TY - JOUR A1 - Bovtun, Viktor Petrovic A1 - Döring, Joachim A1 - Bartusch, Jürgen A1 - Beck, Uwe A1 - Erhard, Anton A1 - Yakymenko, Y. T1 - Ferroelectret non-contact ultrasonic transducers N2 - Dielectric and electromechanical properties of the cellular polypropylene ferroelectret films (EMFIT), combining strong piezoelectric response with a low density and softness, evidence their high potential for the air-coupled ultrasonic applications. The disadvantage of the low coupling factor is compensated by the extremely low acoustic impedance, which provides excellent matching to air and promises efficient sound transmission through the air–transducer interface. The influence of the electrodes on the electromechanical properties was investigated. Electron beam evaporation technology was adapted to the EMFIT films, and films with both-sided Au and Al electrodes were prepared without reducing or suppressing of the electromechanical properties. Finally, prototype transducers based on the EMFIT films were developed. In spite of the simple construction and absence of matching layers, high sensitivity of the EMFIT transducers was proved in the air-coupled ultrasonic experiment. Amplitude and delay time scanned images of the polyethylene step wedge with holes, obtained in both pulse-echo and transmission modes, demonstrate that non-contact ultrasonic imaging and testing with EMFIT transducers is possible. KW - Piezoelectric film KW - Air borne transducer KW - Non-destructive testing PY - 2007 SN - 0947-8396 VL - 88 IS - 4 SP - 737 EP - 743 PB - Springer CY - Berlin AN - OPUS4-15074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Döring, Joachim A1 - Bovtun, Viktor Petrovic A1 - Bartusch, Jürgen A1 - Erhard, Anton A1 - Kreutzbruck, Marc A1 - Yakymenko, Y. T1 - Nonlinear electromechanical response of the ferroelectret ultrasonic transducers N2 - The ultrasonic transmission between two air-coupled polypropylene (PP) ferroelectret (FE) transducers in dependence on the amplitude of the high-voltage exciting pulse revealed a strongly nonlinear electromechanical response of the FE transmitter. This phenomenon is described by a linear increase of the inverse electromechanical transducer constant t33(1) of the PP FE film with an increase of the exciting electrical pulse amplitude. Enlargement of t33(1) by a factor of 4 was achieved by application of 3500 V exciting pulses. The electrostriction contribution to t33(1) can be attributed to the electrostatic force between electrodes and the Maxwell stress effect. The nonlinear electromechanical properties of the PP FE result in a strong increase of its air-coupled ultrasonic (ACUS) figure of merit (FOM) under the high-voltage excitation, which exceeds results of the PP FE technological optimization. The FOM increase can be related to the increase of PP FE coupling factor and/or to the decrease of its acoustic impedance. A significant enhancement of the ACUS system transmission (12 dB) and signal-to-noise ratio (32 dB) was demonstrated by the increase of excitation voltage up to 3500 V. The nonlinear electromechanical properties of the PP FEs seem to be very important for their future applications. KW - Airborne ultrasonics KW - Electret film KW - Transducer KW - Nonlinearity PY - 2010 U6 - https://doi.org/10.1007/s00339-010-5752-7 SN - 0947-8396 VL - 100 IS - 2 SP - 479 EP - 485 PB - Springer CY - Berlin AN - OPUS4-21809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bovtun, Viktor Petrovic A1 - Döring, Joachim A1 - Bartusch, Jürgen A1 - Gaal, Mate A1 - Erhard, Anton A1 - Kreutzbruck, Marc A1 - Yakymenko, Y. T1 - Enhanced electromechanical response of ferroelectret ultrasonic transducers under high voltage excitation N2 - Polypropylene based ferroelectret films exhibit a strong electromechanical activity and provide a promising solution for the air coupled ultrasonic (ACUS) transducers. Ultrasonic transmission between two air coupled ferroelectret transducers in dependence on the amplitude and polarity of the high voltage exciting pulse revealed a strongly non-linear electromechanical response of the ferroelectret transmitter which provides an increase in the transmitter efficiency. The authors present a simple model describing both promotion and competition of the piezoelectric and electrostriction contributions, as well as increase in the transducer constant under high voltage excitation. Enlargement of the inverse transducer constant of the polypropylene ferroelectret film by a factor of 4 was demonstrated. The non-linear properties of the polypropylene ferroelectrets result in a strong increase in their ACUS figure of merit under the high voltage excitation, which exceeds the results of their technological optimisation. Consequently, enhancement of the ACUS system transmission by 12 dB and signal to noise ratio by 32 dB was achieved. KW - Air coupled ultrasonics KW - Non-contact transducers KW - Ferroelectrets KW - Piezoelectric effect KW - Electrostriction KW - Cellular polypropylene KW - Ultrasonic transducer PY - 2013 U6 - https://doi.org/10.1179/1743676112Y.0000000021 SN - 1743-6753 SN - 1743-6761 VL - 112 IS - 2 SP - 97 EP - 102 PB - Maney CY - London AN - OPUS4-27880 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -