TY - GEN A1 - Yin, Huajie A1 - Madkour, Sherif Aly Hassan Aly A1 - Schönhals, Andreas ED - Kremer, F. T1 - Glass transition of ultra-thin polymer films: A combination of relaxation spectroscopy with surface analytics T2 - Dynamics in geometrical confinement N2 - The glass transition behavior of ultra-thin supported polymer films is discussed controversially in the literature for around 20 years. Substantial efforts have been archived to understand it. In this contribution, a combination of methods sensitive to bulk properties of a system, like dielectric or specific heat spectroscopy with surface analytics, for instance, atomic force microscopy (AFM), contact angle measurements, and X-ray photoelectron spectroscopy (XPS) were employed to study the glass transition of ultra-thin supported films. All investigations were carried out on identically prepared and treated samples. Different systems with different complexities going from more or less flexible homopolymers over rigid main chain macromolecules to polymer blends have been studied. For the investigated flexible macromolecules, the dynamic glass transition temperature estimated within the frame of the linear response approach is independent of the film thickness down to several nanometers and identical to the bulk value. For polystyrene it was found the thermal glass transition temperatures can depend on the film thickness. This different behavior is not well understood till now and needs further experimental clarification. For the investigated main chain polymers polycarbonate and polysulfone. Dynamic and thermal glass transition temperature estimated from the dielectric measurements increases with decreasing film thickness. This is discussed in the frame of a strong interaction of the polymer segments with the surface of the substrate. In general for homopolymers, the interaction energy of the polymer segments with the substrate surface cannot be considered as the only parameter, which is responsible for the change in the thermal glass transition with the film thickness. For the investigated miscible blend system of polystyrene/poly(vinyl methyl ether) at a composition of 50/50 wt-% a decrease of the dynamic glass transition temperature with decreasing film thickness is found. This is explained by the formation of a poly(vinyl methyl ether)-rich surface layer with a higher molecular mobility. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Photoelectron spectroscopy KW - Contact angle measurements KW - Polystyrene KW - Poly(vinyl methyl ether) KW - Poly(2-vinylpyridine) KW - Polycarbonate KW - Polysulfone KW - Polystyrene/ Poly(vinyl methyl ether) blend PY - 2014 SN - 978-3-319-06099-6 SN - 978-3-319-06100-9 DO - https://doi.org/10.1007/978-3-319-06100-9_2 SN - 2190-930X SN - 2190-9318 SP - 17 EP - 59 PB - Springer AN - OPUS4-31078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Konnertz, N. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular Mobility and Physical aging of SuperGlassy Polymers for Gas Separation Membranes as revealed by Dielectric Spectroscopy N2 - Polymeric membranes represent a cost- and energy efficient solution for gas separation. Recently superglassy polymers with high free volume outperform many conventional dense polymers in terms of gas permeability and selectivity. However, such materials with a high fractional free volume (FFV) are prone to pronounced physical aging. The initial microporous structures approach a denser state via local chain rearrangements which results in a dramatic reduction in the gas permeability. For the first time, dielectric spectroscopy with state-of-the-art high-resolution analyzers was employed to investigate the molecular mobility and physical aging of two representative groups of superglassy polymers: PIMs (PIM-1 & PIM-EA-TB) and Si-containing polynobornenes (PTCNSi1 & PTCNSi2). The dielectric behavior of the solution-cast polymeric films was measured by isothermal frequency scans during the different heating cycles in a broad temperature range. Structural relaxation of the films was observed during the measurements. Multiple dielectric processes following Arrhenius behavior were observed for all the investigated polymers. Moreover, they all showed conductivity in the glassy state. The significant increase in the conductivity with increasing temperature especially for PIMs is explained in terms of the formation of local intermolecular agglomerated structures due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - 8th International Conference on Advanced Fibers and Polymer Materials CY - Shanghai, China DA - 08.10.2017 KW - Physical aging KW - Membranes KW - Broadband dielectric spectroscopy KW - Gas separation KW - Molecular mobility PY - 2017 AN - OPUS4-42877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chapala, P. A1 - Bermeshev, M. A1 - Schönhals, Andreas A1 - Böhning, Martin T1 - Molecular Mobility and Physical Aging of a Highly Permeable Glassy Polynorbornene as Revealed by Dielectric Spectroscopy JF - ACS Macro Letters N2 - Polymeric membranes represent a cost- and energy efficient solution for gas separation. Recently superglassy polymers with high free volume outperform many conventional dense polymers in terms of gas permeability and selectivity. However, such polymers are prone to pronounced physical aging, resulting in a dramatic reduction in the gas permeability. Molecular mobility of polymer segments plays an important role in the physical aging and the gas transport performance of polymeric membranes. Molecular mobility and physical aging of a representative superglassy polynorbornene with very high gas permeability, PTCNSi2g, was monitored by using dielectric spectroscopy with state-of-the-art high-resolution analyzers. This work helps to shed some light on the structure−property relationship of superglassy polymers on a molecular level and to provide practical “design rules” for the development of high performance polymers for gas separation. KW - Molecular mobility KW - Gas separation membrane KW - Broadband dielectric spectroscopy KW - Polymer KW - Physical ageing PY - 2017 DO - https://doi.org/10.1021/acsmacrolett.7b00456 SN - 2161-1653 VL - 6 IS - 8 SP - 813 EP - 818 PB - ACS CY - Washington DC, USA AN - OPUS4-41354 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Konnertz, N. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Molecular mobility of super glassy polymers for gas separation membranes investigated by dielectric spectroscopy N2 - Super glassy polymers such as poly(trimethylsilylpropyne) (PTMSP) or polymers with intrinsic microporosity (PIMs) play an important role in the current development of membrane materials for gas separation because of their high permeability and selectivity. Unfortunately, such materials which have a high fractional free volume (FFV) are prone to pronounced physical aging. The initial microporous structures approach a more dense state via local chain rearrangements which results in a dramatic reduction in the gas permeability. For the first time, broadband dielectric spectroscopy was employed to investigate the molecular dynamics of two representative groups of super glassy polymers: PIMs (PIM-1 & PIM-EA-TB) and Si-containing polynobornenes (PTCNSi1 & PTCNSi2). The dielectric behavior of the solution-cast polymeric films was measured by isothermal frequency scans during the different heating cycles in a broad temperature range. Structural relaxation of the films was observed during the measurements. Molecular relaxation processes following Arrhenius behavior with unusually high activation energies were observed for all the investigated polymers. The PIMs showed furthermore a significant conductivity in the glassy state which is explained with the formation of local intermolecular agglomerated structures due to interaction of π-electrons in aromatic moieties of the polymer backbone. T2 - 8th International Discussion Meeting on Relaxations in Complex Systems CY - Wisla, Poland DA - 23.07.2017 KW - Broadband dielectric spectroscopy KW - Molecular mobility KW - Physical aging KW - Membranes KW - Gas separation PY - 2017 AN - OPUS4-41162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -