TY - JOUR A1 - Kupsch, Andreas A1 - Lange, Axel A1 - Hentschel, Manfred P. A1 - Onel, Yener A1 - Wolk, Thomas A1 - Staude, Andreas A1 - Ehrig, Karsten A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evaluating porosity in cordierite diesel particulate filter materials, part 1 X-ray refraction JF - Journal of ceramic science and technology N2 - Bi-continuous porous ceramics for filtration applications possess a particularly complicated microstructure, with porosity and solid matter being intermingled. Mechanical, thermal, and filtration properties can only be precisely estimated if the morphology of both solid matter and porosity can be quantitatively determined. Using x-ray absorption and refraction, we quantitatively evaluate porosity and pore orientation in cordierite diesel particulate filter ceramics. Porosity values turn out to agree with mercury intrusion measurements, while pore orientation factors agree with published crystallographic texture data. KW - Porous ceramics KW - Pore orientation KW - X-ray refraction KW - Synchrotron KW - Interface PY - 2013 DO - https://doi.org/10.4416/JCST2013-00021 SN - 2190-9385 VL - 4 IS - 4 SP - 169 EP - 176 PB - Göller CY - Baden-Baden AN - OPUS4-29939 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stuckert, J. A1 - Birchley, J. A1 - Große, M. A1 - Fernandez-Moguel, L. A1 - Onel, Yener A1 - Rössger, C. A1 - Steinbrück, M. T1 - The Quench-Debris test - Experimental results and modeling T2 - ERMSAR-2013 - 6th European review meeting on severe accident research N2 - In the framework of the SARNET-2 WP5.1 the QUENCH-DEBRIS test was conducted as the 17th severe accident test using the QUENCH facility at KIT to investigate the formation and coolability of a prototypic debris bed. The test scenario was defined by pre-test calculations using the MELCOR code. This code was used also for post-test analysis. The test bundle with length of about 2 m contains the hafnium shroud tube and 12 heated peripheral rods with claddings made of hafnium. Hafnium was chosen because of its much higher melting temperature and the about one order of magnitude lower oxidation rate compared to zirconium. The claddings of the inner nine rods were made from Zry-4. They were filled with pre-fragmented zirconia pellets. The test started with an oxidation phase of 20 h at peek cladding temperature about 1800 K to reach complete oxidation of the Zry-4 claddings over a height of 500 mm. The temperatures expected from the pre-test simulation fitted well the experimentally observed evolution of the bundle conditions. The possibly surviving inner Zry-4 claddings were destroyed by the application of an axial mechanical force resulting in material relocation and formation of a heterogeneous debris bed consisting of segmented pellets and larger cladding tube fragments at the grid spacer 2 (350 mm elevation) and in a smaller amount at grid spacer 3 (1050 mm elevation). The so destroyed bundle was quenched with 10 g/s water. The evaporation rate generally showed an increasing trend during the reflood, except at the time of water penetration through the debris bed at spacer 2 when stagnation was observed. All peripheral hafnium claddings survived the whole test. During the oxidation phase about 100 g hydrogen was released. The time dependence of the hydrogen release predicted in the pre-test calculations fits well the measured one. The post-test examinations comprise videoscope inspections, high energy X-ray-tomography and metallographic investigations of the debris bed. T2 - ERMSAR-2013 - 6th European review meeeting on severe accident research CY - Avignon, France DA - 02.10.2013 KW - Hochenergie-Computertomographie KW - Nukleare Sicherheitsforschung PY - 2013 SP - 1 EP - 13 (Paper 2.6) AN - OPUS4-29467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Onel, Yener A1 - Lange, Axel A1 - Staude, Andreas A1 - Ehrig, Karsten A1 - Kupsch, Andreas A1 - Hentschel, Manfred P. A1 - Wolk, Thomas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Evaluating porosity in cordierite Diesel particulate filter materials, Part 2 statistical analysis of computed tomography data JF - Journal of ceramic science and technology N2 - Complementary to Part 1 of this work, the bi-continuous microstructure of porous synthetic cordierite ceramics for filtration applications was investigated using 3D x-ray computed tomography at different resolutions. Applying both Fast Fourier Transform and a newly developed image analysis algorithm, we quantitatively evaluated porosity and pore orientation. The statistical approach allows extraction of spatially resolved or average values. Porosity values based on x-ray absorption agree with mercury intrusion measurements, while pore orientation factors agree with x-ray refraction data (Part 1 of this work), and with published crystallographic texture data. KW - Pore orientation KW - Porous ceramics KW - Computed tomography KW - 3D microstructure PY - 2013 DO - https://doi.org/10.4416/JCST2013-00022 SN - 2190-9385 VL - 05 IS - 01 SP - 13 EP - 22 PB - Göller CY - Baden-Baden AN - OPUS4-30379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -