TY - JOUR A1 - Burbank, John Theodore A1 - Woydt, Mathias T1 - Comparison of slip-rolling behaviour between 20MnCr5 gear steel, 36NiCrMoV1-5-7 hot working tool steel and 45SiCrMo6 spring steel JF - Wear N2 - The automotive industry places significant importance on downsizing components to achieve greater efficiency. The goal of reducing CO2 emissions has led to the development of lightweight materials that are also able to enhance performance. In light of these aspirations, the aim of this study is to characterize two novel, high-performance steels, as well as a 'classical' gear steel for comparison with each other and currently applied materials. The gear steel underwent carburization and subsequent deep freezing treatments in an attempt to yield discrete sample groups with respect to residual austenite. The high-performance steels were heat treated as recommended by their respective manufacturers, and were not carburized. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-ray diffraction (XRD). Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-carburized 20MnCr5. Residual austenite contents ranging from approximately 6–14 vol% were generated, though effectively providing only two, rather than the desired four discrete sample groups. Residual stresses from machining and carburization were measured directly at the sample surface, and from carburization alone below the surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, hardness between 50 and 55 HRC and strongly martensitic microstructure character. Finally, slip-rolling endurance testing (T=+120 °C, 10,000,000 cycles, approximately 19 days in a factory fill engine oil) was carried out on all materials, whereby coefficient of friction distributions during testing and wear coefficients after testing were calculated. Testing was performed up to and including P0Mean=1.94 GPa (P0Max=2.91 GPa, FN=2000 N). Ultimately, the non-carburized high-performance steels showed competitive wear performance and better friction behaviour than the carburized 20MnCr5, which has been attributed to their work hardening capability. KW - Gear KW - Bearing KW - Slip-rolling KW - Friction KW - Residual austenite KW - Wear resistance PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.01.024 SN - 0043-1648 VL - 328-329 SP - 28 EP - 38 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burbank, John Theodore A1 - Woydt, Mathias T1 - Friction and wear reductions under slip-rolling contact through chemically reactive tribofilm generation during pre-conditioning of steel alloys JF - Wear N2 - The running-in phase of mechanical systems is critical from a tribological standpoint, though poorly understood. Microcracks accelerate material failure and wear during this phase of heightened friction. With this in mind, the ultimate goal of this current work is to transfer the running-in phase into the final step of the mechanical finishing process through the targeted pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatments and compare these to conventional, case-hardened steels. This pre-conditioning involved the targeted implementation of two specific lubricant packages, the first with CaCO3 as the active ingredient and the second with MoDTC as the active ingredient, to generate chemically reactive tribolayers (tribofilms) on twin disk testing rigs. Pre-conditioning was carried out up to 104 load cycles (approximately 25 min). The films generated in pre-conditioning were analyzed by SEM-EDX with Element-Mapping, Raman spectroscopy, and XPS to elucidate their molecular composition and concentration on the sample surfaces. The combination of these methods of analysis gave a clear indication that 104 cycles were sufficient to generate stable chemical tribofilms. CaO and CaCO3 were the main components of the tribofilm from the first lubricant package, while MoS2, MoO2 and MoO3 were the main components from the second lubricant package. Tribofilm-protected samples were then subjected to slip-rolling endurance testing (T=+120 °C, 10,000,000 cycles, approximately 19 days in a factory fill engine oil) to determine any changes in friction behavior or wear performance. Some significant reductions in coefficients of friction at the end of endurance testing were observed, though in certain cases, no definitive improvement was observed. In contrast, very strong reductions in wear were observed across the entire spectrum of materials and testing loads. In some cases, sample surface wear reduction from pre-conditioning via tribofilms reached over 90%. The observed improvements to friction behavior and wear performance are indicative of a technically simple, cost- and energy-efficient pre-conditioning method that may prove to be competitive with existing thermochemical treatments for steel alloys. KW - Tribofilm KW - Running-in KW - MoDTC KW - Slip-rolling KW - Friction KW - Wear PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.06.006 SN - 0043-1648 VL - 338-339 SP - 133 EP - 143 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-33556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - Niobcarbid - Ein vergessener Hartstoff für den Verschleißschutz in offenen und geschlossenen Tribosystemen JF - Tribologie und Schmierungstechnik N2 - Das tribologische Profil von binderlosem NbC und mit 8% bzw. mit 12% Cobalt oder 12% Fe3Al gebundenem NbC wird unter unidirektionaler Gleitreibung (v= 0,1-10 m/s, T= 22°C und 400°C) und unter oszillierender Gleitreibung vergleichend gegenüber Ingenieurkeramiken und Hartmetallen dargestellt. Zusätzlich werden die 4-Punkt-Biegebruchfestigkeit, elastische Eigenschaften (E,G) bis 1.000�C die lastabhängige Mikrohärte sowie die Phasenzusammensetzung und Gefügestrukturen vorgestellt. Die Verschleißkoeffizienten des binderlosen NbC lagen bei T unterhalb von 10-6 mm³/N?m, während diejenigen der cobaltgebundenen NbCs mit ansteigender Gleitgeschwindigkeit von 2-4 10-6 mm³/N?m bei 0,1 m/s auf 5-7 10-7 mm³/N.m bei 10 m/s abnahmen. Die Verschleißkoeffizienten bei 400°C lagen für die NbCs generell unterhalb von 10-6 mm³/N.m. Das tribologische Lasttragevermögen im Trockenlauf, ausgedrückt als PV-Wert, nimmt mit ansteigender Gleitgeschwindigkeit auf 100 W/mm² zu. Bedingt durch die geringe Löslichkeit von NbC in Legierungen offenbarten erste Zerspanversuche mit verschiedenen Stählen eine gegenüber WC-basierten Schneidstoffen signifikant angehobene Zerspanungsvolumina. Somit offenbart NbC in offenen und geschlossenen Tribosystemen Anwendungspotentiale. KW - Gleiten KW - Reibung KW - Verschleiß KW - Oszillation KW - NbC KW - Niobcarbid KW - Cobalt KW - Fe3Al KW - Hartmetall KW - Festigkeit KW - Hohe Temperaturen KW - Sliding KW - Friction KW - Wear KW - Oscillation KW - Niobium carbide KW - Hard metal KW - Strength KW - Modulus KW - High temperatures PY - 2015 SN - 0724-3472 VL - 62 IS - 3 SP - 5 EP - 13 PB - Expert Verlag CY - Renningen AN - OPUS4-33493 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -