TY - JOUR A1 - Titirici, M. A1 - Baird, S. G. A1 - Sparks, T. D. A1 - Yang, S. M. A1 - Brandt-Talbot, A. A1 - Hosseinaei, O. A1 - Harper, D. P. A1 - Parker, R. M. A1 - Vignolini, S. A1 - Berglund, L. A. A1 - Li, Y. A1 - Gao, H.-L. A1 - Mao, L.-B. A1 - Yu, S.-H. A1 - Díez, N. A1 - Ferrero, G. A. A1 - Sevilla, M. A1 - Szilágyi, P. Á. A1 - Stubbs, C. J. A1 - Worch, J. C. A1 - Huang, Y. A1 - Luscombe, C. K. A1 - Lee, K.-Y. A1 - Luo, H. A1 - Platts, M. J. A1 - Tiwari, D. A1 - Kovalevskiy, D. A1 - Fermin, D. J. A1 - Au, H. A1 - Alptekin, H. A1 - Crespo-Ribadeneyra, M. A1 - Ting, V. P. A1 - Fellinger, Tim-Patrick A1 - Barrio, J. A1 - Westhead, O. A1 - Roy, C. A1 - Stephens, I. E. L. A1 - Nicolae, S. A. A1 - Sarma, S. C. A1 - Oates, R. P. A1 - Wang, C.-G. A1 - Li, Z. A1 - Loh, X. J. A1 - Myers, R. J. A1 - Heeren, N. A1 - Grégoire, A. A1 - Périssé, C. A1 - Zhao, X. A1 - Vodovotz, Y. A1 - Earley, B. A1 - Finnveden, G. A1 - Björklund, A. A1 - Harper, G. D. J. A1 - Walton, A. A1 - Anderson, P. A. T1 - The sustainable materials roadmap N2 - Our ability to produce and transform engineered materials over the past 150 years is responsible for our high standards of living today, especially in the developed economies. Yet, we must carefully think of the effects our addiction to creating and using materials at this fast rate will have on the future generations. The way we currently make and use materials detrimentally affects the planet Earth, creating many severe environmental problems. It affects the next generations by putting in danger the future of economy, energy, and climate. We are at the point where something must drastically change, and it must change NOW. We must create more sustainable materials alternatives using natural raw materials and inspiration from Nature while making sure not to deplete important resources, i.e. in competition with the food chain supply. We must use less materials, eliminate the use of toxic materials and create a circular materials economy where reuse and recycle are priorities. We must develop sustainable methods for materials recycling and encourage design for disassembly. We must look across the whole materials life cycle from raw resources till end of life and apply thorough life cycle assessments based on reliable and relevant data to quantify sustainability. KW - Electrochemistry KW - Fe-N-C catalysts KW - Fuel cells KW - Catalysis PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550126 DO - https://doi.org/10.1088/2515-7639/ac4ee5 SN - 2515-7639 VL - 5 IS - 3 SP - 1 EP - 98 PB - IOP Publishing CY - Bristol AN - OPUS4-55012 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Song, X. A1 - Ma, Y. A1 - Wang, C. A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Luo, Y. T1 - Effects of protonation, hydrogen bonding, and photodamaging on X-ray spectroscopy of the amine terminal group in aminothiolate monolayers N2 - The amine headgroup, NH2, in aminothiolate monolayers can often generate unexpectedly rich structures in its N K-edge X-ray photoelectron spectra (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectra that are difficult to assign. We have carried out density functional theory (DFT) calculations to study the XPS and NEXAFS of amine headgroup in four different aminothiolate monolayers, namely, aliphatic 11-aminoundecane-1-thiol (AUDT), aromatic 4-aminobenzenethiol (ABT), araliphatic 4-aminophenylbutane-1-thiol (APBT), and 3-(4''-amino-1,1':4',1''-terphenyl-4-yl)propane-1-thiol (ATPT), with the focus on structure changes caused by protonation, hydrogen bonding, and X-ray damaging. Spectra of all possible saturated and unsaturated species, as well as X-ray damage products, such as imine, nitrile, azo species, and cumulative double bonds, have been thoroughly examined. It is found that extra spectral structures observed in the experimental XPS spectra do not result from protonation but from the formation of a primary ammonium. The X-ray excitation can induce cross-linking between two neighboring molecules to form different complexes that contribute to the π* features in NEXAFS spectra. KW - Surface analysis KW - Spectrum simulation KW - X-ray absorption spectroscopy KW - Self assembling monolayer PY - 2012 DO - https://doi.org/10.1021/jp302716w SN - 1932-7447 SN - 1089-5639 VL - 116 IS - 23 SP - 12649 EP - 12654 PB - Soc. CY - Washington, DC AN - OPUS4-26255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bates, J. S. A1 - Martinez, J. J. A1 - Hall, M. N. A1 - Al-Omari, A. A. A1 - Murphy, E. A1 - Zeng, Y. A1 - Luo, F. A1 - Primbs, M. A1 - Menga, D. A1 - Bibent, N. A1 - Sougrati, M. T. A1 - Wagner, F. E. A1 - Atanassov, P. A1 - Wu, G. A1 - Strasser, P. A1 - Fellinger, Tim-Patrick A1 - Jaouen, F. A1 - Root, T. W. A1 - Stahl, S. S. T1 - Chemical Kinetic Method for Active-Site Quantification in Fe-N‑C Catalysts and Correlation with Molecular Probe and Spectroscopic Site-Counting Methods N2 - Mononuclear Fe ions ligated by nitrogen (FeNx) dispersed on nitrogen-doped carbon (Fe-N-C) serve as active centers for electrocatalytic O2 reduction and thermocatalytic aerobic oxidations. Despite their promise as replacements for precious metals in a variety of practical applications, such as fuel cells, the discovery of new Fe-N-C catalysts has relied primarily on empirical approaches. In this context, the development of quantitative structure−reactivity relationships and benchmarking of catalysts prepared by different synthetic routes and by different laboratories would be facilitated by the broader adoption of methods to quantify atomically dispersed FeNx active centers. In this study, we develop a kinetic probe reaction method that uses the aerobic oxidation of a model hydroquinone substrate to quantify the density of FeNx centers in Fe-N-C catalysts. The kinetic method is compared with low-temperature Mössbauer spectroscopy, CO pulse chemisorption, and electrochemical reductive stripping of NO derived from NO2 − on a suite of Fe-N-C catalysts prepared by diverse routes and featuring either the exclusive presence of Fe as FeNx sites or the coexistence of aggregated Fe species in addition to FeNx. The FeNx site densities derived from the kinetic method correlate well with those obtained from CO pulse chemisorption and Mössbauer spectroscopy. The broad survey of Fe-N-C materials also reveals the presence of outliers and challenges associated with each site quantification approach. The kinetic method developed here does not require pretreatments that may alter active-site distributions or specialized equipment beyond reaction vessels and standard analytical instrumentation. KW - Active-Site Quantification PY - 2023 DO - https://doi.org/10.1021/jacs.3c08790 SP - 1 EP - 16 PB - ACS Publications AN - OPUS4-58889 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -