TY - JOUR A1 - Kim, K.J. A1 - Jang, J. S. A1 - Kim, A. S. A1 - Suh, J.K. A1 - Chung, Y.-D. A1 - Hodoroaba, Vasile-Dan A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Kang, H. J. A1 - Popov, O. A1 - Popov, I. A1 - Kuselman, I. A1 - Lee, Y. H. A1 - Sykes, D. E. A1 - Wang, M. A1 - Wang, H. A1 - Ogiwara, T. A1 - Nishio, M. A1 - Tanuma, S. A1 - Simons, D. A1 - Szakal, C. A1 - Osborn, W. A1 - Terauchi, S. A1 - Ito, M. A1 - Kurokawa, A. A1 - Fujiimoto, T. A1 - Jordaan, W. A1 - Jeong, C. S. A1 - Havelund, R. A1 - Spencer, S. A1 - Shard, A. A1 - Streeck, C. A1 - Beckhoff, B. A1 - Eicke, A. A1 - Terborg, R. T1 - CCQM pilot study P-140: Quantitative surface analysis of multi-element alloy films JF - Metrologia N2 - A pilot study for the quantitative surface analysis of multi-element alloy films has been performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study is to ensure the equivalency in the measurement capability of national metrology institutes for the quantification of multi-element alloy films. A Cu(In,Ga)Se2 (CIGS) film with non-uniform depth distribution was chosen as a representative multi-element alloy film. The atomic fractions of the reference and the test CIGS films were certified by isotope dilution - inductively coupled plasma/mass spectrometry. A total number counting (TNC) method was used as a method to determine the signal intensities of the constituent elements, which are compared with their certified atomic fractions. The atomic fractions of the CIGS films were measured by various methods, such as Secondary Ion Mass Spectrometry (SIMS), Auger Electron Spectroscopy (AES), X-ray Photoelectron Spectroscopy (XPS), X-Ray Fluorescence (XRF) analysis and Electron Probe Micro Analysis (EPMA) with Energy Dispersive X-ray Spectrometry (EDX). Fifteen laboratories from eight National Metrology Institutes (NMIs), one Designated Institute (DI) and six non-NMIs participated in this pilot study. Although the average atomic fractions of 18 data sets showed rather poor relative standard deviations of about 5.5 % to 6.8 %, they were greatly improved to about 1.5 % to 2.2 % by excluding 5 strongly deviating data sets from the average atomic fractions. In this pilot study, the average expanded uncertainties of SIMS, XPS, AES, XRF and EPMA were 3.84%, 3.68%, 3.81%, 2.88% and 2.90%, respectively. These values are much better than those in the key comparison K-67 for composition of a Fe-Ni alloy film. As a result, the quantification of CIGS films using the TNC method was found to be a good candidate as a subject for a CCQM key comparison. KW - CCQM KW - Pilot study KW - Surface analysis KW - Alloy films KW - CIGS PY - 2015 DO - https://doi.org/10.1088/0026-1394/52/1A/08017 SN - 0026-1394 SN - 1681-7575 VL - 52 IS - Technical Supplement SP - Article 08017 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-35306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Martos, G. A1 - Josephs, R. A1 - Choteau, T. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moawad, M. A1 - Tarrant, G. A1 - Chan, B. A1 - Alamgir, M. A1 - de Rego, E. A1 - Wollinger, W. A1 - Garrido, B. A1 - Fernandes, J. A1 - de Sena, R. A1 - Oliveira, R. A1 - Melanson, J. A1 - Bates, J. A1 - Mai Le, P. A1 - Meija, J. A1 - Quan, C. A1 - Huang, T. A1 - Zhang, W. A1 - Ma, R. A1 - Zhang, S. A1 - Hao, Y. A1 - He, Y. A1 - Song, S. A1 - Wang, H. A1 - Su, F. A1 - Zhang, T. A1 - Li, H. A1 - Lam, W. A1 - Wong, W. A1 - Fung, W. A1 - Philipp, Rosemarie A1 - Dorgerloh, Ute A1 - Meyer, Klas A1 - Piechotta, Christian A1 - Riedel, Juliane A1 - Westphalen, Tanja A1 - Giannikopoulou, P. A1 - Alexopoulos, Ch. A1 - Kakoulides, E. A1 - Kitamaki, Y. A1 - Yamazaki, T. A1 - Shimizu, Y. A1 - Kuroe, M. A1 - Numata, M. A1 - Pérez-Castorena, A. A1 - Balderas-Escamilla, M. A1 - Garcia-Escalante, J. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Beliakov, M. A1 - Palagina, M. A1 - Tkachenko, I. A1 - Spirin, S. A1 - Smirnov, V. A1 - Tang Lin, T. A1 - Pui Sze, C. A1 - Juan, W. A1 - Lingkai, W. A1 - Ting, L. A1 - Quinde, L. A1 - Yizhao, C. A1 - Lay Peng, S. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Quinn, L. A1 - Nhlapo, N. A1 - Mkhize, D. A1 - Marajh, D. A1 - Chamane, S. A1 - Ahn, S. A1 - Choi, K. A1 - Lee, S. A1 - Han, J. A1 - Baek, S. A1 - Kim, B. A1 - Marbumrung, S. A1 - Jongmesuk, P. A1 - Shearman, K. A1 - Boonyakong, C. A1 - Bilsel, M. A1 - Gündüz, S. A1 - Ün, I. A1 - Yilmaz, H. A1 - Bilsel, G. A1 - Gökçen, T. A1 - Clarkson, C. A1 - Warren, J. A1 - Achtar, E. T1 - Mass fraction assignment of Bisphenol-A high purity material JF - Metrologia N2 - The CCQM-K148.a comparison was coordinated by the BIPM on behalf of the CCQM Organic Analysis Working Group for NMIs and DIs which provide measurement services in organic analysis under the CIPM MRA. It was undertaken as a "Track A" comparison within the OAWG strategic plan. CCQM-K148.a demonstrates capabilities for assigning the mass fraction content of a solid organic compound having moderate molecular complexity, where the compound has a molar mass in the range (75 - 500) g/mol and is non-polar (pKow < −2), when present as the primary organic component in a neat organic solid and where the mass fraction content of the primary component in the material is in excess of 950 mg/g. Participants were required to report the mass fraction of Bisphenol A present in one supplied unit of the comparison material. Participants using a mass balance method for the assignment were also required to report their assignments of the impurity components present in the material. Methods used by the seventeen participating NMIs or DIs were predominantly based on either stand-alone mass balance (summation of impurities) or qNMR approaches, or the combination of data obtained using both methods. The results obtained using thermal methods based on freezing-point depression methods were also reported by a limited number of participants. There was excellent agreement between assignments obtained using all three approaches to assign the BPA content. The assignment of the values for the mass fraction content of BPA consistent with the KCRV was achieved by most of the comparison participants with an associated relative standard uncertainty in the assigned value in the range (0.1 - 0.5)%. KW - Bisphenol-A KW - Purity assessment KW - Interlaboratory key comparison KW - Metrology PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08015 VL - 58 IS - 1A SP - 08015 PB - IOP Publishing AN - OPUS4-54188 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kato, K. A1 - Watanabe, T. A1 - Heine, Hans-Joachim A1 - Boissière, Claudia A1 - Schulz, Gert A1 - Woo, J.-C. A1 - Kim, J.S. A1 - Sang-Hyub, O. A1 - Bae, H. K. A1 - Kim, Y.D. A1 - Qiao, H. A1 - Guenther, F.R. A1 - Roderick, G. C. A1 - Miller, W. A1 - Smeulders, D. A1 - Botha, A. A1 - van Rensburg, M.J. A1 - Tshilongo, J. A1 - Leshabane, N. A1 - Ntsasa, N. A1 - Milton, M. A1 - Vargha, G. A1 - Harling, A. A1 - Konopelko, L. A1 - Kustikov, Y.A. A1 - Vasserman, I.I. A1 - Zavyalov, S. V. A1 - Popova, T.A. A1 - Pankratov, V.V. A1 - Pir, M.N. A1 - Maltsev, M.A. A1 - Oudwater, R. A1 - Persijn, S. A1 - van Wijk, J. A1 - Wessel, R. M. T1 - International comparison CCQM-K66: Impurity analysis of methane JF - Metrologia N2 - This key comparison was performed to demonstrate the capability of NMIs to analyse the purity of methane for use as a source gas in the preparation of standard gas mixtures. This capability is an essential requirement for the preparation of accurate standards of natural gas and some other fuels. Since it is difficult to carry out a comparison with individual samples of pure gas, the sample for this comparison was a synthetic mixture of high purity methane with selected added impurities of nitrogen, argon, carbon dioxide and ethane. These mixtures were prepared by a gas company as a batch of 10 cylinders and their homogeneity and stability were evaluated by NMIJ. The KCRVs for the four different analytes in this key comparison are based on a consensus of values reported by participants. The uncertainties in the degrees of equivalence were calculated by combining the reported uncertainties with the homogeneity of the samples and the uncertainty of the KCRV. The results submitted are generally consistent with the KCRV within the estimated uncertainties. Finally, this comparison demonstrates that the analysis of nitrogen, argon, carbon dioxide and ethane in methane at amount fractions of 1 µmol/mol to 5 µmol/mol is generally possible with an uncertainty of 5% to 10%. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA). DatesIssue 1A (Technical Supplement 2012) KW - Ringversuch KW - Methan KW - Spurenverunreinigungen KW - Gaschromatographie PY - 2012 DO - https://doi.org/10.1088/0026-1394/49/1A/08001 SN - 0026-1394 SN - 1681-7575 VL - 49 IS - 08001 SP - 1 EP - 76 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-25929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Duewer, D. L. A1 - Sander, L. C. A1 - Wise, S. A. A1 - Philipp, Rosemarie A1 - Hein, Sebastian A1 - Hackenberg, R. A1 - Polzer, J. A1 - Avila, M. A. A1 - Serrano, V. A1 - Kakoulides, E. A1 - Alexopoulos, C. A1 - Giannikopoulou, P. A1 - Chan, P. A1 - Lee, H. A1 - Tang, H. A1 - Tang, P. A1 - Yip, Y. A1 - Lu, T. A1 - Cheow, P. S. A1 - Teo, T. L. A1 - Sega, M. A1 - Rolle, F. A1 - Baek, S. A1 - Kim, B. A1 - Lee, S. A1 - Cabillic, J. A1 - Fallot, C. A1 - Hua, T. A1 - Dazhou, C. A1 - Changjun, Y. A1 - Chunxin, L. A1 - Hongmei, L. A1 - Lippa, K. A1 - Itoh, N. A1 - Quinn, L. A1 - Prevoo-Franzsen, D. A1 - Fernandes-Whaley, M. A1 - Gören, A. C. A1 - Gökcen, T. A1 - Gündüz, S. A1 - Krylov, A. A1 - Mikheeva, A. A1 - Baldan, A. A1 - van der Hout, J. W. A1 - van der Veen, A. M. H. T1 - CCQM-K131 Low-polarity analytes in a multicomponent organic solution: Polycyclic aromatic hydrocarbons (PAHs) in acetonitrile JF - Metrologia N2 - Solutions of organic analytes of known mass fraction are typically used to calibrate the measurement processes used to determine these compounds in matrix samples. Appropriate value assignments and uncertainty calculations for calibration solutions are critical for accurate measurements. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (DIs). To enable NMIs and DIs to update or establish their claims, in 2015 the Organic Analysis Working Group (OAWG) sponsored CCQM-K131 "Low-Polarity Analytes in a Multicomponent Organic Solution: Polycyclic Aromatic Hydrocarbons (PAHs) in Acetonitrile". Polycyclic aromatic hydrocarbons (PAHs) result from combustion sources and are ubiquitous in environmental samples. The PAH congeners, benz[a]anthracene (BaA), benzo[a]pyrene (BaP), and naphthalene (Nap) were selected as the target analytes for CCQM-K131. These targets span the volatility range of PAHs found in environmental samples and include potentially problematic chromatographic separations. Nineteen NMIs participated in CCQM-K131. The consensus summary mass fractions for the three PAHs are in the range of (5 to 25) μg/g with relative standard deviations of (2.5 to 3.5) %. Successful participation in CCQM-K131 demonstrates the following measurement capabilities in determining mass fraction of organic compounds of moderate to insignificant volatility, molar mass of 100 g/mol up to 500 g/mol, and polarity pKow < −2 in a multicomponent organic solution ranging in mass fraction from 100 ng/g to 100 μg/g: (1) value assignment of primary reference standards (if in-house purity assessment carried out), (2) value assignment of single and/or multi-component organic solutions, and (3) separation and quantification using gas chromatography or liquid chromatography. KW - Benz[a]anthracene (BaA) KW - Benzo[a]pyrene (BaP) KW - Gas chromatography (GC) KW - Isotope dilution (ID) KW - Liquid chromatography (LC) KW - Mass spectrometry (MS) KW - Naphthalene (Nap) KW - Organic calibration solution KW - Polycyclic aromatic hydrocarbon (PAH) PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-471442 DO - https://doi.org/10.1088/0026-1394/56/1A/08003 SN - 0026-1394 SN - 1681-7575 VL - 56 IS - 1A SP - 08003, 1 EP - 102 PB - IOP Science AN - OPUS4-47144 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kim, K.J. A1 - Kim, C.S. A1 - Ruh, S. W. A1 - Unger, Wolfgang A1 - Radnik, Jörg A1 - Mata-Salazar, J. A1 - Juarez-Garcia, J.M. A1 - Cortazar-Martinez, O. A1 - Herrera-Gomez, A. A1 - Hansen, P.E. A1 - Madesen, J.S. A1 - Senna, C.A. A1 - Archanjo, B.S. A1 - Damasceno, J.C. A1 - Achete, C.A. A1 - Wang, H. A1 - Wang, M. A1 - Windover, D. A1 - Steel, E. A1 - Kurokawa, A. A1 - Fujimoto, T. A1 - Azuma, Y. A1 - Terauchi, S. A1 - Zhang, L. A1 - Jordaan, W.A. A1 - Spencer, S.J. A1 - Shard, A.G. A1 - Koenders, L. A1 - Krumrey, M. A1 - Busch, I. A1 - Jeynes, C. T1 - Thickness measurement of nm HfO2 films JF - Metrologia N2 - A pilot study for the thickness measurement of HfO2 films was performed by the Surface Analysis Working Group (SAWG) of the Consultative Committee for Amount of Substance (CCQM). The aim of this pilot study was to ensure the equivalency in the measurement capability of national metrology institutes for the thickness measurement of HfO2 films. In this pilot study, the thicknesses of six HfO2 films with nominal thickness from 1 nm to 4 nm were measured by X-ray Photoelectron Spectroscopy (XPS), X-ray Reflectometry(XRR), X-ray Fluorescence Analysis (XRF), Transmission Electron Spectroscopy (TEM), Spectroscopic Ellipsometry (SE) and Rutherford Backscattering Spectrometry (RBS). The reference thicknesses were determined by mutual calibration of a zero-offset method (Medium Energy Ion Scattering Spectroscopy (MEIS) of KRISS) and a method traceable to the length unit (the average thicknesses of three XRR data except the thinnest film). These reference thicknesses are traceable to the length unit because they are based on the traceability of XRR. For the thickness measurement by XPS, the effective attenuation length of Hf 4f electrons was determined. In the cases of XRR and TEM, the offset values were determined from a linear fitting between the reference thicknesses and the individual data by XRR and TEM. The amount of substance of HfO2, expressed as thickness of HfO2 films (in both linear and areal density units), was found to be a good subject for a CCQM key comparison. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM. KW - Thickness measurements KW - nm films KW - X-ray Photoelectron Spectroscopy KW - Mutual calibration PY - 2021 DO - https://doi.org/10.1088/0026-1394/58/1A/08016 SN - 0026-1394 VL - 58 IS - 1a SP - 08016 PB - IOP Publishing Lt. CY - Bristol AN - OPUS4-54175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seto, J. A1 - Ma, Y. A1 - Davis, S.A. A1 - Meldrum, F. A1 - Gourrier, A. A1 - Kim, Y.-Y. A1 - Schilde, U. A1 - Sztucki, M. A1 - Burghammer, M. A1 - Maltsev, Sergey A1 - Jäger, Christian A1 - Cölfen, H. T1 - Structure-property relationships of a biological mesocrystal in the adult sea urchin spine JF - Proceedings of the national academy of sciences of the United States of America : PNAS N2 - Structuring over many length scales is a design strategy widely used in Nature to create materials with unique functional properties. We here present a comprehensive analysis of an adult sea urchin spine, and in revealing a complex, hierarchical structure, show how Nature fabricates a material which diffracts as a single crystal of calcite and yet fractures as a glassy material. Each spine comprises a highly oriented array of Mg-calcite nanocrystals in which amorphous regions and macromolecules are embedded. It is postulated that this mesocrystalline structure forms via the crystallization of a dense array of amorphous calcium carbonate (ACC) precursor particles. A residual surface layer of ACC and/or macromolecules remains around the nanoparticle units which creates the mesocrystal structure and contributes to the conchoidal fracture behavior. Nature’s demonstration of how crystallization of an amorphous precursor phase can create a crystalline material with remarkable properties therefore provides inspiration for a novel approach to the design and synthesis of synthetic composite materials. KW - Calcium carbonate biomineralization KW - Echinoderm skeleton KW - Hierarchical structuring KW - Mesocrystal KW - Skeletal elements PY - 2012 DO - https://doi.org/10.1073/pnas.1109243109 SN - 0027-8424 SN - 1091-6490 VL - 109 IS - 10 SP - 3699 EP - 3704 PB - National Academy of Sciences CY - Washington, DC AN - OPUS4-27726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Westwood, S. A1 - Josephs, R. A1 - Choteau, T. A1 - Daireaux, A. A1 - Wielgosz, R. A1 - Davies, S. A1 - Moad, M. A1 - Chan, B. A1 - Munoz, A. A1 - Conneely, P. A1 - Ricci, M. A1 - Do Rego, E.C.P. A1 - Garrido, B.C. A1 - Violante, F.G.M. A1 - Windust, A. A1 - Dai, X. A1 - Huang, T. A1 - Zhang, W. A1 - Su, F. A1 - Quan, C. A1 - Wang, H. A1 - Lo, M. A1 - Wong, W. A1 - Gantois, F. A1 - Lalerle, B. A1 - Dorgerloh, Ute A1 - Koch, Matthias A1 - Klyk-Seitz, Urszula-Anna A1 - Pfeifer, Dietmar A1 - Philipp, Rosemarie A1 - Piechotta, Christian A1 - Recknagel, Sebastian A1 - Rothe, Robert A1 - Yamazaki, T. A1 - Zakaria, O. B. A1 - Castro, E. A1 - Balderas, M. A1 - González, N. A1 - Salazar, C. A1 - Regalado, L. A1 - Valle, E. A1 - Rodríguez, L. A1 - Laguna, L.Á.. A1 - Ramírez, P. A1 - Avila, M. A1 - Ibarra, J. A1 - Valle, L. A1 - Arce, M. A1 - Mitani, Y. A1 - Konopelko, L. A1 - Krylov, A. A1 - Lopushanskaya, E. A1 - Lin, T.T. A1 - Liu, Q. A1 - Kooi, L.T. A1 - Fernandes-Whaley, M. A1 - Prevoo-Franzsen, D. A1 - Nhlapo, N. A1 - Visser, R. A1 - Kim, B. A1 - Lee, H. A1 - Kankaew, P. A1 - Pookrod, P. A1 - Sudsiri, N. A1 - Shearman, K. A1 - Gören, A.C. A1 - Bilsel, G. A1 - Yilmaz, H. A1 - Bilsel, M. A1 - Cergel, M. A1 - Coskun, F.G. A1 - Uysal, E. A1 - Gündüz, S. A1 - Ün, I. A1 - Warren, J. A1 - Bearden, D.W. A1 - Bedner, M. A1 - Duewer, D.L. A1 - Lang, B.E. A1 - Lippa, K.A. A1 - Schantz, M.M. A1 - Sieber, J.R. T1 - Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity JF - Metrologia N2 - KEY COMPARISON Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100–300] and high polarity (pKOW > –2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and a-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. PY - 2014 DO - https://doi.org/10.1088/0026-1394/51/1A/08010 SN - 0026-1394 SN - 1681-7575 VL - 51 SP - 08010, 1 EP - 44 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons JF - Molecules N2 - ACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed. The results of the analyses of pristine well-defined particles such as 60 nm Au NMs in a simple aqueous suspension showed that laboratories are well capable of determining the sizes of these particles. The analysis of particles in complex matrices or formulations such as consumer products resulted in larger variations in particle sizes within technologies and clear differences in capability between techniques. Sunscreen lotion sample analysis by laboratories using spICP-MS and TEM/SEM identified and confirmed the TiO2 particles as being nanoscale and compliant with the EU definition of an NM for regulatory purposes. In a toothpaste sample orthogonal results by PTA, spICP-MS and TEM/SEM agreed and stated the TiO2 particles as not fitting the EU definition of an NM. In general, from the results of these ILCs we conclude that laboratories are well capable of determining particle sizes of NM, even in fairly complex formulations. KW - Nanomaterials KW - Benchmarking KW - Inter-laboratory comparison KW - ACEnano KW - Characterisation KW - Size KW - Concentration PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-531852 DO - https://doi.org/10.3390/molecules26175315 SN - 1420-3049 VL - 26 IS - 17 SP - 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-53185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Peters, R. A1 - Elbers, I. A1 - Undas, A. A1 - Sijtsma, E. A1 - Briffa, S. A1 - Carnell-Morris, P. A1 - Siupa, A. A1 - Yoon, T.-H. A1 - Burr, L. A1 - Schmid, D. A1 - Tentschert, J. A1 - Hachenberger, Y. A1 - Jungnickel, H. A1 - Luch, A. A1 - Meier, F. A1 - Kocic, J. A1 - Kim, J. A1 - Park, B. C. A1 - Hardy, B. A1 - Johnston, C. A1 - Jurkschat, K. A1 - Radnik, Jörg A1 - Hodoroaba, Vasile-Dan A1 - Lynch, I. A1 - Valsami-Jones, E. T1 - Correction: Peters et al. Benchmarking the ACEnano Toolbox for Characterisation of Nanoparticle Size and Concentration by Interlaboratory Comparisons. Molecules 2021, 26, 5315 T2 - Molecules N2 - This is a corrigendum to the original article "Benchmarking the ACEnano toolbox for characterisation of nanoparticle size and concentration by interlaboratory comparisons" that was published in the journal "Molecules", vol. 26 (2021), no. 17, article 5315. PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554381 DO - https://doi.org/10.3390/molecules27154849 VL - 27 IS - 4849 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-55438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Belsey, N. A. A1 - Cant, D. J. H. A1 - Minelli, C. A1 - Araujo, J. R. A1 - Bock, B. A1 - Brüner, P. A1 - Castner, D. G. A1 - Ceccone, G. A1 - Counsell, J. D. P. A1 - Dietrich, Paul M. A1 - Engelhardt, M. H. A1 - Fearn, S. A1 - Galhardo, C. E. A1 - Kalbe, H. A1 - Kim, J. W. A1 - Lartundo-Rojas, L. A1 - Luftman, H. S. A1 - Nunney, T. S. A1 - Pseiner, J. A1 - Smith, E. F. A1 - Spampinato, V. A1 - Sturm, J. M. A1 - Thomas, A. G. A1 - Treacy, J. P. W. A1 - Veith, L. A1 - Wagstaffe, M. A1 - Wang, H. A1 - Wang, M. A1 - Wang, Y.-C. A1 - Werner, W. A1 - Yang, L. A1 - Shard, A. G. T1 - Versailles Project on Advanced Materials and Standards Interlaboratory Study on Measuring the Thickness and Chemistry of Nanoparticle Coatings Using XPS and LEIS JF - The Journal of Physical Chemistry C N2 - We report the results of a Versailles Project on Advanced Materials and Standards (VAMAS) interlaboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage, or sample preparation resulted in a variability in thickness of 53%. The calculation method chosen by XPS participants contributed a variability of 67%. However, variability of 12% was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors since this contributed a variability of 33%. The results from the LEIS participants were more consistent, with variability of less than 10% in thickness, and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films, and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results. KW - VAMAS KW - Interlaboratory Study KW - Nanoparticle coating KW - XPS KW - LEIS KW - shell thicknss and chemistry PY - 2016 UR - http://pubs.acs.org/doi/pdf/10.1021/acs.jpcc.6b06713 DO - https://doi.org/10.1021/acs.jpcc.6b06713 IS - 120 SP - 24070 EP - 24079 PB - ACS Publications AN - OPUS4-38428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grulke, E. A. A1 - Yamamoto, K. A1 - Kumagai, K. A1 - Häusler, Ines A1 - Österle, Werner A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Brown, S. C. A1 - Chan, C. A1 - Zheng, J. A1 - Yamamoto, K. A1 - Yashiki, K. A1 - Song, N. W. A1 - Kim, Y. H. A1 - Stefaniak, A. B. A1 - Schwegler-Berry, D. A1 - Coleman, V. A. A1 - Jämting, Å. K. A1 - Herrmann, J. A1 - Arakawa, T. A1 - Burchett, W. W. A1 - Lambert, J. W. A1 - Stromberg, A. J. T1 - Size and shape distributions of primary crystallites in titania aggregates JF - Advanced Powder Technology N2 - The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale. KW - Measurement uncertainty KW - Size distribution KW - Shape distribution KW - TEM KW - Titania PY - 2017 DO - https://doi.org/10.1016/j.apt.2017.03.027 SN - 0921-8831 VL - 28 IS - 7 SP - 1647 EP - 1659 PB - Elsevier B.V. AN - OPUS4-40478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Urquiza, M.P. A1 - Torres, M.M. A1 - Mitani, Y. A1 - Schantz, M.M. A1 - Duewer, D.L. A1 - May, W.E. A1 - Parris, R.M. A1 - Wise, S. A. A1 - Kaminski, Katja A1 - Philipp, Rosemarie A1 - Win, Tin A1 - Rosso, A. A1 - Kim, D.H. A1 - Ishikawa, K. A1 - Krylov, A.I. A1 - Kustikov, Y.A. A1 - Baldan, A. T1 - Final report on CCQM-K47: Volatile organic compounds in methanol JF - Metrologia N2 - KEY COMPARISON At the October 2005 CCQM Organic Analysis Working Group Meeting (IRMM, Belgium), the decision was made to proceed with a Key Comparison study (CCQM-K47) addressing the calibration function for the determination of volatile organic compounds (VOCs) used for water quality monitoring. This was coordinated by CENAM and NIST. Benzene, o-xylene, m-xylene and p-xylene were chosen as representative VOCs. The solvent of choice was methanol. Key Comparison CCQM-K47 demonstrated the capabilities of participating NMIs to identify and measure the four target VOCs in a calibration solution using GC-based methods. The measurement challenges in CCQM-K47, such as avoiding volatility loss, achieving adequate chromatographic resolution and isolating potential interferences, are typical of those required for value-assigning volatile reference materials. Participants achieving comparable measurements for all four VOCs in this Key Comparison should be capable of providing reference materials and measurements for VOCs in solutions when present at concentration levels greater than 10 µg/g. PY - 2013 DO - https://doi.org/10.1088/0026-1394/50/1A/08021 SN - 0026-1394 SN - 1681-7575 VL - 50 SP - 08021, 1 EP - 24 PB - Inst. of Physics Publ. CY - Bristol AN - OPUS4-31071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Motzkus, C. A1 - Macé, T. A1 - Gaie-Levrel, F. A1 - Ducourtieux, S. A1 - Delvallee, A. A1 - Dirscherl, K. A1 - Hodoroaba, Vasile-Dan A1 - Popov, I. A1 - Kuselman, I. A1 - Popov, O. A1 - Takahata, K. A1 - Ehara, K. A1 - Ausset, P. A1 - Maillé, M. A1 - Michielsen, N. A1 - Bondiguel, S. A1 - Gensdarmes, F. A1 - Morawska, L. A1 - Johnson, G.R. A1 - Faghihi, E.M. A1 - Kim, C.S. A1 - Kim, Y.H. A1 - Chu, M.C. A1 - Guardado, J.A. A1 - Salas, A. A1 - Capannelli, G. A1 - Costa, C. A1 - Bostrom, T. A1 - Jämting, A.K. A1 - Lawn, M.A. A1 - Adlem, L. A1 - Vaslin-Reimann, S. T1 - Size characterization of airborne SiO2 nanoparticles with on-line and off-line measurement techniques: an interlaboratory comparison study JF - Journal of nanoparticle research N2 - Results of an interlaboratory comparison on size characterization of SiO2 airborne nanoparticles using on-line and off-line measurement techniques are discussed. This study was performed in the framework of Technical Working Area (TWA) 34—'Properties of Nanoparticle Populations' of the Versailles Project on Advanced Materials and Standards (VAMAS) in the project no. 3 'Techniques for characterizing size distribution of airborne nanoparticles'. Two types of nano-aerosols, consisting of (1) one population of nanoparticles with a mean diameter between 30.3 and 39.0 nm and (2) two populations of non-agglomerated nanoparticles with mean diameters between, respectively, 36.2–46.6 nm and 80.2–89.8 nm, were generated for characterization measurements. Scanning mobility particle size spectrometers (SMPS) were used for on-line measurements of size distributions of the produced nano-aerosols. Transmission electron microscopy, scanning electron microscopy, and atomic force microscopy were used as off-line measurement techniques for nanoparticles characterization. Samples were deposited on appropriate supports such as grids, filters, and mica plates by electrostatic precipitation and a filtration technique using SMPS controlled generation upstream. The results of the main size distribution parameters (mean and mode diameters), obtained from several laboratories, were compared based on metrological approaches including metrological traceability, calibration, and evaluation of the measurement uncertainty. Internationally harmonized measurement procedures for airborne SiO2 nanoparticles characterization are proposed. KW - Scanning and transmission electron microscopies KW - Atomic force microscopy KW - Scanning mobility particle size spectrometers KW - Metrological traceability KW - SiO2 nano-aerosol size distribution KW - Interlaboratory comparison PY - 2013 DO - https://doi.org/10.1007/s11051-013-1919-4 SN - 1388-0764 SN - 1572-896X VL - 15 IS - 1919 SP - 1 EP - 36 PB - Kluwer CY - Dordrecht AN - OPUS4-29318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Li, X.M. A1 - Li, H.M. A1 - Zhang, Q.H. A1 - Lu, X.H. A1 - Li, S.Q. A1 - Koch, Matthias A1 - Polzer, J. A1 - Hackenber, R. A1 - Moniruzzaman, M. A1 - Khan, M. A1 - Kakoulides, E. A1 - Pak-Wing, K. A1 - Richy, A1 - Chi-Shing, N. A1 - Lu, T. A1 - Gui, E.M. A1 - Cheow, P.S. A1 - Teo, T.L. A1 - Rego, E. A1 - Garrido, B. A1 - Carvalho, L. A1 - Leal, R. A1 - Violante, F. A1 - Baek, S.Y. A1 - Lee, S. A1 - Choi, K. A1 - Kim, B. A1 - Bucar-Miklavcic, M. A1 - Hopley, C. A1 - Nammoonnoy, J. A1 - Murray, J. A1 - Wilson, W. A1 - Toman, B. A1 - Itoh, N. A1 - Gokcen, T. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K146 low-polarity analyte in high fat food: benzo a pyrene in olive oil JF - Metrologia N2 - The demonstration of competency and equivalence for the assessment of levels of contaminants and nutrients in primary foodstuffs is a priority within the 10-year strategy for the OAWG Track A core comparisons. The measurements are core challenges for reference material producers and providers of calibration Services. This key comparison related to low polarity analytes in a high fat, low protein, low carbohydrate food matrix and Benzo[a]pyrene in edible oil was the model System selected to align with this class within the OAWG strategy. Evidence of successful participation in formal, relevant international comparisons is needed to document measurement capability claims (CMCs) made by national metrology institutes (NMIs) and designated institutes (Dis). 16 National Metrology Institutions participated in the Track A Key Comparison CCQM-K146 Low-Polarity Analyte in high fat food: Benzo[a]pyrene in Olive Oil. Participants were requested to evaluate the mass fractions, expressed in µg/kg, of Benzo[a]pyrene in the olive oil material. The KCRV was determined from the results of all NMIs/DIs participating in the key comparison that used appropriately validated methods with demonstrated metrological traceability. Different methods such as liquid-liquid extraction, GPC and SPE were applied in the sample pretreatment and HPLC-FLD, HPLC-MS/MS, and GC-MS or GC-MS/MS were applied for detection by the participants. The mass fractions for BaP were in the range of (1.78 to 3.09) µg/kg with Standard uncertainties of (0.026 to 0.54) µg/kg, with corresponding relative Standard uncertainties from 0.9% to 21%. Five labs withdrew their result from the Statistical evaluation of the KCRV for technical reasons. One lab was excluded from the KCRV evaluation, as they did not meet the CIPM metrological traceability requirements. A Hierarchical Bayes option was selected for the KCRV value, which was determined as 2.74 µg/kg with a Standard uncertainty of 0.03 µg/kg. The 10 institutes those were included in the calculation of the consensus KCRV all agreed within their Standard uncertainties. Successful participation in CCQM-K146 demonstrates the measurement capabilities in determining mass fraction of organic compounds, with molecular mass of 100 g/mol to 500 g/mol, having low polarity pKow < -2, in mass fraction range from 0.1 µg/kg to 1000 µg/kg in a high fat, low protein, low carbohydrate food matrix. KW - Metrology KW - CCQM KW - Food KW - PAH PY - 2020 DO - https://doi.org/10.1088/0026-1394/57/1a/08017 VL - 57 IS - 1a SP - 08017 AN - OPUS4-52435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeleny, R. A1 - Voorspoels, S. A1 - Ricci, M. A1 - Becker, Roland A1 - Jung, Christian A1 - Bremser, Wolfram A1 - Sittidech, M. A1 - Panyawathanakit, N. A1 - Wong, W. F. A1 - Choi, S.M. A1 - Lo, K.C. A1 - Yeung, W. Y. A1 - Kim, D.H. A1 - Han, J. A1 - Ryu, J. A1 - Mingwu, S. A1 - Chao, W. A1 - Schantz, M.M. A1 - Lippa, K.A. A1 - Matsuyama, S. T1 - Evaluation of the state-of-the-art measurement capabilities for selected PBDEs and decaBB in plastic by the international intercomparison CCQM-P114 JF - Analytical and bioanalytical chemistry N2 - An international intercomparison involving eight national metrology institutes (NMIs) was conducted to establish their current measurement capabilities for determining five selected congeners from the brominated flame retardant classes polybrominated diphenyl ethers and polybrominated biphenyls. A candidate reference material consisting of polypropylene fortified with technical mixtures of penta-, octa- and decabromo diphenyl ether and decabromo biphenyl, which was thoroughly assessed for material homogeneity and stability, was used as study material. The analytical procedures applied by the participants differed with regard to sample pre-treatment, extraction, clean-up, employed calibrants and type of calibration procedure as well as regarding analytical methods used for separation, identification and quantification of the flame retardant congeners (gas chromatography coupled to an electron capture detector (GC-ECD), gas chromatography-mass spectrometry in the electron ionisation mode (GC-EI-MS), gas chromatography-mass spectrometry in the electron capture negative ionisation mode (GC-ECNI-MS), and liquid chromatography-inductive coupled plasma-mass spectrometry (LC-ICP-MS)). The laboratory means agreed well with relative standard deviations of the mean of means of 1.9%, 4.8%, 5.5% and 5.4% for brominated diphenyl ether (BDE) 47, 183 and 209 and for the brominated biphenyl (BB) congener 209, respectively. For BDE 206, a relative standard deviation of 28.5% was obtained. For all five congeners, within-laboratory relative standard deviations of six measurements obtained under intermediate precision conditions were between 1% and 10%, and reported expanded measurements uncertainties typically ranged from 4% to 10% (8% to 14% for BDE 206). Furthermore, the results are in good agreement with those obtained in the characterization exercise for determining certified values for the flame retardant congeners in the same material. The results demonstrate the state-of-the-art measurement capabilities of NMIs for quantifying representative BDE congeners and BB 209 in a polymer. The outcome of this intercomparison (pilot study) in conjunction with possible improvements for employing exclusively calibrants with thoroughly assessed purity suggests that a key comparison aiming at underpinning calibration and measurement capability (CMC) claims of NMIs can be conducted. KW - Flame retardants KW - Polymer KW - Polybrominated diphenyl ethers (PBDEs) KW - Polybrominated biphenyls (PBBs) KW - International intercomparison PY - 2010 DO - https://doi.org/10.1007/s00216-009-3314-7 SN - 1618-2642 SN - 1618-2650 VL - 396 IS - 4 SP - 1501 EP - 1511 PB - Springer CY - Berlin AN - OPUS4-22905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Iqbal, S. A1 - Mady, A. H. A1 - Kim, Y.-I. A1 - Javed, U. A1 - Shafi, P. M. A1 - Nguyen, V. Q. A1 - Hussain, I. A1 - Tuma, Dirk A1 - Shim, J.-J. T1 - Self-templated hollow nanospheres of B-site engineered non-stoichiometric perovskite for supercapacitive energy storage via anion-intercalation mechanism JF - Journal of Colloid and Interface Science N2 - The continual increase in energy demand and inconsistent supply have attracted attention towards sustainable energy storage/conversion devices, such as electrochemical capacitors with high energy densities and power densities. Perovskite oxides have received significant attention as anion-intercalation electrode materials for electrochemical capacitors. In this study, hollow nanospheres of nonstoichiometric cubic perovskite fluorides, KNi1-xCoxF3-delta (x = 0.2; delta = 0.33) (KNCF-0.2) have been synthesized using a localized Ostwald ripening. The electrochemical performance of the non-stoichiometric perovskite has been studied in an aqueous 3 M KOH electrolyte to categorically investigate the fluorine-vacancy-mediated charge storage capabilities. High capacities up to 198.55 mA h g-1 or 714.8 C g-1 (equivalent to 1435 F g-1) have been obtained through oxygen anion-intercalation mechanism (peroxide pathway, O-). The results have been validated using ICP (inductively coupled Plasma mass spectrometry) analysis and cyclic voltammetry. An asymmetric supercapacitor device has been fabricated by coupling KNCF-0.2 with activated carbon to deliver a high energy density of 40 W h kg-1 as well as excellent cycling stability of 98 % for 10,000 cycles. The special attributes of hollow-spherical, non-stoichiometric perovskite (KNCF-0.2) have exhibited immense promise for their usability as anion-intercalation type electrodes in supercapacitors. KW - Nanospheres KW - Perovskite KW - Supercapacitor PY - 2021 DO - https://doi.org/10.1016/j.jcis.2021.03.147 SN - 0021-9797 VL - 600 SP - 729 EP - 739 PB - Elsevier Inc. CY - Amsterdam AN - OPUS4-52873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ricci, M. A1 - Shegunova, P. A1 - Conneely, P. A1 - Becker, Roland A1 - Torres, M. M. A1 - Osuna, M. A. A1 - On, T.P. A1 - Man, L.H. A1 - Baek, S.-Y. A1 - Kim, B. A1 - Hopley, C. A1 - Liscio, C. A1 - Warren, J. A1 - Le Diouron, V. A1 - Lardy-Fontan, S. A1 - Lalere, B. A1 - Mingwu, S. A1 - Kucklick, J. A1 - Vamathevan, V. A1 - Matsuyama, S. A1 - Numata, M. A1 - Brits, M. A1 - Quinn, L. A1 - Fernandes-Whaley, M. A1 - Gören, A.C. A1 - Binici, B. A1 - Konopelko, L. A1 - Krylov, A. A1 - Mikheeva, A. T1 - CCQM-K102: Polybrominated diphenyl ethers in sediment JF - Metrologia N2 - The key comparison CCQM-K102: Polybrominated diphenyl ethers in sediment was coordinated by the JRC, Directorate F - Health, Consumers & Reference Materials, Geel (Belgium) under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM). Thirteen National Metrology institutes or Designated Institutes and the JRC participated. Participants were requested to report the mass fraction (on a dry mass basis) of BDE 47, 99 and 153 in the freshwater sediment study material. The sediment originated from a river in Belgium and contained PBDEs (and other pollutants) at levels commonly found in environmental samples. The comparison was designed to demonstrate participants' capability of analysing non-polar organic molecules in abiotic dried matrices (approximate range of molecular weights: 100 to 800 g/mol, polarity corresponding to pKow < −2, range of mass fraction: 1–1000 μg/kg). All participants (except one using ultrasonic extraction) applied Pressurised Liquid Extraction or Soxhlet, while the instrumental analysis was performed with GC-MS/MS, GC-MS or GC-HRMS. Isotope Dilution Mass Spectrometry approach was used for quantification (except in one case). The assigned Key Comparison Reference Values (KCRVs) were the medians of thirteen results for BDE 47 and eleven results for BDE 99 and 153, respectively. BDE 47 was assigned a KCRV of 15.60 μg/kg with a combined standard uncertainty of 0.41 μg/kg, BDE 99 was assigned a KCRV of 33.69 μg/kg with a combined standard uncertainty of 0.81 μg/kg and BDE 153 was assigned a KCRV of 6.28 μg/kg with a combined standard uncertainty of 0.28 μg/kg. The k-factor for the estimation of the expanded uncertainty of the KCRVs was chosen as k = 2. KW - Intercomparison KW - Traceability KW - Nation metrology institutes PY - 2017 DO - https://doi.org/10.1088/0026-1394/54/1A/08026 SN - 0026-1394 SN - 1681-7575 VL - 54 SP - 08026, 1 EP - 82 AN - OPUS4-41998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -