TY - JOUR A1 - Ahmed, A. A. A. A1 - Alegret, N. A1 - Almeida, B. A1 - Alvarez-Puebla, R. A1 - Andrews, A. M. A1 - Ballerini, L. A1 - Barrios-Capuchino, J. J. A1 - Becker, C. A1 - Blick, R. H. A1 - Bonakdar, S. A1 - Chakraborty, I. A1 - Chen, X. A1 - Cheon, J. A1 - Chilla, G. A1 - Conceicao, A. L. C. A1 - Delehanty, J. A1 - Dulle, M. A1 - Efros, A. L. A1 - Epple, M. A1 - Fedyk, M. A1 - Feliu, N. A1 - Feng, M. A1 - Fernandez-Chacon, R. A1 - Fernandez-Cuesta, I. A1 - Fertig, N. A1 - Förster, S. A1 - Garrido, J. A. A1 - George, M. A1 - Guse, A. H. A1 - Hampp, N. A1 - Harberts, J. A1 - Han, J. A1 - Heekeren, H. R. A1 - Hofmann, U. G. A1 - Holzapfel, M. A1 - Hosseinkazemi, H. A1 - Huang, Y. A1 - Huber, P. A1 - Hyeon, T. A1 - Ingebrandt, S. A1 - Ienca, M. A1 - Iske, A. A1 - Kang, Y. A1 - Kasieczka, G. A1 - Kim, D.-H. A1 - Kostarelos, K. A1 - Lee, J.-H. A1 - Lin, K.-W. A1 - Liu, S. A1 - Liu, X. A1 - Liu, Y. A1 - Lohr, C. A1 - Mailänder, V. A1 - Maffongelli, L. A1 - Megahed, S. A1 - Mews, A. A1 - Mutas, M. A1 - Nack, L. A1 - Nakatsuka, N. A1 - Oertner, T. G. A1 - Offenhäusser, A. A1 - Oheim, M. A1 - Otange, B. A1 - Otto, F. A1 - Patrono, E. A1 - Peng, B. A1 - Picchiotti, A. A1 - Pierini, F. A1 - Pötter-Nerger, M. A1 - Pozzi, M. A1 - Pralle, A. A1 - Prato, M. A1 - Qi, B. A1 - Ramos-Cabrer, P. A1 - Resch-Genger, Ute A1 - Ritter, N. A1 - Rittner, M. A1 - Roy, S. A1 - Santoro, F. A1 - Schuck, N. W. A1 - Schulz, F. A1 - Seker, E. A1 - Skiba, M. A1 - Sosniok, M. A1 - Stephan, H. A1 - Wang, R. A1 - Wang, T. A1 - Wegner, Karl David A1 - Weiss, P. S. A1 - Xu, M. A1 - Yang, C. A1 - Zargarin, S. S. A1 - Zeng, Y. A1 - Zhou, Y. A1 - Zhu, D. A1 - Zierold, R. A1 - Parak, W. J. T1 - Interfacing with the Brain: How Nanotechnology Can Contribute N2 - Interfacing artificial devices with the human brain is the central goal of neurotechnology. Yet, our imaginations are often limited by currently available paradigms and technologies. Suggestions for brain−machine interfaces have changed over time, along with the available technology. Mechanical levers and cable winches were used to move parts of the brain during the mechanical age. Sophisticated electronic wiring and remote control have arisen during the electronic age, ultimately leading to plug-and-play computer interfaces. Nonetheless, our brains are so complex that these visions, until recently, largely remained unreachable dreams. The general problem, thus far, is that most of our technology is mechanically and/or electrically engineered, whereas the brain is a living, dynamic entity. As a result, these worlds are difficult to interface with one another. Nanotechnology, which encompasses engineered solid-state objects and integrated circuits, excels at small length scales of single to a few hundred nanometers and, thus, matches the sizes of biomolecules, biomolecular assemblies, and parts of cells. Consequently, we envision nanomaterials and nanotools as opportunities to interface with the brain in alternative ways. Here, we review the existing literature on the use of nanotechnology in brain−machine interfaces and look forward in discussing perspectives and limitations based on the authors’ expertise across a range of complementary disciplines from neuroscience, engineering, physics, and chemistry to biology and medicine, computer science and mathematics, and social science and jurisprudence. We focus on nanotechnology but also include information from related fields when useful and complementary. KW - Nanoneuro interface KW - Brain-on-a-chip KW - Nanostructured interface KW - Electrode arrays KW - Neuro-implants KW - Advanced nanomaterials KW - Quality assurance PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-634893 DO - https://doi.org/10.1021/acsnano.4c10525 SN - 1936-086X VL - 19 IS - 11 SP - 10630 EP - 10717 PB - ACS Publications AN - OPUS4-63489 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Titirici, M. A1 - Baird, S. G. A1 - Sparks, T. D. A1 - Yang, S. M. A1 - Brandt-Talbot, A. A1 - Hosseinaei, O. A1 - Harper, D. P. A1 - Parker, R. M. A1 - Vignolini, S. A1 - Berglund, L. A. A1 - Li, Y. A1 - Gao, H.-L. A1 - Mao, L.-B. A1 - Yu, S.-H. A1 - Díez, N. A1 - Ferrero, G. A. A1 - Sevilla, M. A1 - Szilágyi, P. Á. A1 - Stubbs, C. J. A1 - Worch, J. C. A1 - Huang, Y. A1 - Luscombe, C. K. A1 - Lee, K.-Y. A1 - Luo, H. A1 - Platts, M. J. A1 - Tiwari, D. A1 - Kovalevskiy, D. A1 - Fermin, D. J. A1 - Au, H. A1 - Alptekin, H. A1 - Crespo-Ribadeneyra, M. A1 - Ting, V. P. A1 - Fellinger, Tim-Patrick A1 - Barrio, J. A1 - Westhead, O. A1 - Roy, C. A1 - Stephens, I. E. L. A1 - Nicolae, S. A. A1 - Sarma, S. C. A1 - Oates, R. P. A1 - Wang, C.-G. A1 - Li, Z. A1 - Loh, X. J. A1 - Myers, R. J. A1 - Heeren, N. A1 - Grégoire, A. A1 - Périssé, C. A1 - Zhao, X. A1 - Vodovotz, Y. A1 - Earley, B. A1 - Finnveden, G. A1 - Björklund, A. A1 - Harper, G. D. J. A1 - Walton, A. A1 - Anderson, P. A. T1 - The sustainable materials roadmap N2 - Our ability to produce and transform engineered materials over the past 150 years is responsible for our high standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point where something must drastically change, and it must change NOW. We must create more sustainable materials alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable and relevant data to quantify sustainability. KW - Electrochemistry KW - Fe-N-C catalysts KW - Fuel cells KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550126 DO - https://doi.org/10.1088/2515-7639/ac4ee5 SN - 2515-7639 VL - 5 IS - 3 SP - 1 EP - 98 PB - IOP Publishing CY - Bristol AN - OPUS4-55012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Xu, Q. A1 - Szymoniak, Paulina A1 - Kolmangadi, Mohamed A. A1 - Yang, Z. A1 - Wang, S. A1 - Gao, Y. A1 - Shang, J. A1 - Hunger, J. A1 - Aldiyarov, A. A1 - Schönhals, Andreas A1 - Ge, Y. A1 - Qi, Z. T1 - Molecular engineering of supramolecular polymer adhesive with confined water and a single crown ether N2 - Here, we report a water-induced supramolecular polymer built from confined structural water and an intrinsic amphiphilic macrocyclic self-assembly in a nanophase separated structure. The newly designed crown ether macrocycle, featuring strong hydrophilic hydrogen bonding receptor selenoxide and a synergistical hydrophobic selenium-substituted crown core, confines the structural water in a segregated, interdigitated architecture. Although water molecules typically freeze around 0 °C, the confined structural water in this supramolecular polymer remains in a liquid-like state down to 80 °C. Previous studies suggest that multiple crown ether units are needed to generate structural water. However, here, one unit is sufficient to control the formation and disappearance of structural water and consequent supramolecular polymerization. Typically, the DC conductivity of water shows Arrhenius temperature dependency (lnσDC ∝ 1/T). In contrast, this new crown unit maintains water in confined states, which exhibit a Vogel/Fulcher/Tammann behavior (lnσDC ∝ 1/(T-T0)) at temperatures above the glass transition temperature. Moreover, this water-induced supramolecular polymer exhibits remarkable adhesion properties to hydrophilic surfaces and maintains tough adhesion at low temperatures. These findings show how a single small macrocycle can govern the complex structure and functionality of water in supramolecular systems. KW - Supramolecular polymerization PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-623631 DO - https://doi.org/10.1039/D4SC06771A SN - 2041-6539 VL - 16 SP - 1 EP - 9 PB - RSC AN - OPUS4-62363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fa, X. A1 - Lin, Sh. A1 - Yang, J. A1 - Shen, Ch. A1 - Liu, Y. A1 - Gong, Y. A1 - Qin, A. A1 - Ou, Jun A1 - Resch-Genger, Ute T1 - −808 nm-activated Ca2+ doped up-conversion nanoparticles that release no inducing liver cancer cell (HepG2) apoptosis N2 - Anear-infrared (NIR) light-triggered release method for nitric oxide (NO) was developed utilizing core/shell NaYF4: Tm/Yb/Ca@NaGdF4:Nd/Yb up-conversion nanoparticles (UCNPs) bearing a mesoporous silica (mSiO2) shell loaded with theNOdonor S-nitroso-N-acetyl-DL-penicillamine (SNAP). To avoid overheating in biological samples, Nd3+ was chosen as a sensitizer, Yb3+ ions as the bridging sensitizer, andTm3+ ions as UV-emissive activator while co-doping with Ca2+ was done to enhance the luminescence of the activatorTm3+.NOrelease from SNAP was triggered by an NIR-UV up-conversion process, initiated by 808nmlight absorbed by the Nd3+ ions.NOrelease was confirmed by the Griess method. Under 808nmirradiation, the viability of the liver cancer cell line HepG2 significantly decreased with increasing UCNPs@mSiO2-SNAP concentration. For a UCNPs@mSiO2-SNAP concentration of 200 μgml−1, the cell survival probability was 47%. These results demonstrate that UCNPs@mSiO2-SNAP can induce the release of apoptosis-inducingNOby NIR irradiation. KW - Nano KW - Nanomaterial KW - Upconversion nanoparticle KW - Lanthanide KW - Photoluminescence KW - Quantum yield KW - Photophysics KW - Lifetime KW - Sensor KW - Excitation power density KW - Brightness KW - NIR KW - Mechanism KW - Triggered KW - Release KW - Cell KW - PDT KW - Dye KW - Therapy KW - Surface KW - Coating PY - 2022 DO - https://doi.org/10.1088/2050-6120/ac5524 VL - 10 IS - 2 SP - 1 EP - 9 PB - IOP Publishing AN - OPUS4-54842 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A. P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.F. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J. L. A1 - Chen, J. A1 - Counsell, J..D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cartazar-Martínez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Shard, A.G. T1 - Versailles Project on Advanced Materials and Standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene N2 - We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of ∼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are ∼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are ∼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Intensity scale calibration KW - Reference spectra KW - Low-density polyethylene (LDPE) PY - 2020 DO - https://doi.org/10.1116/6.0000577 VL - 38 IS - 6 SP - 063208 AN - OPUS4-51655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reed, B. P. A1 - Cant, D.J.H. A1 - Spencer, S.J. A1 - Carmona-Carmona, A. J. A1 - Bushell, A. A1 - Herrara-Gómez, A. A1 - Kurokawa, A. A1 - Thissen, A. A1 - Thomas, A.G. A1 - Britton, A.J. A1 - Bernasik, A. A1 - Fuchs, A. A1 - Baddorf, A.P. A1 - Bock, B. A1 - Thellacker, B. A1 - Cheng, B. A1 - Castner, D.G. A1 - Morgan, D.J. A1 - Valley, D. A1 - Willneff, E.A. A1 - Smith, E.P. A1 - Nolot, E. A1 - Xie, F. A1 - Zorn, G. A1 - Smith, G.C. A1 - Yasukufu, H. A1 - Fenton, J.L. A1 - Chen, J. A1 - Counsell, J.D.P. A1 - Radnik, Jörg A1 - Gaskell, K.J. A1 - Artyushkova, K. A1 - Yang, L. A1 - Zhang, L. A1 - Eguchi, M. A1 - Walker, M. A1 - Hajdyla, M. A1 - Marzec, M.M. A1 - Linford, M.R. A1 - Kubota, N. A1 - Cortazar-Martinez, O. A1 - Dietrich, P. A1 - Satoh, R. A1 - Schroeder, S.L.M. A1 - Avval, T.G. A1 - Nagatomi, T. A1 - Fernandez, V. A1 - Lake, W. A1 - Azuma, Y. A1 - Yoshikawa, Y. A1 - Compean-Gonzalez, C.L. A1 - Ceccone, G. A1 - Shard, A.G. T1 - ERRATUM: “Versailles project on advanced materials and standards interlaboratory study on intensity calibration for x-ray photoelectron spectroscopy instruments using low-density polyethylene” [J. Vac. Sci. Technol. A 38, 063208 (2020)] N2 - The lead authors failed to name two collaborators as co-authors. The authors listed should include: Miss Claudia L. Compean-Gonzalez (ORCID: 0000-0002-2367-8450) and Dr. Giacomo Ceccone (ORCID: 0000-0003-4637-0771). These co-authors participated in VAMAS project A27, provided data that were analyzed and presented in this publication (and supporting information), and reviewed the manuscript before submission. KW - X-ray photoelectron spectroscopy KW - Transmission function KW - Low-density polyethylene PY - 2021 DO - https://doi.org/10.1116/6.0000907 VL - 39 IS - 2 SP - 027001 PB - American Vacuum Society AN - OPUS4-52380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Molloy, J. L. A1 - Winchester, M. R. A1 - Butler, T. A. A1 - Possolo, A. M. A1 - Rienitz, O. A1 - Roethke, A. A1 - Goerlitz, V. A1 - Caciano de Sena, R. A1 - Dominguez Almeida, M. A1 - Yang, L. A1 - Methven, B. A1 - Nadeau, K. A1 - Romero Arancibia, P. A1 - Bing, W. A1 - Tao, Z. A1 - Snell, J. A1 - Vogl, Jochen A1 - Koenig, Maren A1 - Kotnala, R. K. A1 - Swarupa Tripathy, S. A1 - Elishian, C. A1 - Ketrin, R. A1 - Suzuki, T. A1 - Oduor Okumu, T. A1 - Yim, Y.-H. A1 - Heo, S. W. A1 - Min, H. S. A1 - Sub Han, M. A1 - Lim, Y. A1 - Velina Lara Manzano, J. A1 - Segoviano Regalado, F. A1 - Arvizu Torres, M. A1 - Valle Moya, E. A1 - Buzoianu, M. A1 - Sobina, A. A1 - Zyskin, V. A1 - Sobina, E. A1 - Migal, P. A1 - Linsky, M. A1 - Can, S. Z. A1 - Ari, B. A1 - Goenaga Infante, H. T1 - CCQM-K143 Comparison of Copper Calibration Solutions Prepared by NMIs/DIs N2 - CCQM-K143 is a key comparison that assesses participants’ ability to prepare single element calibration solutions. Preparing calibration solutions properly is the cornerstone of establishing a traceability link to the International System of Units (SI), and therefore should be tested in order to confirm the validity of CCQM comparisons of more complex materials. CCQM-K143 consisted of participants each preparing a single copper calibration solution at 10 g/kg copper mass fraction and shipping 10 bottled aliquots of that solution to the coordinating laboratory, the National Institute of Standards and Technology (NIST). The masses and mass fraction for the prepared solutions were documented with the submitted samples. The solutions prepared by all participants were measured at NIST by high performance inductively coupled plasma optical emission spectroscopy (HP-ICP-OES). The intensity measurements for copper were not mapped onto values of mass fraction via calibration. Instead, ratios were computed between the measurements for copper and simultaneous measurements for manganese, the internal standard, and all subsequent data reductions, including the computation of the KCRV and the degrees of equivalence, were based on these ratios. Other than for two participants whose measurement results appeared to suffer from calculation or preparation errors, all unilateral degrees of equivalence showed that the measured values did not differ significantly from the KCRV. These results were confirmed by a second set of ICP-OES measurements performed by the Physikalisch-Technische Bundesanstalt (PTB). CCQM-K143 showed that participants are capable of preparing calibration solutions starting from high purity, assayed copper metal. Similar steps are involved when preparing solutions for other elements, so it seems safe to infer that similar capabilities should prevail when preparing many different, single-element solutions. KW - Metrology KW - Primary calibration solution KW - Traceability PY - 2020 DO - https://doi.org/10.1088/0026-1394/58/1A/08006 SN - 0026-1394 VL - 58 IS - 1A SP - 08006 PB - IOP Science CY - Cambridge AN - OPUS4-51983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, P. A1 - Ye, S. A1 - Qin, L. A1 - Huang, Y. A1 - Yang, J. A1 - Yu, L. A1 - Wu, Dejian T1 - Experimental study on the maximum excess ceiling gas temperature generated by horizontal cable tray fires in urban utility tunnels N2 - Safety concerns on cable tray fires in urban utility tunnels, which may further trigger huge casualties, ceiling structure damages, power failures and other domino effects, attract increasing attention in recent years. Determining the maximum excess ceiling gas temperature (MECT) induced by cable tray fires in urban utility tunnels is crucial to evaluate the fire risks. A series of one-layer horizontal cable tray fire experiments to explore the MECT were carried out in a large-scale utility tunnel without mechanical ventilations. The number of cables on the tray was varied from 8 to 18 in the experiments. The experimental results showed that the cable tray fire burning could be divided into three distinct stages, including ignition, self-sustaining and decaying stages. In the self-sustaining combustion stage, the cable tray was found to burn relatively steady. The mean MECT was also investigated since it represents one of the main characteristics of the cable tray fire. By redefining two parameters (the heat release rate and the effective ceiling height) in three classical MECT models proposed originally based on pool-fire, these three models could be extended to be able to predict the mean MECT generated from the cable tray fire (solid combustible) within 20% deviations. Consequently, two novel models were respectively proposed to predict the mean MECT at the self-sustaining burning period and the instantaneous MECT of one-layer horizontal cable tray fire in utility tunnel, which would be useful in the field of fire protection engineering. KW - Urban utility tunnel KW - Cable tray fire KW - MECT KW - Heat release rate KW - Tunnel fire PY - 2021 DO - https://doi.org/10.1016/j.ijthermalsci.2021.107341 SN - 1290-0729 VL - 172, Part B SP - 1 EP - 10 PB - Elsevier Masson SAS AN - OPUS4-55056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yin, Huajie A1 - Chua, Y. Z. A1 - Yang, B. A1 - Schick, C. A1 - Harrison, W. A1 - Budd, P. A1 - Böhning, Martin A1 - Schönhals, Andreas T1 - First clear cut experimental evidence for a glass transition in a polymer with intrinsic microporosity: PIM-1 N2 - Polymers with intrinsic microporosity (PIMs) represent a novel, innovative class of materials with great potential in various applications from high-performance gas separation membranes to electronic devices. Here for the first time, for PIM-1, as the archetypal PIM, fast scanning calorimetry provides definitive evidence for a glass transition (Tg=715 K, heating rate 3·10^4 K/s) by decoupling the time-scales responsible for glass transition and decomposition. As the rigid molecular structure of PIM-1 prevents any conformational changes, small-scale bend and flex fluctuations must be considered the origin of its glass transition. This result has strong implications for the fundamental understanding of the glass transition and for the physical aging of PIMs and other complex polymers, both topical problems of materials science. KW - Polymers with intrinsic microporosity KW - Fast Scanning Calorimetry PY - 2018 DO - https://doi.org/10.1021/acs.jpclett.8b00422 SN - 1948-7185 VL - 9 IS - 8 SP - 2003 EP - 2008 PB - ACS AN - OPUS4-44683 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, C. A1 - Shi, J. A1 - Durlo Tambara, Luís Urbano A1 - Yang, Y. A1 - Liu, B. A1 - Revilla-Cuesta, V. T1 - Improving the mechanical properties and durability of steam-cured concrete by incorporating recycled clay bricks aggregates from C&D waste N2 - The output of C&D waste is increasing year by year, among which low-quality recycled brick aggregates (RBAs) have not been well utilized and brought environmental burden. The durability of steam-cured concrete (HCC) is often compromised due to the detrimental effects of this curing regime on the long-term performance and microstructure development of the concrete material. To address this issue, this study investigates the potential of incorporating RBAs to improve the long-term durability of HCC. The results demonstrate that the incorporation of a small amount of RBA (10–20%) not only enhances the 28-d strength of HCC by 2.5–11.3%, but also improves its impermeability by mitigating heat damage effects. The combined application of fine and coarse RBA was found to effectively balance the negative effects of coarse RBA on the performance of HCC. Furthermore, the utilization of RBA in HCC was shown to have economic and environmental benefits. The results of this study demonstrate a simple and effective approach to improve the long-term durability of HCC while promoting the high-value utilization of solid waste. KW - Steam-cured concrete KW - C&D waste KW - Durability KW - Recycled aggregate KW - Environmental benefits PY - 2024 DO - https://doi.org/10.1016/j.powtec.2024.119571 VL - 438 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-59799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -