TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses N2 - This study demonstrates the bottom-up synthesis of silver nanolenses.Arobust coating protocol enabled the functionalization of differently sized silver nanoparticles with DNAsingle strands of orthogonal sequence.Coated particles 10 nm, 20 nm, and 60 nm in diameter were self-assembled by DNAorigami scaffolds to form silver nanolenses.Single molecules of the protein streptavidin were selectively placed in the gap of highest electric field enhancement. Streptavidin labelled with alkyne groups served as model analyte in surface- enhanced Raman scattering (SERS) experiments.Bycorre- lated Raman mapping and atomic force microscopy, SERS signals of the alkyne labels of asingle streptavidin molecule, from asingle silver nanolens,were detected. The discrete,self- similar aggregates of solid silver nanoparticles are promising for plasmonic applications. KW - DNA origami KW - Surface enhanced Raman scattering KW - Protein KW - Single molecule KW - Nanotechnology PY - 2018 DO - https://doi.org/10.1002/anie.201801748 SN - 1433-7851 VL - 57 IS - 25 SP - 7444 EP - 7447 PB - WILEY AN - OPUS4-45743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-486484 DO - https://doi.org/10.3390/molecules24122324 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -