TY - THES A1 - Yin, Huajie T1 - Thermal and Dynamic Glass Transition in Ultrathin Films of Homopolymers and a Miscible Polymer Blend N2 - Dünne Polymerschichten im nanoskaligen Bereich finden heute in vielen Gebieten z. B. für Beschichtungen, als Membranen, für Sensoren oder in diversen elektronischen Geräten ihre Anwendung. Wissenschaftliche Studien belegen, dass viele physikalische Eigenschaften (Glasübergang, Kristallisation, Entnetzung, Alterung etc.) von ultradünnen Polymerschichten (Polymere in 1-dimensionaler räumlicher Begrenzung) stark von dem Verhalten im Volumen abweichen. Da die Eigenschaften eng mit der Verwendung und Funktionalität von Polymeren verknüpft sind, müssen die beobachteten Unterschiede in nanoskaliger Begrenzung genauer untersucht werden. Die vorliegende Arbeit beschäftigt sich damit, wie die Oberfläche (Luft-Polymer- Grenzfläche), die Polymer-Substrat-Wechselwirkung und die Schichtdicke die Glasübergangstemperatur (Tg) und die segmentale Dynamik (α-Relaxationsprozess) in Homopolymeren und mischbaren Polymer-Blends in dünnen Schichten beeinflussen. Komplementäre experimentelle Methoden, wie Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Breitbandige Dielektrische Spektroskopie (BDS) und Spezifische Wärme Spektroskopie (SHS) wurden angewendet, um den Glasübergang der dünnen Polymerschichten aus der thermodynamischen und kinetischen Sicht zu untersuchen. In dieser Arbeit werden die Glasübergangstemperatur und die segmentale Dynamik von ultradünnen Polymerschichten in Abhängigkeit der Schichtdicke untersucht. Für ultradünne Polycarbonatschichten (PC-Schichten, dünner als 20 nm) zwischen zwei Aluminiumschichten wurde ein Anstieg von der Glasübergangstemperatur (Tg) als auch der Vogel Temperatur (T0) mit abnehmender Schichtdicke beobachtet. BDS-Messungen zeigten einen Anstieg der segmentalen Relaxationszeit für ultradünne PC-Schichten. In den SHS-Messungen für die Siliciumdioxid (10-192 nm) basierten PC-Schichten konnte unter Einbeziehung des experimentellen Fehlers keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke festgestellt werden. Diese Eigenschaften werden im Hinblick auf die Geometrie der dünnen Schichten und die relevanten Wechselwirkungsenergien zwischen dem Polymer und dem Substrat diskutiert. Im Falle von dünnen Polystyrolschichten (PS-Schichten) mit hohem Molekulargewicht (Mw) sinkt die Glasübergangstemperatur Tg mit Verringerung der Schichtdicke. Die segmentale Dynamik hängt jedoch nicht von der Stärke der Schichtdicke ab. Darüber hinaus werden für dünne PS-Schichten die Auswirkungen des Molekulargewichts Mw und Temperbedingungen auf Tg und die segmentale Dynamik untersucht. Im Bereich der dünnen Polyvinylmethyletherschichten (PVME-Schichten) konnte mittels SHS keine Abhängigkeit der segmentalen Dynamik von der Schichtdicke aufgezeigt werden. Der letzte Teil dieser Arbeit beschäftigt sich mit dünnen Schichten mischbarer Polymer-Blends mit einem Gewichtsteil von 50/50 PS/PVME. Es wurde eine Beschleunigung der segmentalen Dynamik mit geringerer Schichtdicke beobachtet. Dieses Phänomen wird mit der Oberflächenanreicherung von PVME, welches eine niedrigere Oberflächenenergie als PS aufweist, in das Polymer-Blend-System erklärt. Die segmentale Dynamik der mit PVME angereicherten freien Oberflächenschicht ist schneller als die Volumen- Dynamik. Durch die Verringerung der Schichtdicke werden diese freien Oberflächeneffekte so dominant, dass sie die gesamte segmentale Dynamik der Schichten von SHS (differenzieller AC Chip- basierten Kalorimetrie) erkennbare beeinflussen. Mittels Röntgenphotoelektronenspektroskopie (XPS) konnte die Oberflächenzusammensetzung des Films ermittelt und so die Phänomene der Oberflächenanreicherung verifiziert werden. N2 - Nowadays nanoscale thin polymer films are widely used in many fields like coatings, membranes, sensors, electronic devices and so on. Meanwhile, a lot of research work has evidenced the fact that many physical properties (glass transition, crystallization, dewetting, physical aging, etc.) of ultrathin polymer films show strong deviations from their bulk behavior. Since the aforementioned properties of polymer are closely related to their application and functionality, the discrepancies motivated us to obtain a more complete understanding of how nanoscale confinement affects the physical properties of polymer. The research work presented in this thesis is focused on understanding how the free surface (air- polymer interface), the polymer-substrate interface and the film thickness influence the glass transition temperature (Tg) and the related segmental dynamics (α-relaxation process) in both homopolymers and miscible polymer blends of thin films. Complementary experimental techniques including Differential Scanning Calorimetry (DSC), Capacitive Scanning Dilatometry (CSD), Broadband Dielectric Spectroscopy (BDS) and Specific Heat Spectroscopy (SHS) have been used to investigate the glass transition of thin polymer films from both the thermodynamic and the kinetic point of view. In the thesis the film thickness dependence of Tg and segmental dynamics of different thin polymer films have been investigated. For ultrathin polycarbonate (PC) films capped between two aluminum (Al) layers an increase of both the glass transition temperature (Tg) and Vogel temperature (T0) with decreasing film thickness (d) was observed when the thickness became lower than 20 nm. The segmental relaxation time at a fixed temperature was found to increase for the ultrathin PC film of 19 nm measured by BDS, whereas no thickness dependency of the segmental dynamics was detected within the experimental error limit for the PC films supported on silicon dioxide (SiO2) (10-192 nm) in the SHS measurements. These properties are discussed in terms of the thin film geometry and the relevant interfacial interaction between the polymer and the substrate. In the case of thin polystyrene (PS) films with high molecular weight (Mw), Tg is decreasing with reducing film thickness while the segmental dynamics is independent of film thickness. Moreover, the effects of the Mw and the annealing protocol performed on thin PS films on their Tg and segmental dynamics is studied. In the part of thin poly(vinyl methyl ether) (PVME) films, no thickness dependence of the segmental dynamics was observed in the SHS measurements. The last part of the thesis was concentrated on the thin films of a miscible polymer blend, PS/PVME with the weight fraction of 50/50. It was observed that the segmental dynamics became faster with reducing the film thickness. This phenomenon is explained in terms of surface enrichment of PVME in the polymer blend system where PVME has a lower surface energy than PS. The segmental dynamics of the PVME-enriched free surface layer are faster than the bulk dynamics. Such free surface effect becomes so predominant with reducing the film thickness that it affects the segmental dynamics of the whole films detected by SHS using differential AC chip-based calorimetry. X-ray photoelectron spectroscopy (XPS) was used to probe the surface composition in order to confirm such surface enrichment phenomena. T3 - BAM Dissertationsreihe - 117 KW - glass transition KW - specific heat spectroscopy KW - ultrathin film KW - polymer KW - broadband dielectric spectroscopy PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-418 SN - 978-3-9816380-5-9 SN - 1613-4249 VL - 117 SP - 1 EP - 133 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-41 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Cangialosi, D. A1 - Schönhals, Andreas T1 - Glass transition and segmental dynamics in thin supported polystyrene films: The role of molecular weight and annealing N2 - Broadband dielectric spectroscopy (BDS), specific heat spectroscopy (HCS) and capacitive scanning dilatometry (CSD) are used to study the glass transition and segmental dynamics in thin supported polystyrene (PS) films. Different molecular weights (Mw = 50 kg/mol, Mw = 260 kg/mol, Mw = 1408 kg/mol) and annealing protocols are employed in the study. The segmental dynamics is independent of the film thickness for each Mw in the temperature window of the dielectric measurement. The thermal glass transition temperature, Tg, measured by CSD depends on the film thickness and shows also a dependence on Mw. These observations are explained in terms of the formation of irreversibly adsorbed layer due to chain adsorption on the Al substrates during annealing. KW - Thin polystyrene films KW - Glass transition KW - Segmental dynamics PY - 2013 U6 - https://doi.org/10.1016/j.tca.2013.05.034 SN - 0040-6031 SN - 1872-762X VL - 566 SP - 186 EP - 192 PB - Elsevier CY - Amsterdam AN - OPUS4-28736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Glass Transition of Ultrathin Films of Homopolymers and Polymer Blend Investigated by Dielectric Relaxation and Specific Heat Spectroscopy T2 - Kolloqiumsvortrag, Helmholtz-Zentrum Geesthacht CY - Geesthacht, Germany DA - 2013-06-21 PY - 2013 AN - OPUS4-28705 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Molecular Mobility and Glass Transition of Thin Poly(Bisphenol A Carbonate)Films T2 - DPG Frühjahrstagung CY - Berlin, Germany DA - 2012-03-25 PY - 2012 AN - OPUS4-25707 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Molecular Dynamics of Miscible Polymer Blend Thin Films T2 - DPG Frühjahrstagung CY - Berlin, Germany DA - 2012-03-25 PY - 2012 AN - OPUS4-25708 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Glass transition and segmental dynamics of ultrathin poly(bisphenol A carbonate) films N2 - Broadband dielectric spectroscopy (BDS), capacitive scanning dilatometry (CSD) and differential ac-chip calorimetry (DACC) were used to examine the glass transition and segmental dynamics of ultrathin poly(bisphenol A carbonate) (PBAC) films. An increase of Vogel temperature (T0) as well as glass transition temperature (Tg) with decreasing film thickness was observed when the thickness is less than 20 nm. Moreover, the segmental relaxation time at a fixed temperature was found to increase for the aluminium (Al) capped PBAC films (<20 nm) in the BDS measurements, whereas in the DACC measurements no thickness dependency of the segmental dynamics was detected within the experimental error limit for the supported PBAC films (10-55 nm). These properties are discussed in terms of the thin film geometry and the relevant interfacial interaction between the polymer and the substrate. T2 - 6th International conference on times of polymers (TOP) and composites CY - Ischia, Italy DA - 2012-06-10 KW - Ultrathin film KW - Poly(bisphenol A carbonate) KW - Glass transition KW - Aluminium KW - Dielectric thin films KW - Differential scanning calorimetry KW - Permittivity KW - Polymer films PY - 2012 SN - 978-0-7354-1061-9 U6 - https://doi.org/10.1063/1.4738399 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1459 SP - 64 EP - 67 AN - OPUS4-26349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric glass transition of ultrathin poly(bisphenol A carbonate) films N2 - Specific heat spectroscopy in the frequency range from 1 Hz to 10³ Hz with a sensitivity of pJ K-1 was employed to study the glass transition behavior of ultrathin poly(bisphenol A carbonate) (PBAC) films with thicknesses ranging from 192 nm down to 10 nm. The amplitude and the phase angle of the complex differential voltage as a measure of the complex heat capacity were obtained as a function of temperature at a given frequency simultaneously. Both spectra are used to determine the dynamic glass transition temperature as a function of both the frequency and the film thickness. As the main result no thickness dependence of the dynamic glass transition temperature was observed down to a film thickness of 10 nm within the experimental uncertainty of ±3 K. The obtained data were compared with literature results in detail. PY - 2012 U6 - https://doi.org/10.1039/c2sm26174j SN - 1744-683X VL - 8 IS - 35 SP - 9132 EP - 9139 PB - RSC Publ. CY - Cambridge AN - OPUS4-26379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric glass transition of ultrathin poly(vinyl methyl ether) films N2 - Specific heat spectroscopy in the frequency range typically from 1 Hz to 1 kHz with a sensitivity of pJ/K was employed to study the glass transition behavior of ultrathin poly(vinyl methyl ether) (PVME) films with thicknesses ranging from 218 nm down to 12 nm. The amplitude and the phase angle of the complex differential voltage as a measure of the complex heat capacity were obtained as a function of temperature at a given frequency simultaneously. Both spectra are used to determine the dynamic glass transition temperature as a function of both the frequency and the film thickness. As main result no thickness dependence of the dynamic glass transition temperature was observed down to a film thickness of 12 nm within the experimental uncertainty of ±2 K. Further the width of the glass transition is independent of the film thickness which indicates that the extent of the cooperativity is essentially smaller than 12 nm. KW - Specific heat spectroscopy KW - Dynamic glass transition KW - Poly(vinyl methyl ether) PY - 2013 U6 - https://doi.org/10.1016/j.polymer.2013.02.025 SN - 0032-3861 SN - 1873-2291 VL - 54 IS - 8 SP - 2067 EP - 2070 PB - Springer CY - Berlin AN - OPUS4-28011 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric Glass Transition of Ultrathin Films of Homopolymers and Their Blends T2 - DPG Frühjahrstagung CY - Regensburg, Germany DA - 2013-03-10 PY - 2013 AN - OPUS4-28762 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric Glass Transition of Thin Miscible Polymer Blend (PVME/PS) Films T2 - 15th International Conference "Polymeric Materials" CY - Halle (Saale), Germany DA - 2012-09-12 PY - 2012 AN - OPUS4-26501 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Dielectric Study of Miscible Polymer Blend Thin Films (PS/PVME) T2 - 7th Conference of the International Dielectric Society CY - Leipzig, Germany DA - 2012-09-03 PY - 2012 AN - OPUS4-26502 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Christina A1 - Yin, Huajie A1 - Cerclier, C. A1 - Morineau, D. A1 - Wurm, Andreas A1 - Schick, C. A1 - Emmerling, Franziska A1 - Schönhals, Andreas T1 - Molecular dynamics of a discotic liquid crystal investigated by a combination of dielectric relaxation and specific heat spectroscopy N2 - The molecular dynamics of the discotic liquid crystal pyrene-1,3,6,8-tetracarboxylic tetra(2-ethylhexyl)ester is studied by dielectric relaxation and specific heat spectroscopy. Dielectric spectroscopy shows 3 processes: a β-relaxation at low temperatures and an α-relaxation in the temperature range of the mesophases followed by conductivity. The dielectric α-relaxation is assigned to a restricted glassy dynamics in the plastic crystal as well as in the liquid crystalline phase. The obtained different Vogel–Fulcher–Tammann laws (different Vogel temperatures and fragility) are related to the different restrictions of the dipolar fluctuations in the corresponding phases. By means of specific heat spectroscopy glassy dynamics is also detected in the plastic crystalline phase but with quite a different temperature dependence of the relaxation times. This is discussed considering the different probes involved and how they are influenced by the structure. In the frame of the fluctuation approach a correlation length of glassy dynamics is calculated to 0.78 nm which corresponds to the core–core distance estimated by X-ray scattering. PY - 2012 U6 - https://doi.org/10.1039/c2sm25610j SN - 1744-683X VL - 8 IS - 43 SP - 11115 EP - 11122 PB - RSC Publ. CY - Cambridge AN - OPUS4-26826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Napolitano, S. A1 - Schönhals, Andreas T1 - Molecular mobility and glass transition of thin films of poly(bisphenol A carbonate) N2 - Glass transition behavior of thin poly(bisphenol A carbonate) (PBAC) films capped between two aluminum (Al) layers is investigated by means of dielectric expansion dilatometry and dielectric relaxation spectroscopy accompanied by contact angle measurements. The thermal glass transition temperature is more or less independent of the film thickness down to 20 nm. For thickness below 20 nm, an increase of Tg is observed. Meanwhile, an increase of the relaxation time at a fixed temperature is observed for the film with the thickness of 19 nm on the basis of a careful analysis of the temperature dependence of the relaxation rates. A more detailed analysis of the relaxation map reveals that the Vogel temperature increases and the fragility decreases systematically with decreasing film thickness. These properties are discussed in terms of the formation of a boundary layer with PBAC segments adsorbed onto the Al electrode due to the strong interaction between the Al and PBAC layers (2.51 mJ/m²), which results in a reduced molecular mobility with regard to bulk PBAC behavior. As the dielectric strength is proportional to the number of segments fluctuating on the time and length scale of the dynamic glass transition, it is used as a unique probe of the deviations from bulk behavior. The temperature dependence of the penetration depth of the interfacial interactions on the structural relaxation is further quantitatively determined. The dynamic length scale of the perturbations into the chain conformations responsible for the deviation from bulk behavior is estimated to be smaller than 9 nm. PY - 2012 U6 - https://doi.org/10.1021/ma202127p SN - 0024-9297 SN - 1520-5835 VL - 45 IS - 3 SP - 1652 EP - 1662 PB - American Chemical Society CY - Washington, DC AN - OPUS4-25472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boucher, V.M. A1 - Cangialosi, D. A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Alegría, A. A1 - Colmenero, J. T1 - Tg depression and invariant segmental dynamics in polystyrene thin films N2 - We investigate the segmental dynamics and glass transition temperature (Tg) of polystyrene (PS) thin films. The former is investigated by alternating current (AC) calorimetry and dielectric spectroscopy (BDS). The Tg, underlying the equilibrium to out-of-equilibrium crossover from the supercooled liquid to the glass, is obtained by differential scanning calorimetry (DSC) and capacitive dilatometry (CD). We show that the intrinsic molecular dynamics of PS are independent of the film thickness both for the freestanding and supported films, whereas Tg decreases with film thickness from several microns down to 15 nm. This result is found for complementary methods and in a simultaneous measurement in BDS and CD. This questions the widespread notion that segmental mobility and the equilibrium to out-of-equilibrium transition are, under any experimental conditions, fully interrelated. For thin films, it appears that the molecular mobility and Tg are affected differently by geometrical factors. PY - 2012 U6 - https://doi.org/10.1039/c2sm25419k SN - 1744-683X VL - 8 IS - 19 SP - 5119 EP - 5122 PB - RSC Publ. CY - Cambridge AN - OPUS4-25805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Glass Transition and Segmental Dynamics of Ultrathin Poly(Bisphenol A Carbonate) Films T2 - 6th INTERNATIONAL CONFERENCE ON TIMES OF POLYMERS (TOP) & COMPOSITES CY - Ischia, Italy DA - 2012-06-10 PY - 2012 AN - OPUS4-26488 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Mix, Renate A1 - Yin, Huajie A1 - Friedrich, Jörg Florian ED - Gutowski, W. ED - Dodiuk, H. T1 - Aerosol-based DBD - A simple way to provide polymers with functional groups for adhesion promotion N2 - Polypropylene (PP) foils were exposed to the plasma of an atmospheric dielectric barrier discharge (DBD) in presence of different aerosols. Pure liquids such as water, ethanol, and 1/1 mixtures ethanol/water (v/v) or aqueous Solutions of acetic acid, poly(acrylic acid), poly(vinyl alcohol), and ethylene glycolpoly(vinyl alcohol) copolymer were introduced into the DBD. Surface composition, the number of functional groups per 100 C atoms, and water contact angles were correlated with the energy density of DBD plasma exposure. The wettability of the treated surfaces was investigated for different storage times. Peel strength of the thermally deposited aluminum layer to modified polymer surfaces revealed that the aerosol introduction strongly improves the adhesion between aluminum and polypropylene. KW - Aerosol-assisted DBD KW - Functional groups KW - Surface modification PY - 2013 SN - 978-90-04-20173-6 SN - 978-90-04-20174-3 SP - Chapter 8, 155 EP - 170 PB - CRC Press AN - OPUS4-30035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric glass transition of ultrathin films of homopolymers and their and their blends T2 - 7th International Discussion Meeting on Relaxations in Complex Systems CY - Barcelona, Spain DA - 2013-07-21 PY - 2013 AN - OPUS4-28844 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas A1 - Cangialosi, D. T1 - Glass transition and segmental dynamics of ultrathin polycarbonate and polystyrene films T2 - 7th International Discussion Meeting on Relaxations in Complex Systems CY - Barcelona, Spain DA - 2013-07-21 PY - 2013 AN - OPUS4-28845 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Emamverdi, Farnaz A1 - Yin, Huajie A1 - Smales, Glen Jacob A1 - Harrison, W. J. A1 - Budd, P. M. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - Polymers of intrinsic microporosity - Molecular mobility and physical aging revisited by dielectric spectroscopy and X‑ray scattering N2 - Polymers of intrinsic microporosity (PIMs) are promising candidates for the active layer in gas separation membranes due to their high permeability and reasonable permselectivity. These appealing properties originate from a microporous structure as a result of inefficient segment packing in the condensed state due to a combination of a ladder-like rigid backbone and sites of contortion. However, this class of polymers suffers from a significant decrease in the permeability with time due to physical aging, whereby typically, the permselectivity increases. The initial microporous structures approach a denser state via local rearrangements, leading to the reduction of the permeability. Hence, a detailed characterization of the molecular mobility in such materials can provide valuable information on physical aging. In this work, the dielectric behavior of PIM-1 films and their behavior upon heating (aging) were revisited by isothermal frequency scans during different heating/cooling cycles over a broad temperature range between 133 and 523 K (−140 to 250 °C). In addition, the obtained results were compared with data of samples that were annealed at ambient temperatures over different time scales. Multiple dielectric processes were observed: several relaxation processes due to local fluctuations and a Maxwell−Wagner−Sillars polarization effect related to the microporosity. The temperature dependence of the rates of all processes follows the Arrhenius law where the estimated activation energy depends on the nature of the process. The influence of the thermal history (aging) on the processes is discussed in detail. KW - Polymers of intrinsic microporosity PY - 2022 U6 - https://doi.org/10.1021/acs.macromol.2c00934 VL - 55 SP - 7340 EP - 7350 PB - American Chemical Society CY - Washington, DC AN - OPUS4-55485 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Yin, Huajie A1 - Schönhals, Andreas ED - Utracki, L.A. ED - Wilkie, C. A. T1 - Broadband dielectric spectroscopy on polymer blends N2 - In this chapter broadband dielectric spectroscopy (BDS) is employed to polymeric blend systems. In its modern form BDS can cover an extraordinary broad frequency range from 10-4 to 1012 Hz. Therefore, molecular and collective dipolar fluctuations, charge transport, and polarization effects at inner phase boundaries can be investigated in detail including its temperature dependence. In the first part of the chapter, the theoretical basics of dielectric spectroscopy are briefly introduced covering both static and dynamic aspects. This section is followed by short description of the various experimental techniques to cover this broad frequency range. To provide the knowledge to understand the dielectric behavior of polymeric blend systems, the dielectric features of amorphous homopolymers are discussed in some detail. This concerns an introduction of the most important relaxation processes observed for these polymers (localized fluctuations, segmental dynamics related to the dynamic glass transition, chain relaxation), a brief introduction to the conductivity of disordered systems as well as polarization effects at phase boundaries. Theoretical models for each process are shortly discussed. In the last paragraph the dielectric behavior of polymer blends is reviewed where special attention is paid to binary systems for the sake of simplicity. In detail the dielectric behavior of binary miscible blends is described. The two most important experimental facts like the broadening of the dielectric relaxation spectra and the dynamic heterogeneity of the segmental dynamics are addressed in depth. Appropriate theoretical approaches like the temperature-driven concentration fluctuation model and the self-concentration idea are introduced. PY - 2014 SN - 978-94-007-6063-9 SN - 978-94-007-6064-6 SN - 978-94-007-6065-3 U6 - https://doi.org/10.1007/978-94-007-6064-6_14 SP - Chapter 12, 1299 EP - 1356 PB - Springer Science + Business Media AN - OPUS4-32087 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Yin, Huajie A1 - Madkour, Sherif Aly Hassan Aly A1 - Schönhals, Andreas ED - Kremer, F. T1 - Glass transition of ultra-thin polymer films: A combination of relaxation spectroscopy with surface analytics N2 - The glass transition behavior of ultra-thin supported polymer films is discussed controversially in the literature for around 20 years. Substantial efforts have been archived to understand it. In this contribution, a combination of methods sensitive to bulk properties of a system, like dielectric or specific heat spectroscopy with surface analytics, for instance, atomic force microscopy (AFM), contact angle measurements, and X-ray photoelectron spectroscopy (XPS) were employed to study the glass transition of ultra-thin supported films. All investigations were carried out on identically prepared and treated samples. Different systems with different complexities going from more or less flexible homopolymers over rigid main chain macromolecules to polymer blends have been studied. For the investigated flexible macromolecules, the dynamic glass transition temperature estimated within the frame of the linear response approach is independent of the film thickness down to several nanometers and identical to the bulk value. For polystyrene it was found the thermal glass transition temperatures can depend on the film thickness. This different behavior is not well understood till now and needs further experimental clarification. For the investigated main chain polymers polycarbonate and polysulfone. Dynamic and thermal glass transition temperature estimated from the dielectric measurements increases with decreasing film thickness. This is discussed in the frame of a strong interaction of the polymer segments with the surface of the substrate. In general for homopolymers, the interaction energy of the polymer segments with the substrate surface cannot be considered as the only parameter, which is responsible for the change in the thermal glass transition with the film thickness. For the investigated miscible blend system of polystyrene/poly(vinyl methyl ether) at a composition of 50/50 wt-% a decrease of the dynamic glass transition temperature with decreasing film thickness is found. This is explained by the formation of a poly(vinyl methyl ether)-rich surface layer with a higher molecular mobility. KW - Broadband dielectric spectroscopy KW - Specific heat spectroscopy KW - Photoelectron spectroscopy KW - Contact angle measurements KW - Polystyrene KW - Poly(vinyl methyl ether) KW - Poly(2-vinylpyridine) KW - Polycarbonate KW - Polysulfone KW - Polystyrene/ Poly(vinyl methyl ether) blend PY - 2014 SN - 978-3-319-06099-6 SN - 978-3-319-06100-9 U6 - https://doi.org/10.1007/978-3-319-06100-9_2 SN - 2190-930X SN - 2190-9318 SP - 17 EP - 59 PB - Springer AN - OPUS4-31078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Mix, Renate A1 - Friedrich, Jörg Florian T1 - Influence of differently structured aluminium-polypropylene interfaces on adhesion N2 - Polar groups were introduced on polypropylene surfaces for increasing the surface energy and the peel strength to evaporated aluminium layers. Three kinds of plasma processes were used for introducing such functional groups to polyolefin surfaces: low-pressure radio-frequency (RF) O2 plasma exposure, atmospheric-pressure dielectric-barrier discharge (DBD) treatment in air, and the deposition of allylamine plasma polymer. The amino groups of the allylamine plasma polymer were also used as anchoring points for chemical introduction of covalently bonded spacer molecules equipped with reactive endgroups. Thus, silanol endgroups of a covalently bonded spacer were able to interact with the evaporated metal layer. The Al-PP composites achieved a maximal peel strength of 470 N/m by exposing the polymer to the lowpressure O2 plasma and 500 N/m on exposure to the atmospheric DBD plasma. After allylamine plasma polymerization and grafting of spacers, the peel strength was usually higher than 1500 N/m and the composites could not be peeled. KW - Polypropylene KW - Low-pressure RF oxygen plasma KW - Dielectric barrier discharge (DBD) KW - Pulsed plasma polymerization KW - Surface wettability KW - Peel strength PY - 2011 U6 - https://doi.org/10.1163/016942410X511132 SN - 0169-4243 SN - 1568-5616 VL - 25 IS - 8 SP - 799 EP - 818 PB - VNU Science Press CY - Utrecht AN - OPUS4-23990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Glass Transition of Thin Poly(bisphenol A carbonate) Films Studied by Dielectric Spectroscopy T2 - DPG-Spring-Meeting 2011 CY - Dresden, Germany DA - 2011-03-13 PY - 2011 AN - OPUS4-23363 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Calorimetric Glass Transition of Thin Poly(bisphenol A carbonate) Films T2 - DPG-Spring-Meeting 2011 CY - Dresden, Germany DA - 2011-03-13 PY - 2011 AN - OPUS4-23345 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Investigation of Wood-Plastic Composites (WPCs) Using Different Flame Retardants T2 - Kolloquiumsvortrag BEIJING INSTITUTE OF TECHNOLOGY CY - Beijing, China DA - 2014-11-24 PY - 2014 AN - OPUS4-32357 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Wood Flour/Polypropylene Composites Using Different Flame Retardants T2 - Kolloquiumsvortrag, Insitute of Chemistry, the Chinese Academy of Sciences CY - Beijing, China DA - 2014-11-26 PY - 2014 AN - OPUS4-32358 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Improvement on the Flame Retardancy of Wood-Plastic Composites (WPCs) Using Different Flame Retardants T2 - Kolloquiumsvortrag, Sichuan University CY - Chendu, China DA - 2014-11-27 PY - 2014 AN - OPUS4-32359 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Madkour, Sherif Aly Hassan Aly A1 - Yin, Huajie A1 - Füllbrandt, Marieke A1 - Schönhals, Andreas T1 - Calorimetric evidence for a mobile surface layer in ultrathin polymeric films: poly(2-vinyl pyridine) N2 - Specific heat spectroscopy was used to study the dynamic glass transition of ultrathin poly(2-vinyl pyridine) films (thicknesses: 405–10 nm). The amplitude and the phase angle of the differential voltage were obtained as a measure of the complex heat capacity. In a traditional data analysis, the dynamic glass transition temperature Tg is estimated from the phase angle. These data showed no thickness dependency on Tg down to 22 nm (error of the measurement of ±3 K). A derivative-based method was established, evidencing a decrease in Tg with decreasing thickness up to 7 K, which can be explained by a surface layer. For ultrathin films, data showed broadening at the lower temperature side of the spectra, supporting the existence of a surface layer. Finally, temperature dependence of the heat capacity in the glassy and liquid states changes with film thickness, which can be considered as a confinement effect. PY - 2015 U6 - https://doi.org/10.1039/c5sm01558h SN - 1744-683X VL - 11 IS - 40 SP - 7942 EP - 7952 PB - RSC Publ. CY - Cambridge AN - OPUS4-34605 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Thermal and Dynamic Glass Transition of Ultrathin Films of Homopolymers and Their Blends T2 - 27th GCCCD Annual Conference CY - Jena, Germany DA - 2015-08-28 PY - 2015 AN - OPUS4-34589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yin, Huajie A1 - Schubert, Martina A1 - Bastian, Martin A1 - Schartel, Bernhard T1 - Comparing Different Routes to Halogen-free Flame Retardant Wood-Plastic Composites T2 - Eurofillers Polymer Blends 2015 CY - Montpellier, France DA - 2015-04-26 PY - 2015 AN - OPUS4-33186 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Dittrich, Bettina A1 - Farooq, Muhammad A1 - Kerling, S. A1 - Wartig, K.-A. A1 - Hofmann, D. A1 - Huth, Christian A1 - Okolieocha, C. A1 - Altstädt, V. A1 - Schönhals, Andreas A1 - Schartel, Bernhard T1 - Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological properties N2 - The influence of distinct carbon based nanofillers: expanded graphite (EG), conducting carbon black (CB), thermally reduced graphene oxide (TRGO) and multi-walled carbon nanotubes (CNT) on the thermal, dielectric, electrical and rheological properties of polybutylene terephthalate (PBT) was examined. The glass transition temperature (Tg) of PBT nanocomposites is independent of the filler type and content. The carbon particles act as nucleation agents and significantly affect the melting temperature (Tm), the crystallization temperature (Tc) and the degree of crystallinity of PBT composites. PBT composites with EG show insulating behaviour over the tested concentration range of 0.5 to 2 wt.-% and hardly changed rheological behaviour. CB, CNT and TRGO induce electrical conductivity to their particular PBT composites by forming a conducting particle network within the polymer matrix. CNT reached the percolation threshold at the lowest concentration (<0.5 wt.-%), followed by TRGO (<1 wt.-%) and CB (<2 wt.-%). With the formation of a particle network, the flow behaviour of composites with CB, CNT and TRGO is affected, i.e., a flow limit occurs and the melt viscosity increases. The degree of influence of the carbon nanofillers on the rheological properties of PBT composites follows the same order as for electrical conductivity. Electrical and rheological results suggest an influence attributed to the particle dispersion, which is proposed to follow the order of EG<< CB