TY - JOUR A1 - Lu, Xin A1 - Chruscicki, Sebastian A1 - Schukar, Marcus A1 - Münzenberger, Sven A1 - Krebber, Katerina T1 - Application of Intensity-Based Coherent Optical Time Domain Reflectometry to Bridge Monitoring N2 - Although distributed fiber sensing techniques have been widely used in structural health monitoring, the measurement results of bridge monitoring, particularly under destructive testing, have rarely been reported. To the best of our knowledge, this paper is the first report of distributed vibration measurement results, which we obtained during a three-day destructive test on an abolished bridge. A coherent optical time domain reflectometry (COTDR) was used to acquire the vibration information while the bridge was being sawed. The obtained signal was analyzed in time and frequency domain. Some characteristics of the sawing-induced vibration were retrieved by the short-time Fourier transform; the vibration exhibited several high frequency components within the measured range up to 20 kHz and all the components appeared in the same time slot. Some unexpected signals were also detected. Thorough analysis showed that they are quite different from the sawing-induced vibration and are believed to originate from internal damage to the bridge (probably the occurrence of cracks). KW - Destructive testing KW - Structural health monitoring KW - Distributed fiber sensing KW - Distributed acoustic sensing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547451 DO - https://doi.org/10.3390/s22093434 VL - 22 IS - 9 SP - 3434 PB - MDPI AN - OPUS4-54745 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Distributed acoustic sensing to monitor ground motion/movement at multi-frequency bands N2 - A novel distributed acoustic sensing technique is proposed that exploits both phase and amplitude of the Rayleigh backscattered light to quantify the environmental variation. The system employs a wavelength-scanning laser and an imbalanced Mach-Zehnder interferometer to acquire the reflection spectra and the phase of the detected light, respectively. Fading-free and low-frequency measurements are realized via the crosscorrelation of the reflection spectra. The discrete crosscorrelation is used to circumvent the nonlinear frequency sweeping of the laser. Based on the phase of the backscattered light, it is possible to quantify fast environmental variations. The whole system requires no hardware modification of the existing system and its functionality is experimentally validated. The proposed system has the potential to monitor ground motion/movement at very low frequency band like subsidence around mining areas and at high frequency band like earthquakes and vibrations induced by avalanches. KW - Distributed acoustic sensing KW - DAS KW - Distributed fiber optic sensing KW - Ground motion detection KW - Subsidence monitoring PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596129 DO - https://doi.org/10.1109/JLT.2024.3358495 SP - 1 EP - 8 PB - Optical Society und IEEE Photonics Society AN - OPUS4-59612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Krebber, Katerina T1 - Novel fading suppression method for distributed optical fiber acoustic sensing N2 - A universal method based on alternating pulse widths is proposed to suppress the signal fading for all distributed acoustic sensors (DASs) and experimentally demonstrated by one DAS system based on a Mach-Zehnder interferometer. T2 - Optica Sensing Congress CY - Munich, Germany DA - 30.07.2023 KW - Distributed fiber sensing KW - Acoustic sensing KW - Fading suppression KW - Structural health monitoring PY - 2023 SP - 1 EP - 2 AN - OPUS4-58048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Krebber, Katerina T1 - Novel fading suppression method for distributed optical fiber acoustic sensing N2 - A universal method based on alternating pulse widths is proposed to suppress the signal fading for all distributed acoustic sensors (DASs) and experimentally demonstrated by one DAS system based on a Mach-Zehnder interferometer. T2 - Optica Sensing Congress CY - Munich, Germany DA - 30.07.2023 KW - Distributed fiber sensing KW - Acoustic sensing KW - Structural health monitoring KW - Fading suppression PY - 2023 AN - OPUS4-58049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Thomas, P. T1 - Phase Error Evaluation via Differentiation and Cross-Multiplication Demodulation in Phase-Sensitive Optical Time-Domain Reflectometry N2 - Phase-sensitive optical time-domain reflectometry (jOTDR) is a technology for distributed vibration sensing, where vibration amplitudes are determined by recovering the phase of the backscattered light. Measurement noise induces phase errors, which degrades sensing performance. The phase errors, using a differentiation and cross-multiplication (DCM) algorithm, are investigated theoretically and experimentally in a jOTDR system based on a phase retrieval configuration consisting of an imbalanced Mach–Zehnder interferometer (IMZI) and a 3 x 3 coupler. Analysis shows that phase error is highly dependent on the AC component of the obtained signal, essentially being inversely proportional to the product of the power of the light backscattered from two locations. An analytical expression was derived to estimate the phase error and was confirmed by experiment. When applied to the same measurement data, the error is found to be slightly smaller than that obtained using in-phase/quadrature (I/Q) demodulation. The error, however, increases for longer measurement times. KW - Distributed fiber sensing KW - Phase-sensitive optical time-domain reflectometry KW - Phase error PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-580501 UR - https://www.mdpi.com/2304-6732/10/5/514 DO - https://doi.org/10.3390/photonics10050514 SN - 2304-6732 VL - 10 IS - 5 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-58050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Approaching distributed ground motion sensing at high and low frequency ranges N2 - The phase and reflection spectrum of a standard distributed acoustic sensor based on an interferometer are used for fast and slow dynamic measurements, respectively, enabling the system to simultaneously measure various types of ground movement. T2 - 28th International Conference on Optical Fiber Sensors (OFS-28) CY - Hamamatsu, Japan DA - 20.11.2023 KW - Distributed acoustic sensing KW - Ground movement monitoring KW - Geomonitoring KW - Interferometer-based KW - DAS PY - 2023 SP - 1 EP - 4 PB - Optica CY - Washington D.C., USA AN - OPUS4-59098 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Distributed fiber optic sensing for monitoring of underground facilities N2 - Distributed fiber optic sensing (DFOS) technique is a promising and robust non-destructive testing tool that can seamlessly acquire environmental conditions over large scales. Therefore, it has found extensive applications in structural health monitoring. Its appeal for monitoring underground facilities lies in the intrinsic properties of the optical fiber, such as immunity to magnetic interference, small size, chemical inertia, etc. This paper provides a concise overview of DFOS applications in underground facility monitoring. Following a brief introduction to the working principle of the DFOS technique, various examples are provided to demonstrate how distributed fiber sensors contribute to monitoring underground facilities. The paper presents unpublished field test results with an emphasis in the energy sector, including monitoring gas storage facilities, geothermal reservoir exploration, and ground movement detection. Furthermore, the paper identifies several directions for enhancing the DFOS system. T2 - SPIE Photonics Europe CY - Strasbourg, France DA - 07.04.2024 KW - Underground gas storage KW - Distributed fiber sensing KW - Geothermal borehole KW - Ground movement KW - Leakage detection KW - Structure health monitoring PY - 2024 AN - OPUS4-60146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lu, Xin A1 - Krebber, Katerina T1 - Direct detection based φOTDR using the Kramers-Kronig receiver N2 - A Kramers-Kronig (KK) receiver is applied to a phase-sensitive optical time domain reflectometry based on direct detection. An imbalanced Mach-Zehnder interferometer with a 2× 2 coupler is used in sensing system to encode the phase information into optical intensity. The directly obtained signal is treated as the in-phase component, and the KK receiver provides the quadrature component by Hilbert transform of the obtained signal, so that the optical phase can be retrieved by IQ demodulation. The working principle is well explained, and the obtained phase variance is theoretically analyzed. The experiment demonstrates the functionality of the sensor and validates the theoretical analysis. KW - Kramers-Kronig detector KW - Distributed fiber sensing KW - Acoustic sensing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-516803 UR - https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-28-24-37058&id=442839 DO - https://doi.org/10.1364/OE.405723 VL - 28 IS - 24 SP - 37058 EP - 37068 PB - Optical Society of America AN - OPUS4-51680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Distributed fiber optic sensing for monitoring of underground facilities N2 - Distributed fiber optic sensing (DFOS) technique is a promising and robust non-destructive testing tool that can seamlessly acquire environmental conditions over large scales. Therefore, it has found extensive applications in structural health monitoring. Its appeal for monitoring underground facilities lies in the intrinsic properties of the optical fiber, such as immunity to magnetic interference, small size, chemical inertia, etc. This paper provides a concise overview of DFOS applications in underground facility monitoring. Following a brief introduction to the workingbnprinciple of the DFOS technique, various examples are provided to demonstrate how distributed fiber sensors contribute to monitoring underground facilities. The paper presents unpublished field test results with an emphasis in the energy sector, including monitoring gas storage facilities, geothermal reservoir exploration, and ground movement detection. Furthermore, the paper identifies several directions for enhancing the DFOS system. T2 - SPIE Photonics Europe CY - Strasbourg, France DA - 07.04.2024 KW - Structure health monitoring KW - Geothermal borehole KW - Distributed fiber optic sensing KW - Ground movement KW - Leakage detection PY - 2024 DO - https://doi.org/10.1117/12.3023571 SN - 0277-786X VL - 13001 SP - 1 EP - 10 PB - SPIE AN - OPUS4-60384 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lu, Xin A1 - Hicke, Konstantin A1 - Krebber, Katerina T1 - Dual functionality of wavelength scanning coherent optical time domain reflectometer N2 - Wavelength scanning coherent optical time domain reflectometer (WS-COTDR) is a good candidate to spatially resolve the environmental information at comparatively low frequency. This paper reveals it can also work as a traditional optical time domain reflectometer (OTDR) to identify Fresnel reflection by averaging the obtained signal over the wavelength scanning range. Simultaneous distributed vibration sensing and a traditional OTDR measurement are experimentally demonstrated using the WS-COTDR system. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.2023 KW - Structural health monitoring KW - Distributed fiber sensing KW - Acoustic sensing PY - 2023 DO - https://doi.org/10.1117/12.2678098 VL - 12643 SP - 1 EP - 4 PB - SPEI AN - OPUS4-57590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -