TY - JOUR A1 - Woydt, Mathias A1 - Habig, Karl-Heinz T1 - High temperature tribology of ceramics KW - Ceramics KW - Alumina KW - Zirconia KW - Friction KW - Wear KW - Sliding PY - 1989 SN - 0301-679X SP - 75 EP - 90 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-2446 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Igartua, A. A1 - Fernández, X. A1 - Areitioaurtena, O. A1 - Luther, R. A1 - Seyfert, C. A1 - Rausch, J. A1 - Illaramendi, I. A1 - Berg, M. A1 - Schultheiß, H. A1 - Duffau, B. A1 - Plouseau, S. A1 - Woydt, Mathias T1 - Biolubricants and triboreactive materials for automotive applications N2 - The research institution TEKNIKER has coordinated the EUROPEAN Project EREBIO, were different biodegradable lubricants have been formulated by FUCHS and BAM for heavy duty engines (GUASCOR), and passenger cars (RENAULT). In the frame of this article, it has been summarised the results obtained when developing biodegradable passenger car lubricants in combination with triboreactive materials. Replacing hydrocarbon-based oils with biodegradable products is one of the ways to reduce adverse effects on the ecosystem caused by the use of lubricants. The application of low or no sulphur, ash and phosphorous (lowSAP) ester- or polyglycol-based oils, intended for passenger car engine lubricants as substitutes for hydrocarbon-based oils, required the preparation of a composition of lubricants with comparable tribological and functional properties. The study is focussed on passenger car motor oils (PCMO) with reduced metal-organic additives. This is necessary in order to reduce the ash build-up in the after treatment system and therefore improve its efficiency and lifetime. High fuel efficiency and long drain intervals are requested, as well. To follow a line in a consequent way, these oils have to be biodegradable and non-toxic to the aqueous environment according to the directive EC/1999/45, coherent with other international standard. In a modern diesel or gasoline engine, the engine oils has to fulfil quite a number of different functions, such as lubricating and cooling the system, wear protection, soot and particle handling with less deposit tendency and so on. In the paper a study of the biodegradability, toxicity and the tribological properties has been carried out for new developed prototype engine bio-oils. Also, some different plasma sprayed triboreactive coatings have been deposited on cast iron piston rings, being studied also their tribological properties. Finally, the behaviour of the new bio-oils selected and plasma sprayed triboreactive coatings on piston rings have been screened in a real engine. T2 - European Conference on Tribology (ECOTRIB) CY - Ljubljana, Slovenia DA - 2007-06-14 KW - Friction KW - Biolubricant KW - Piston ring KW - Bearing KW - Ester KW - Polyglycol PY - 2009 U6 - https://doi.org/10.1016/j.triboint.2008.10.015 SN - 0301-679X VL - 42 IS - 4 SP - 561 EP - 568 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-19060 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Scholz, Christian A1 - Manier, Charles-Alix A1 - Brückner, A. A1 - Weihnacht, V. T1 - Slip-rolling resistance of ta-C and a-C coatings up to 3,000 MPa of maximum Hertzian contact pressure N2 - The slip-rolling resistances of hard and stiff thin films under high Hertzian contact pressures can be improved by optimizing the 'coating/substrate systems'. It is known from former investigations that the so-called 'egg-shell' effect is no general hindrance for high slip-rolling resistance of thin hard coatings. The coating stability depends more on specific deposition process and coating/substrate interface design. In this article it is experimentally shown, that pure amorphous carbon thin films with hardness between 15 and 63 GPa can be slip-rolling resistant several million load cycles under a maximum Hertzian contact pressures of up to 3.0 GPa. Whereas all coatings were stable up to 10 million load cycles in paraffin oil at room temperature, reduced coating lifetime was found in SAE 0W-30 engine oil at 120°C. It was shown how the coating hardness and the initial coating surface roughness influence the running-in process and coating lifetime. No clear correlation between coating hardness and coating lifetime could be observed, but friction coefficients seem to be reduced with higher coating hardness. Very low friction down to ~0.03 in unmodified engine oils was found for the hardest ta-C film.------------------------------------------------------------------------------------------------------------------------------------------------ Die Wälzbeständigkeit von harten und steifen Dünnschichten unter hohen Hertzschen Kontaktpressungen kann durch die Optimierung des 'Beschichtung/Substrat Systems' deutlich verbessert werden. Aus vorangegangenen Untersuchungen ist bekannt, dass der so genannte 'Eierschaleneffekt' kein generelles Hindernis für eine hohe Wälzbeständigkeit für harte Dünnschichten darstellen muss. Die Stabilität der Beschichtungen hängt vielmehr von dem spezifischen Prozessparametern und dem Schicht/Substrat Grenzflächendesign ab. In diesem Artikel wird experimentell nachgewiesen, dass reine amorphe Kohlenstoffdünnschichten mit Härtewerten zwischen 15 und 63 GPa für mehrere Millionen Lastzyklen unter maximalen Hertzschen Kontaktpressungen bis 3.0 GPa überrollbeständig sein können. Während alle Beschichtungen bis 10 Millionen Lastzyklen in Paraffinöl bei Raumtemperatur keine Defekte aufweisen wurde unter Verwendung eines SAE 0W-30 Motorenöls bei 120°C eine Verringerung der Überrollbeständigkeit nachgewiesen. Es wurde nachgewiesen, wie die Schichthärte und ursprüngliche Oberflächenrauheit der Beschichtung den Einlaufprozess und die Lebensdauer beeinflussen. Es konnte keine offensichtliche Korrelation zwischen Schichthärte und Lebensdauer festgestellt werden, allerdings wurde eine scheinbare Reduktion des Reibwertes mit steigender Schichthärte beobachtet werden. Dabei zeigte die härteste ta-C Schicht unter Verwendung des Motorenöls sehr geringe Reibwerte mit ~0.03. KW - ta-C KW - a-C KW - Friction KW - Wear KW - Slip-rolling KW - Rolling contact fatigue KW - Reibung KW - Verschleiß KW - Wälzen KW - Rollkontaktermüdung PY - 2012 U6 - https://doi.org/10.1002/mawe.201200956 SN - 0933-5137 SN - 1521-4052 VL - 43 IS - 12 SP - 1019 EP - 1028 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-27602 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Scholz, C. A1 - Burbank, J. A1 - Spaltmann, Dirk T1 - Slip-rolling resistant steel alloys up to P0max of 3,920 MPa N2 - Downsizing (power-to-weight ratio) and higher speeds lead to a rise in Hertzian contact pressures in combination with an increase in surface or oil temperatures. Under such conditions, commonly used bearing steels, such as 100Cr6, reach their limits, creating a demand for alternative slip-rolling resistant steel alloys. The present work therefore compares the slip-rolling performance of various steel types with Maraging- and PM-type steel alloys such as e.g. CSS-42L™, ASP2012, BIMAX42+, in the Hertzian contact pressure range up to P0max of 4 GPa. Through-hardened 100Cr6H (AISI 52100), case-hardened 20MnCr5 (AISI 5120H) and nitrogen alloyed Croni-dur30 (AMS 5898) still compete in terms of slip-rolling and wear resistance and load carrying capacity, whereas Maraging- and PM-type steel alloys offer superior strength and toughness properties. KW - Steel KW - Alloy KW - Slip-rolling KW - Friction KW - Wear rate KW - Contact pressure KW - 100Cr6 KW - BIMAX42 KW - CSS-42L KW - ASP20212 PY - 2012 U6 - https://doi.org/10.1016/j.wear.2021.203707 VL - 474-475 SP - 203707 PB - Elsevier B.V. AN - OPUS4-52549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Myshkin, N. A1 - Kovalev, Alexander A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - Contact mechanics and tribology of polymer composites N2 - We review contact mechanics with emphasis on the rheological (time dependent) properties of polymers and their relations to surface roughness, material properties, and friction as well as wear behavior of rubbing polymer surfaces. The main concept of polymer mechanics related to tribology consists of three basic elements involved in friction: deformation resulting in the real area of contact of rough surfaces, contact adhesion, and shear and rupture of materials in the contact during the sliding friction. The results of classical work are included, which addresses the real contact area calculation and the description of adhesion interaction between rough surfaces. A brief review of experimental investigations concerning the surface characterization by means of bearing curves, the intermolecular force interaction using the adhesion parameter, the effect of temperature on the real contact area, the formation of transferred polymer film during friction, and tribological behavior of ultrathin polymer layers are presented and their implications discussed. KW - Surfaces and interfaces KW - Friction KW - Wear and lubrication KW - Mechanical properties KW - Microscopy KW - Properties and characterization PY - 2014 U6 - https://doi.org/10.1002/APP.39870 SN - 0021-8995 SN - 1097-4628 VL - 131 IS - 3 SP - Article 39870, 1 EP - 9 PB - Wiley InterScience CY - Hoboken, NJ AN - OPUS4-30858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - The use of niobium carbide (Nbc) for wear resistant tribosystems and the tribological backgrounds as cutting tools N2 - The tribological profile of rotating disks made in binder-less niobium Carbide (hot-pressed NbC) and cobalt-bonded NbCs (NbC-8Co and NbC-12Co) mated against alumina (99.7%) were determined under unidirectional sliding tests (0.1 m/s to 8.0 m/s; 22°C and 400°C) as well as in oscillation tests (f= 20 Hz, Ax= 0.2 mm, 2/50/98% rel. humidity, n= 105/l 06 cycles) under unlubricated (dry) conditions. In addition, the microstructure and mechanical properties of HPNbCl and NbC bonded with 8 vol.-% and 12 vol.-% cobalt were determined as well. The tribological data obtained were benchmarked with different ceramics, cermets, hard metals and thermally sprayed coatings, where the NbCs bonded with 8% and 12% Co presented above 7 m/s the lowest wear rates so far in such a bench mark. HP-NbCl, NbC-8Co and NbC-12Co exhibited low wear rates under dry sliding associated with PV high load carrying capacities. The tribological profile established revealed a strong position of NbC bearing materials under tribological considerations and for closed tribo-systems against traditional references. T2 - 9th International conference on tungsten, refractory & hardmaterials CY - Orlando, FL, USA DA - 18.05.2014 KW - Friction KW - Wear KW - Ceramic KW - Oscillation KW - NbC KW - Niobium carbide KW - Cobalt KW - Hard metal KW - Strength KW - Sliding KW - Modulus KW - High temperatures PY - 2014 SN - 978-0-9853397-7-7 SP - 222 EP - 232 AN - OPUS4-31630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - The tribological and mechanical properties of niobium carbides (NbC) bonded with cobalt of Fe3Al N2 - The tribological and mechanical properties of niobium carbide bonded with 8 vol.-% (NbC-8Co), 12 vol.-% of cobalt (NbC-12Co) or 12 vol.-% of Fe3Al (NbC-12Fe3Al) are presented. Rotating discs made of metal-bonded niobium carbide were mated against alumina (99.7%) under unlubricated (dry) unidirectional sliding tests (0.1 m/s to 12.0 m/s; 22 °C and 400 C) as well as in oscillation tests (f=20 Hz, Δx=0.2 mm, 2/50/98% rel. humidity, n=105/106 cycles). Microstructure and phase compositions were determined as well. The tribological data obtained were benchmarked with different ceramics, cermets, hard metals and thermally sprayed coatings, where NbC bonded with 8% and 12% Co presented above 7 m/s the lowest wear rates so far in such a benchmark. Binderless NbC (HP-NbC1) and the metal-bonded NbCs exhibited low wear rates under dry sliding associated with P·V high load carrying capacities. NbC-based hard metal bonded with 12 vol.-% of Fe3Al resulted in a higher hardness level than for 12 vol.-% cobalt. The tribological profile established revealed a strong position of NbC-bearing materials under tribological considerations and for closed tribosystems against established reference tribo-couples. KW - Sliding KW - Ceramic KW - Oscillation KW - Strength KW - Modulus KW - High temperatures KW - Friction KW - Wear KW - NbC KW - Niobium carbide KW - Cobalt KW - Fe3Al KW - Hard metal PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-316129 SN - 0043-1648 VL - 321 SP - 1 EP - 7 PB - Elsevier CY - Amsterdam AN - OPUS4-31612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burbank, John Theodore A1 - Woydt, Mathias T1 - Comparison of slip-rolling behaviour between 20MnCr5 gear steel, 36NiCrMoV1-5-7 hot working tool steel and 45SiCrMo6 spring steel N2 - The automotive industry places significant importance on downsizing components to achieve greater efficiency. The goal of reducing CO2 emissions has led to the development of lightweight materials that are also able to enhance performance. In light of these aspirations, the aim of this study is to characterize two novel, high-performance steels, as well as a 'classical' gear steel for comparison with each other and currently applied materials. The gear steel underwent carburization and subsequent deep freezing treatments in an attempt to yield discrete sample groups with respect to residual austenite. The high-performance steels were heat treated as recommended by their respective manufacturers, and were not carburized. Elemental analyses were conducted by multiple methods to ensure accurate results. Residual austenite contents of the steels and the depth profiles of residual stresses were determined by X-ray diffraction (XRD). Hardness profiles were taken from the testing surfaces into the material core. The carburization of 20MnCr5 led to higher hardness and the greater concentration of carbon in the carburization zone more representative of a hardened SAE E52100, or 100Cr6/102Cr6, than of a non-carburized 20MnCr5. Residual austenite contents ranging from approximately 6–14 vol% were generated, though effectively providing only two, rather than the desired four discrete sample groups. Residual stresses from machining and carburization were measured directly at the sample surface, and from carburization alone below the surface. The high-performance steels fulfilled manufacturer expectations in terms of elemental content, hardness between 50 and 55 HRC and strongly martensitic microstructure character. Finally, slip-rolling endurance testing (T=+120 °C, 10,000,000 cycles, approximately 19 days in a factory fill engine oil) was carried out on all materials, whereby coefficient of friction distributions during testing and wear coefficients after testing were calculated. Testing was performed up to and including P0Mean=1.94 GPa (P0Max=2.91 GPa, FN=2000 N). Ultimately, the non-carburized high-performance steels showed competitive wear performance and better friction behaviour than the carburized 20MnCr5, which has been attributed to their work hardening capability. KW - Gear KW - Bearing KW - Slip-rolling KW - Friction KW - Residual austenite KW - Wear resistance PY - 2015 U6 - https://doi.org/10.1016/j.wear.2015.01.024 SN - 0043-1648 VL - 328-329 SP - 28 EP - 38 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32578 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burbank, John Theodore A1 - Woydt, Mathias T1 - Friction and wear reductions under slip-rolling contact through chemically reactive tribofilm generation during pre-conditioning of steel alloys N2 - The running-in phase of mechanical systems is critical from a tribological standpoint, though poorly understood. Microcracks accelerate material failure and wear during this phase of heightened friction. With this in mind, the ultimate goal of this current work is to transfer the running-in phase into the final step of the mechanical finishing process through the targeted pre-conditioning of novel, high toughness steel bearings without thermo-chemical treatments and compare these to conventional, case-hardened steels. This pre-conditioning involved the targeted implementation of two specific lubricant packages, the first with CaCO3 as the active ingredient and the second with MoDTC as the active ingredient, to generate chemically reactive tribolayers (tribofilms) on twin disk testing rigs. Pre-conditioning was carried out up to 104 load cycles (approximately 25 min). The films generated in pre-conditioning were analyzed by SEM-EDX with Element-Mapping, Raman spectroscopy, and XPS to elucidate their molecular composition and concentration on the sample surfaces. The combination of these methods of analysis gave a clear indication that 104 cycles were sufficient to generate stable chemical tribofilms. CaO and CaCO3 were the main components of the tribofilm from the first lubricant package, while MoS2, MoO2 and MoO3 were the main components from the second lubricant package. Tribofilm-protected samples were then subjected to slip-rolling endurance testing (T=+120 °C, 10,000,000 cycles, approximately 19 days in a factory fill engine oil) to determine any changes in friction behavior or wear performance. Some significant reductions in coefficients of friction at the end of endurance testing were observed, though in certain cases, no definitive improvement was observed. In contrast, very strong reductions in wear were observed across the entire spectrum of materials and testing loads. In some cases, sample surface wear reduction from pre-conditioning via tribofilms reached over 90%. The observed improvements to friction behavior and wear performance are indicative of a technically simple, cost- and energy-efficient pre-conditioning method that may prove to be competitive with existing thermochemical treatments for steel alloys. KW - Tribofilm KW - Running-in KW - MoDTC KW - Slip-rolling KW - Friction KW - Wear PY - 2015 U6 - https://doi.org/10.1016/j.wear.2015.06.006 SN - 0043-1648 VL - 338-339 SP - 133 EP - 143 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-33556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Densification and tribological profile of niobium oxide N2 - The origin of the intrinsic wear resistance of NbC-based materials is investigated through an assessment of the tribological performance of fully dense, crack-free spark plasma sintered Nb2O5 (here as a reduced polymorph: monoclinic Nb12O29 or NbO2.416). The most likely wear mechanism on NbC is the tribo-oxidation to Nb2O5. The unlubricated (dry) friction and wear behavior of alumina (99.7%) mated against rotating disks of crack-free niobium(V)oxide (Nb2O5) under unidirectional sliding (0.03–10m/s; 22°C and 400°C) and oscillation (f=20 Hz, dx=200 mm, 2/50/98% rel. humidity, n=105/106 cycles) will be presented. The microstructure and mechanical properties of the crack-free Nb2O5 are assessed. The tribological data obtained are benchmarked with different NbC grades, ceramics, cermets and thermally sprayed coatings. KW - Friction KW - Wear KW - Nb2O5 KW - Nb12O29 KW - Niobium oxide KW - Strength KW - Modulus KW - High temperatures PY - 2016 U6 - https://doi.org/10.1016/j.wear.2016.02.003 SN - 0043-1648 VL - 352-353 SP - 65 EP - 71 PB - Elsevier B.V. AN - OPUS4-35805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -