence for a glass transition in a polymer with intrinsic microporosity: PIM-1 JF - Journal Physical Chemistry Letters N2 - Polymers with intrinsic microporosity (PIMs) represent a novel, innovative class of materials with great potential in various applications from high-performance gas separation membranes to electronic devices. Here for the first time, for PIM-1, as the archetypal PIM, fast scanning calorimetry provides definitive evidence for a glass transition (Tg=715 K, heating rate 3·10^4 K/s) by decoupling the time-scales responsible for glass transition and decomposition. As the rigid molecular structure of PIM-1 prevents any conformational changes, small-scale bend and flex fluctuations must be considered the origin of its glass transition. This result has strong implications for the fundamental understanding of the glass transition and for the physical aging of PIMs and other complex polymers, both topical problems of materials science. KW - Polymers with intrinsic microporosity KW - Fast Scanning Calorimetry PY - 2018 DO - https://doi.org/10.1021/acs.jpclett.8b00422 SN - 1948-7185 VL - 9 IS - 8 SP - 2003 EP - 2008 PB - ACS AN - OPUS4-44683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Madkour, Sherif Aly Hassan Aly A1 - Schönhals, Andreas T1 - Unambiguous evidence for a highly mobile surface layer in ultrathin polymer films by specific heat spectroscopy on blends JF - Macromolecules N2 - Despite the decade long controversial discussion on the effect of nanometer confinement on the glass transition temperature (Tg) of ultrathin polymer films, there is still no consistent picture. Here, the dynamic calorimetric glass transition of ultrathin films of a blend, which is miscible in the bulk, is directly investigated by specific heat spectroscopy. By a self-assembling process, a nanometer thick surface layer with a higher molecular mobility is formed at the polymer/air interface. By measuring the dynamic calorimetric Tg in dependence on the film thickness, it was shown that the Tg of the whole film was strongly influenced by that nanometer thick surface layer, with a lower Tg. Since the observed thickness dependence of the dynamic Tg is similar to the thickness dependence of the Tg for thin films of homopolymers, it is concluded that also for homopolymer a highly mobile surface layer is relevant for the widely observed Tg depression. PY - 2015 DO - https://doi.org/10.1021/acs.macromol.5b01259 SN - 0024-9297 SN - 1520-5835 VL - 48 IS - 14 SP - 4936 EP - 4941 PB - American Chemical Society CY - Washington, DC AN - OPUS4-33841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - B, Yang A1 - Chua, Y. Z. A1 - Szymoniak, Paulina A1 - Carta, M A1 - Malpass-Evans, R A1 - McKeown, N A1 - Harrison, W A1 - Budd, P A1 - Schick, C A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Effect of backbone rigidity on the glass transition of polymers of in-trinsic microporosity probed by fast scanning calorimetry JF - ACS Macro letters N2 - Polymers of Intrinsic Microporosity (PIMs) of high performance have developed as materials with a wide application range in gas separation and other energy-related fields. Further optimization and long-term behavior of devices with PIMs require an understanding of the structure-property relationships including physical aging. In this context the glass transi-tion plays a central role, but with conventional thermal analysis a glass transition is usually not detectable for PIMs be-fore their thermal decomposition. Fast scanning calorimetry provides evidence of the glass transition for a series of PIMs, as the time scales responsible for thermal degradation and for the glass transition are decoupled by employing ultrafast heating rates of tens of thousands K s-1. The investigated PIMs were chosen considering the chain rigidity. The estimated glass transition temperatures follow the order of the rigidity of the backbone of the PIMs. KW - Polymers of intrinsic microporosity KW - Fast scanning calormetry PY - 2019 DO - https://doi.org/10.1021/acsmacrolett.9b00482 SN - 2161-1653 VL - 8 IS - 8 SP - 1022 EP - 1028 PB - ACS Publications AN - OPUS4-48617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Konnertz, N. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Mobility and Physical aging of SuperGlassy Polymers for Gas Separation Membranes as revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a cost- and energy efficient solution for gas separation. Recently superglassy polymers with high free volume outperform many conventional dense polymers in terms of gas permeability and selectivity. However, such materials with a high fractional free volume (FFV) are prone to pronounced physical aging. The initial microporous structures approach a denser state via local chain rearrangements which results in a dramatic reduction in the gas permeability. For the first time, dielectric spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate the molecular mobility and physical aging of two representative groups of superglassy polymers: PIMs (PIM-1 & PIM-EA-TB) and Si-containing polynobornenes (PTCNSi1 & PTCNSi2). The dielectric behavior of the solution-cast polymeric films was measured by isothermal frequency scans during the different heating cycles in a broad temperature range. Structural relaxation of the films was observed during the measurements. Multiple dielectric processes following Arrhenius behavior were observed for all the investigated polymers. Moreover, they all showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature especially for PIMs is explained in terms of the formation of local intermolecular agglomerated structures due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - 8th International Conference on Advanced Fibers and Polymer Materials CY - Shanghai, China DA - 08.10.2017 KW - Physical aging KW - Membranes KW - Broadband dielectric spectroscopy KW - Gas separation KW - Molecular mobility PY - 2017 AN - OPUS4-42877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Physical Aging of a Highly Permeable Glassy Polynorbornene as Revealed by Dielectric Spectroscopy JF - ACS Macro Letters N2 - Polymeric membranes represent a cost- and energy efficient solution for gas separation. Recently superglassy polymers with high free volume outperform many conventional dense polymers in terms of gas permeability and selectivity. However, such polymers are prone to pronounced physical aging, resulting in a dramatic reduction in the gas permeability. Molecular mobility of polymer segments plays an important role in the physical aging and the gas transport performance of polymeric membranes. Molecular mobility and physical aging of a representative superglassy polynorbornene with very high gas permeability, PTCNSi2g, was monitored by using dielectric spectroscopy with state-of-the-art high-resolution analyzers. This work helps to shed some light on the structure−property relationship of superglassy polymers on a molecular level and to provide practical “design rules” for the development of high performance polymers for gas separation. KW - Molecular mobility KW - Gas separation membrane KW - Broadband dielectric spectroscopy KW - Polymer KW - Physical ageing PY - 2017 DO - https://doi.org/10.1021/acsmacrolett.7b00456 SN - 2161-1653 VL - 6 IS - 8 SP - 813 EP - 818 PB - ACS CY - Washington DC, USA AN - OPUS4-41354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Thermal and dynamic glass transition of ultrathin films of homopolymers and a miscible polymer blend N2 - Despite the decade long controversial discussion on the effect of nanometer confinement on the glass transition temperature (Tg) of ultrathin polymer films, there is still no consistent picture. Here, the dynamic calorimetric glass transition of ultrathin films of a blend, which is miscible in the bulk, is directly investigated by specific heat spectroscopy. By a self-assembling process, a nanometer thick surface layer with a higher molecular mobility is formed at the polymer/air interface. By measuring the dynamic calorimetric Tg in dependence on the film thickness, it was shown that the Tg of the whole film was strongly influenced by that nanometer thick surface layer, with a lower Tg. Since the observed thickness dependence of the dynamic Tg is similar to the thickness dependence of the Tg for thin films of homopolymers, it is concluded that also for homopolymer a highly mobile surface layer is relevant for the widely observed Tg depression. T2 - International Young Scientists Forum on Materials Science and Engineering CY - Shanghai, China DA - 01.06.2017 KW - Glass transition KW - Ultrathin polymer films KW - Specific heat spectroscopy PY - 2017 AN - OPUS4-40809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Konnertz, N. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular mobility of super glassy polymers for gas separation membranes investigated by dielectric spectroscopy N2 - Super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP) or polymers with intrinsic microporosity (PIMs) play an important role in the current development of membrane materials for gas separation because of their high permeability and selectivity. Unfortunately, such materials which have a high fractional free volume (FFV) are prone to pronounced physical aging. The initial microporous structures approach a more dense state via local chain rearrangements which results in a dramatic reduction in the gas permeability. For the first time, broadband dielectric spectroscopy was employed to investigate the molecular dynamics of two representative groups of super glassy polymers: PIMs (PIM-1 & PIM-EA-TB) and Si-containing polynobornenes (PTCNSi1 & PTCNSi2). The dielectric behavior of the solution-cast polymeric films was measured by isothermal frequency scans during the different heating cycles in a broad temperature range. Structural relaxation of the films was observed during the measurements. Molecular relaxation processes following Arrhenius behavior with unusually high activation energies were observed for all the investigated polymers. The PIMs showed furthermore a significant conductivity in the glassy state which is explained with the formation of local intermolecular agglomerated structures due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - 8th International Discussion Meeting on Relaxations in Complex Systems CY - Wisla, Poland DA - 23.07.2017 KW - Broadband dielectric spectroscopy KW - Molecular mobility KW - Physical aging KW - Membranes KW - Gas separation PY - 2017 AN - OPUS4-41162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Charge Transport in Polymers of Intrinsic Microporosity (PIMs) as Revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a low-cost, energy efficient solution for gas separation. Recently polymers of intrinsic microporosity (PIMs) have emerged as prestigious membrane materials featuring a large concentration of pores smaller than 1 nm, a BET surface area larger than 700 m2/g and high gas permeability and selectivity. Unusual chain structure combining rigid segments with sites of contortion gives rise to the intrinsic microporosity. However, this novel class of glassy polymers are prone to pronounced physical aging. The initial microporous structures approach a denser state via local small scale fluctuataions, leading to a dramatic reduction in the gas permeabilities. For the first time, dielectric relaxation spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate three representative PIMs with a systematic change in chain rigidity: PIM-EA-TB 〉 PIM-1 〉 PIM-MDPH-TB. The molecular mobility, the charge transport and their response upon heating (aging) in the polymers were measured in a broad temperature range through isothermal frequency scans during different heating / cooling cycles. Multiple dielectric processes following Arrhenius behavior were observed for the investigated polymers. Local fluctuations, Maxwell-Wagner-Sillars (MWS) polarization and structural relaxation phenomena were discussed and attempted to be correlated with the structural features of PIMs. Moreover, all PIMs showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature far below the glass transition temperature of PIMs is explained in terms of the loosely packed microporous structure and the formation of local intermolecular agglomerates due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Dielectric spectroscopy KW - Polymeric membrane KW - Polymers of intrinsic microporosity PY - 2019 AN - OPUS4-47805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Probing the glass transition temperature of polymers of intrinsic microporosity (PIMs) by fast scanning calorimeter N2 - High performance polymers of intrinsic microporosity (PIMs) have emerged as novel materials with broad applications from gas separation to electronic devices. Sufficiently rigid, even contorted polymer chains show only limited molecular mobility, therefore undergo inefficient packing and give rise to intrinsic microporosity with pore size generally smaller than 1 nm and BET surface areas larger than 700 m2/g. Further performance optimization and long-term stability of devices incorporating PIMs rely on our understanding of structure-processing-property relationships and physical aging, in which glass transition plays a key role. Up to now no glass transition temperature (Tg) of PIMs could be detected with conventional thermal analysis techniques before degradation. Decoupling the time scales responsible for the glass transition and the thermal decomposition is a reliable strategy to overcome this. This was achieved by employing fast scanning calorimetry (FSC) based on a chip sensor, which is capable to heat and cool a small sample (ng-range) with ultrafast rates of several ten thousand K/s. FSC provides definitive evidence of glass transition of a series of PIMs with a special consideration on the chain rigidity. The determined glass transition temperature of these PIMs follows the order of the rigidity of their backbone structures. FSC provides the first clear-cut experimental evidence of the glass transition of PIM-EA-TB with a Tg of 663 K, PIM-1 of 644 K and PIM-DMDPH-TB of 630 K at a heating rate of 1Χ104 K/s. Local fluctuations are featured in glass transition of highly rigid PIMs. As conformational changes are prevented by the backbone rigidity, the glass transition must rather be assigned to local small scale fluctuations. T2 - American Chemical Society (ACS) National Meeting & Expo 2019 CY - Orlando, FL, USA DA - 31.03.2019 KW - Glass transition KW - Polymers of intrinsic microporosity KW - Fast scanning calorimeter PY - 2019 AN - OPUS4-47806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Pauw, Brian Richard A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Influence of Trimethylsilyl Side Groups on the Molecular Mobility and Charge Transport in Highly Permeable Glassy Polynorbornenes JF - ACS Applied Polymer Materials N2 - Superglassy polymers with a large fractional free volume have emerged as novel materials with a broad range of applications, especially in the field of membrane separations. Highly permeable addition-type substituted polynorbornenes with high thermal resistance and chemical stability are among the most promising materials. The major obstacle for extending the practical membrane application is their strong tendency to physical aging, leading to a partial decline in their superior transport performance over time. In the present study, broadband dielectric spectroscopy with complementary X-ray scattering techniques were employed to reveal changes in microporous structure, molecular mobility, and conductivity by systematic comparison of two polynorbornenes with different numbers of trimethylsilyl side groups. Their response upon heating (aging) was compared in terms of structure, dynamics, and charge transport behavior. Furthermore, a detailed analysis of the observed Maxwell−Wagner−Sillars polarization at internal interfaces provides unique information about the microporous structure in the solid films. The knowledge obtained from the experiments will guide and unlock potential in synthesizing addition-type polynorbornenes with versatile properties. KW - Dielectric spectroscopy KW - Molecular mobility KW - Electrical conductivity KW - Gas separation membranes PY - 2019 DO - https://doi.org/10.1021/acsapm.9b00092 SN - 2637-6105 VL - 1 IS - 4 SP - 844 EP - 855 PB - ACS CY - Washington DC AN - OPUS4-47838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Wood Flour/Polypropylene Composites Using Different Flame Retardants T2 - Kolloquiumsvortrag, Insitute of Chemistry, the Chinese Academy of Sciences T2 - Kolloquiumsvortrag, Insitute of Chemistry, the Chinese Academy of Sciences CY - Beijing, China DA - 2014-11-26 PY - 2014 AN - OPUS4-32358 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Improvement on the Flame Retardancy of Wood-Plastic Composites (WPCs) Using Different Flame Retardants T2 - Kolloquiumsvortrag, Sichuan University T2 - Kolloquiumsvortrag, Sichuan University CY - Chendu, China DA - 2014-11-27 PY - 2014 AN - OPUS4-32359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Sypaseuth, Fanni D. A1 - Schubert, M. A1 - Schoch, R. A1 - Bastian, M. A1 - Schartel, Bernhard T1 - Routes to halogen‐free flame‐retardant polypropylene wood plastic composites JF - Polymers for Advanced Technologies N2 - Developing halogen‐free flame retardants with reasonably high efficiency, which thus function at limited loadings in polypropylene‐based wood/plastic composites (WPC), is still a challenge. Cost‐effective flame‐retarded WPC have been identified as a way to open the door to an interesting, broader spectrum of application in the building and transportation sectors. This work imparts a systematic comprehensive understanding and assessment of different basic routes to halogen‐free flame‐retarded WPC, taking into account economic and environmental considerations. Cheap, halogen‐free single‐component flame retardants and their multicomponent systems are investigated at reasonable filling grades of 20 wt%. The basic routes of promising synergistic multicomponent systems are discussed, and their potential and Limits assessed. Optimizing the consistency of fire residue; closing the surface of inorganic‐organic residual layers; the thermal stabilization and design of the residue, eg, synergistic combination of ammonium polyphosphate and expandable graphite; and the combination of different flame‐retardant mechanisms, eg, intumescence and flame inhibition, are proposed as promising routes to boost the flame‐retardant efficiency. KW - Flammability KW - Halogen‐free KW - Multicomponent systems KW - Polypropylene KW - Wood plastic composite (WPC) PY - 2019 DO - https://doi.org/10.1002/pat.4458 SN - 1099-1581 SN - 1042-7147 VL - 30 IS - 1 SP - 187 EP - 202 PB - Wiley AN - OPUS4-46909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Schubert, Martina A1 - Schartel, Bernhard A1 - Lang, M. A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Heidemeyer, P. A1 - Bastian, Martin T1 - Wirkungsweise von halogenfreien Flammschutzmitteln in WPC N2 - Das Ziel des Forschungsvorhabens war die Untersuchung der Wirkungsweise von halogenfreien Flammschutzmitteln in WPC. Eine große Anzahl verschiedener Flammschutzmittel wurde hinsichtlich ihrer Wirkmechanismen umfassend untersucht, um ein Verständnis für die ablaufenden Prozesse zu entwickeln. Hierbei wurden verschiedene Brandtests eingesetzt, um die Materialien bezüglich verschiedener Applikationen (E&E, Transportwesen, Bauwesen) zu beleuchten. Die verschiedenen Untersuchungen liefern aber auch ein umfassendes Bild vom Brandverhalten in den verschiedenen Eigenschaften, wie Entflammbarkeit und Brandausbreitung. Die prinzipiellen Ansätze wurden anhand von verschiedenen Flammschutzmitteln beleuchtet, ihre Pyrolyse und ihre Performance in verschiedenen Brandtests gegenübergestellt. Bei der angestrebten geringen Zusatzmenge ist durch den Zusatz eines einzigen Flammschutzmittels keine zufriedenstellende Reduktion der Brandeigenschaften zu erwarten. Multikomponentensysteme zur Steigerung der Effizienz sind angezeigt. Einige prinzipielle Kombinationsmöglichkeiten wurden für alle Hauptflammschutzmittel durchgespielt. Die teilweise deutlichen Verbesserungen zeigen Wege zur erfolgreichen Produktentwicklung auf. So konnten bei den Spritzgießcompounds Eigenschaften erzielt werden, die eine UL 94 V0 Klassifizierung ermöglichen. Ein Einsatz der im Forschungsvorhaben hergestellten Compounds als Baustoff ist aufgrund des Brandverhaltens in den baustoffspezifischen Prüfungen nicht möglich. Hier sind weitere Flammschutz-Konzepte zu erproben. Gleitmittel nehmen bei den untersuchten Extrusionscompounds keinen Einfluss auf das Brandverhalten. Haftvermittler nehmen ebenfalls keinen signifikanten Einfluss auf das untersuchte Brandverhalten, können aber zu einer veränderten Verteilung der Füllstoffe und damit zur Ausbildung einer effektiveren Schutzschicht führen. Feinere Holzpartikel schneiden bei den Brandprüfungen besser ab als grobe Holzpartikel. Bei Einsatz von grobem Holz wird eine schlechtere Rückstandsstruktur ausgebildet, was das Brandverhalten negativ beeinflusst. Der Einsatz von vorbehandeltem Holz brachte nicht die erwartete Verbesserung. Die neu konzipierte Aufbereitungsanlage auf Basis des Planetwalzenextruders konnte erfolgreich in Betrieb genommen werden. Vergleichende Versuche mit dem Doppelschneckenextruder zeigten, dass der PWE-Aufbau eine gute Alternative zur etablierten DSE-Aufbereitung darstellt. Zusätzlich wurden an Compounds vielversprechender Flammschutzansätze weitere Materialprüfungen (Biegeversuch, Schlagversuch, Wasseraufnahme) durchgeführt, um den Einfluss der FSM auf die spezifischen Eigenschaften der WPC zu beleuchten. N2 - The objective of the research project was to investigate the effect of halogen-free flame retardants in WPC. A large number of different flame retardants was thoroughly examined regarding their effect mechanisms to develop an understanding for the processes taking place. Different fire tests were used to examine the materials with respect to the different applications (E&E, transportation, construction). Additionally, the different investigations provide a comprehensive picture of the fire behavior regarding the different properties, such as flammability and fire spread. The fundamental approaches were examined by means of different flame retardants and their pyrolysis and performance were compared in different fire tests. A satisfactory reduction of the fire properties by adding only one flame retardant cannot be expected with the intended low added amount. Multi-component systems to increase the efficiency are indicated. Some basic combination options were tried out for all main flame retardants. The partially considerable improvements illustrate ways for successful product development. This way, properties could be achieved in injection molding compounds, which allow for a UL 94 V0 classification. It is not possible to use the compounds introduced in the research project as building material due to the fire behavior in the building material specific tests. Further flame protection concepts need to be tested in this area. Slip agents do not have an influence on the fire behavior of the examined extrusion compounds. Adhesion promoters also do not have a significant influence on the examined fire behavior but can lead to a change in the distribution of the fillers and thus to the formation of a more effective protective layer. Finer wood particles performed better in the fire tests than coarse wood particles. When using coarse wood, an inferior residual structure is formed, which has an adverse effect on the fire behavior. The use of pretreated wood fibers did not bring the expected improvement. The newly conceived processing technique based on a planetary roller extruder (PRE) was successfully put into operation. Comparative tests with twin-screw extruders (TSE) showed that the PRE configuration is a good alternative to the established TSE processing. Additionally, further material testing (bending test, impact test, water absorption) was performed on promising flame retarded compounds to examine the influence of the fire retardants on the specific properties of the WPC. KW - Wood plastic composite KW - Halogen free KW - Flame retardancy PY - 2016 SN - 978-3-8440-4645-8 SN - 2364-754X SP - 1 EP - 88 PB - Shaker Verlag CY - Aachen AN - OPUS4-37482 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Farooq, Muhammad A1 - Kerling, S. A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Huth, Christian A1 - Okolieocha, C. A1 - Altstädt, V. A1 - Schönhals, Andreas A1 - Schartel, Bernhard T1 - Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties JF - Journal of polymer research N2 - The influence of distinct carbon based nanofillers: expanded graphite (EG), conducting carbon black (CB), thermally reduced graphene oxide (TRGO) and multi-walled carbon nanotubes (CNT) on the thermal, dielectric, electrical and rheological properties of polybutylene terephthalate (PBT) was examined. The glass transition temperature (Tg) of PBT nanocomposites is independent of the filler type and content. The carbon particles act as nucleation agents and significantly affect the melting temperature (Tm), the crystallization temperature (Tc) and the degree of crystallinity of PBT composites. PBT composites with EG show insulating behaviour over the tested concentration range of 0.5 to 2 wt.-% and hardly changed rheological behaviour. CB, CNT and TRGO induce electrical conductivity to their particular PBT composites by forming a conducting particle network within the polymer matrix. CNT reached the percolation threshold at the lowest concentration (<0.5 wt.-%), followed by TRGO (<1 wt.-%) and CB (<2 wt.-%). With the formation of a particle network, the flow behaviour of composites with CB, CNT and TRGO is affected, i.e., a flow limit occurs and the melt viscosity increases. The degree of influence of the carbon nanofillers on the rheological properties of PBT composites follows the same order as for electrical conductivity. Electrical and rheological results suggest an influence attributed to the particle dispersion, which is proposed to follow the order of EG<< CB