TY - CONF A1 - Wäsche, Rolf A1 - Woydt, Mathias T1 - Tribological characterization of niobium carbide with different binder materials N2 - Wear of Niobium carbide with nickel binder has been experimentally characterized under dry, oscillating sliding conditions against steel and a-alumina up to 600°C. T2 - National Tribology Conference/NTC-2016 CY - Varanasi, India DA - 08.12.2016 KW - Niobium carbide KW - Wear resistance KW - Binder PY - 2016 SP - 1 EP - 2 AN - OPUS4-38879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Czichos, Horst A1 - Woydt, Mathias ED - Totten, George E. T1 - Introduction to tribology and tribological parameters N2 - Content: Research and Testing. Structural Parameters. Operational Parameters. Contact Parameters. Friction Parameters. Wear Parameters. Material Parameters and Selection. Appendix: Principles of General System Theory. KW - Tribology KW - Tribological parameters KW - Wear KW - Friction PY - 2017 SN - 978-1-62708-141-2 VL - 18: Friction, Lubrication, and Wear Technology SP - 2 EP - 14 CY - Materials Park, OH, USA AN - OPUS4-43589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Czichos, Horst A1 - Woydt, Mathias ED - Totten, George E. T1 - Tribological testing and presentation of data N2 - Content: Research and Testing. Machinery or Component-Level Tests. Laboratory and Specimen Testing. Laboratory Friction and Wear Tests. Investigation of Worn Surfaces. Presentation of Friction and Wear Data. Transition Diagrams. Tribomaps. Wear Data and Reliability. KW - Metals KW - Tribology KW - Friction KW - Wear PY - 2017 SN - 978-1-62708-141-2 VL - 18: Friction, Lubrication, and Wear Technology SP - 16 EP - 32 CY - Materials Park, OH, USA AN - OPUS4-43592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NBC) as cutting tools and for wear protection N2 - Niobium is today largely available. NbC displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bonded NbC1.0-grades have a higer abrasive wear resistance (ASTM G65), even with lower toughnesses, than the tougher WC-Co grades and harder NbC-Co grades. T2 - 41st International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 22.01.2017 KW - Niobium Carbide (NbC) KW - Cutting tool KW - Hardness KW - Friction PY - 2017 VL - 38 SP - 1 EP - 13 AN - OPUS4-43430 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) and Mo additions on the NbC grain growth, microstructure evolution as well as concomitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. KW - Cermet KW - Niobium carbide KW - Sintering KW - Microstructure KW - Mechanical properties PY - 2018 DO - https://doi.org/10.1016/j.ijrmhm.2017.12.013 SN - 0263-4368 VL - 72 SP - 63 EP - 70 PB - Elsevier Science CY - Amsterdam AN - OPUS4-43582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Genga, R. M. A1 - Cornish, L. A. A1 - Polese, C. A1 - Woydt, Mathias A1 - Janse van Vuuren, A. T1 - Wear investigation of NbC inserts during face-milling of grey cast iron N2 - Tungsten carbide (WC) based cemented carbides have a good combination of hardness, strength and toughness, making them key materials for cutting tool industry. T2 - The 54th Annual Conference CY - Port Elizabeth, South Africa DA - 05.12.2016 KW - Tungsten carbide (WC) KW - Niobium carbide (NbC) KW - Wear KW - Machining PY - 2016 SN - 978-0-620-73767-8 SN - 0250-0418 SP - 1 AN - OPUS4-39388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - The differences between the binary phase diagrams W-C and Nb-C illuminate several parameters for tailoring the properties of NbC. In the region of homogeneity of NbCx, with Nb4C3 and Nb6C5 other Niobium carbide phases occur. Properties, like micro-hardness, hot hardness, sliding wear, elastic modules and toughness can be tailored by the C/Nb Ratio, secondary carbides and the type of binder. Supporting results from different grades with varying C/Nb ratio or binder types will be illuminated. Thus, the NbC system offers to producers a wider parameter window, than WC. T2 - 41st International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 22.01.2017 KW - Cutting KW - Friction KW - Hard metal KW - Machining KW - Metal matrix composite KW - Niobium carbide KW - Wear PY - 2017 AN - OPUS4-39392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and tribological performance of NbC-Ni cermets modified by VC and Mo2C N2 - The current study reports on the influence of the Addition of 5–15 vol% VC or/and Mo2C carbide on the microstructure and mechanical properties of nickel bonded NbC cermets, which are compared to cobalt bonded NbC cermets. The NbC, Ni and secondary carbides powder mixtures were liquid phase sintered for 1 h at 1420 °C in vacuum. The fully densified cermets are composed of a cubic NbC grains matrix and an evenly distributed fcc Ni binder. NbC grain growth was significantly inhibited and a homogeneous NbC grain size distribution was obtained in the cermets with VC/Mo2C additions. The mechanical properties of the NbC-Ni matrix cermets are strongly dependent on the carbide and Ni binder content and are directly compared to their NbC-Co equivalents. The liquid phase sintered NbC-12 vol% Ni cermet had a modest Vickers hardness (HV30) of 1077 ± 22 kg/mm2 and an indentation toughness of 9.1 ± 0.5 MPa·m1/2. With the addition of 10–15 vol% VC, the hardness increased to 1359 ± 15 kg/mm2, whereas the toughness increased to 11.3 ± 0.1 MPa·m1/2. Addition of 5 and 10 vol% Mo2C into a NbC-12 vol% Ni mixtures generated the same values in HV30 and KIC when compared to VC additions. A maximum flexural strength of 1899 ± 77 MPa was obtained in the cermet with 20 vol% Ni binder and 4 vol% VC+4 vol% Mo2C addition, exhibiting a high fracture toughness of 15.0 ± 0.5 MPa·m1/2, but associated with a loss in hardness due to the high Ni content. The dry sliding wear behaviour was established at room temperature and 400 °C from 0.1 to 10 m/s. KW - Cermet KW - Liquid phase sintering KW - Grain growth KW - Wear KW - Niobium carbide PY - 2017 DO - https://doi.org/10.1016/j.ijrmhm.2017.03.012 SN - 0263-4368 VL - 66 SP - 188 EP - 197 AN - OPUS4-40505 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. The softer Ni- and NiMo-bondes NbC1.0-grades have a higher abrasive wear resistance (ASTM G65), even with lower toughnesses, as the tougher WC-Co grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Hardness PY - 2017 AN - OPUS4-40512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - Cutting tool materials niobium carbide (NbC) substituting tungsten carbide and cermets N2 - The present paper illuminates the metallurgical progress on niobium carbide based hard metal developments, which are characterized by: a.) the substitution of cobalt binder by nickel, b.) the change from SPS to conventional sintering and c.) by switching from lab to pilot scale. The toughness was increased in the frame of these developments without loosening the hardness level. The hardness-toughness profile of NbC grades match those of WC and cermet grades. Apart from the aforementioned parameters, the properties depend from the powder processing and sintering conditions. The functional profile of nickel and NiMo bonded NbC versus cobalt bondedWC grades bonded by cobalt and nickel are benchmarked under dry sliding wear (T= 22/400°C; v= 0,1-10 m/s), abrasive wear (G65) and under dry turning and dry milling against different work piece alloys (C45E, 42CrMo4, 300WA, GG35, AlSi9Cu4Mg). The different elements explaining the wear resistance of NbC over WC will be illuminated. T2 - 73rd STLE Annual Meeting and Exhibition CY - Minneapolis, Minnesota, USA DA - 20.05.2018 KW - NbC KW - Cutting tool KW - Machining PY - 2018 AN - OPUS4-45852 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, R. A1 - Yano, S. A1 - Sasaki, S. T1 - Tribology in hot steam for energy recovery N2 - The steam technology has attracted attention for recovering energy from waste heat in transportation systems. 40% of the calorific value of the fuel is wasted through the tailpipe. The use of waste heat recovery systems (WHRS) in cars and especially in trucks corresponds to possible energy savings in terms of less fuel consumption in the range of 7 – 18 %. This relates not only to the savings of fuel but also to the non-production of green house gas CO2. Steam expander form tribosystems, which can´t be lubricated with oils, as hot steam hydro-cracks these fluids. Suited tribomaterials as well as their tribo-oxidatively reaction layers must be first steam degradation resistant and for the tribotesting of such candidate material, tribological testing devices for a hot steam environment are needed. Not much is known so far about the tribological properties of any material system running under pressurized hot steam conditions. For these reasons and for being able to evaluate tribological properties in hot steam, BAM has developed and built a new and sealed tribometer for hot steam allowing evaluating tribological properties up to 700°C and 10 bars in gaseous atmospheres like hot steam or ethanol. Experimental results on the wear of self-mated aluminum oxide and MgO-ZrO2 couples show that friction as well as wear is largely determined by the above mentioned hydro-thermal conditions. In this system the presence of water and its amount available in the system either in liquid or in gaseous form plays a key role for wear behavior and can beneficial. Ethanol and/or water-ethanol mixtures can form beneficial tribofilms, also on specific diamond-like carbon films. T2 - 73rd STLE Annual Meeting and Exhibition CY - Minneapolis, Minnesota, USA DA - 20.05.2018 KW - Tribology KW - Hot steam KW - Tribometer PY - 2018 AN - OPUS4-45853 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Niobium carbide NbC as cutting tool material and for wear protection N2 - The present paper illuminates the metallurgical progress on niobium carbide based hard metal developments, which are characterized by: a.) the substitution of cobalt binder by nickel, b.) the change from SPS to conventional sintering and c.) by switching from lab to pilot scale. The toughness was increased in the frame of these develop¬ments without loosening the hardness level. Stoichiometric and sub-stoichiometric, submicron NbC powders were used. The hardness-toughness profile of NbC grades match those of WC and cermet grades. Apart from the aforementioned parameters, the properties depend from the powder processing and sintering conditions. The functional profile of NbC and WC grades bonded by cobalt and nickel are benchmarked by 4-point bending strength, elastic moduli and hot hardness until 1000°C, dry sliding wear (T= 22/400°C; v= 0,1-10 m/s), abrasive wear (G65) and cutting performances under emulsion and coolant-free turning and milling against different alloys (C60, 100Cr6, 42CrMo4, X90CrMoV18, 300WA, GG35). T2 - 42nd International Conference and Exposition on Advanced Ceramics and Composites CY - Daytona Beach, FL, USA DA - 21.01.2018 KW - NbC KW - Cutting tools KW - Wear PY - 2018 AN - OPUS4-45854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - Reibungsminderung in Wälzkontakten durch Werkstoff- und/oder Schmierstoffkonzepte T1 - Reduction of Friction in Slip-Rolling Contacts via Material and/or Lubricant Concepts N2 - Reibungsminderungspotentiale von überrollbeständigen Dünnschichten auf Standardsubstraten und von beschichteten und unbeschichteten alternativen Stählen sowie durch Schmierstoffadditive werden in ein Erstbefüllungsöl bei 120°C und Pressungen bis zu P0mean= 2,5 GPa aufgezeigt. N2 - In slip-rolling tests, the friction and wear reduction potential of DLC-coatings on state-of-the-art steel substrates will be compared to those of coated and un-coated alternative steel grades lubricated with a factory-fill oil at 120 degrees C and contact pressures up to P-0mean = 2,5 GPa. T2 - 7. VDI-Fachtagung CY - Würzburg, Germany DA - 27.06.2017 KW - Reibung KW - Stähle KW - Schmierstoffe PY - 2017 SN - 978-3-18-092291-1 VL - 2291 SP - 261 EP - 272 PB - VDI Verlag GmbH CY - Düsseldorf AN - OPUS4-40864 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kovalev, A. A1 - Spaltmann, Dirk A1 - Woydt, Mathias A1 - Meng, Y. T1 - Characterization of low wear on top aperities N2 - The aim of this research is to characterize a surface that has experienced low wear on asperities. The procedure used is similar to an Abbott-Firestone approach and based on functional bearing of projected area, surface area and material volume. Surface features extracted from surface height maps provide more comprehensive information about topography changes due to wear. Thus, they were used to detect low wear volumes on the top of asperities. T2 - The 6th World Tribology Congress CY - Beijing, China DA - 17.09.2017 KW - Simulation KW - Wear KW - Asperities KW - Abbott KW - Firestone PY - 2017 SP - 1 EP - 4 AN - OPUS4-42465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman A1 - Yano, S. A1 - Sasaki, S. T1 - Tribology in hot steam - for waste heat recovery or for energy harvesting - N2 - The wear rates of self-mated alumina couples show that friction as well as wear is largely determined by the above mentioned hydro-thermal conditions. The presence of water and its amount available in the surrounding system either in liquid or in gaseous form plays a key role for friction and wear behavior and can be beneficial for the tribological profile of steam degradation resistant materials. Hot steam enhances the tribo-chemical formations of oxides and hydroxides on MgO-ZrO2, alumina and antimony impregnated carbon. T2 - The 6th World Tribology Congress - WTC 2017 CY - Beijing, China DA - 17.09.2017 KW - Hot steam KW - Friction KW - Wear behavior PY - 2017 AN - OPUS4-42471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias ED - Wäsche, Rolf ED - Brandt, Guido ED - Ehrke, Roman ED - Yano, S. ED - Sasaki, S. T1 - Tribology in hot steam N2 - The wear rates of self-mated alumina couples show that friction as well as wear is largely determined by the above mentioned hydro-thermal conditions. The presence of water and its amount available in the surrounding system either in liquid or in gaseous form plays a key role for friction and wear behavior and can be beneficial for the tribological profile of steam degradation resistant materials. Hot steam enhances the tribo-chemical formations of oxides and hydroxides on MgO-ZrO2, alumina and antimony impregnated carbon. T2 - The 6th World Tribology Congress CY - Beijing, China DA - 17.09.2017 KW - Hot steam KW - Friction KW - Wear behaviour PY - 2017 SP - 1 EP - 3 AN - OPUS4-42472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Status of nickel bonded niobium carbide (NbC) as a substitute for cobalt bonded tungsten carbide (WC) as cutting tools and for wear protection N2 - The research and developments on niobium carbide-based hard materials generated grades, which meet the application line for tungsten carbide and showed already a very high potential for many technical applications, especially for wear protection and machining. T2 - The 6th World Tribology Congress - WTC 2017 CY - Beijing, China DA - 17.09.2017 KW - Niobium carbide KW - NbC KW - Cutting tools PY - 2017 AN - OPUS4-42473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias ED - Huang, S. ED - Vleugels, J. ED - Mohrbacher, H. T1 - Cutting tools and wear protection through nickel bonded niobium carbide (NbC) as a subtitute for cobalt bonded tungsten carbide (WC) N2 - The research and developments on niobium carbide-based hard materials generated grades, which meet the application line for tungsten carbide and showed already a very high potential for many technical applications, especially for wear protection and machining. T2 - The 6th World Tribology Congress - WTC 2017 CY - Beijing, China DA - 17.09.2017 KW - Cutting tools KW - Niobium carbide KW - NbC PY - 2017 SP - 1 EP - 4 AN - OPUS4-42474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spaltmann, Dirk A1 - Woydt, Mathias T1 - Alternative approach to simulate an entire particle erosion experiment N2 - The cause and type of solid particle erosion varies across different industries and locations in plants, for instance the particles could be volcanic ash in aero-engines, fly ash in boilers, exfoliated scale in steam turbines or mineral matter in oil excavation. In all cases the durability of materials can be improved through better surface engineering and coatings, but the development of these is restricted also due to lack of generic models. In this respect, the simulation of a single impact with finite element methods using 100.000 knots would take about 15 minutes. In order to simulate an entire particle erosion experiment, up to one billion of such impacts would have to be considered. In order to simulate an entire particle erosion experiment, the current work presents an alternative approach capable of calculating about half a billion impacts on a substrate in less than six hours on a standard PC. The predictions of the simulation will be compared to a steel sample at 600°C eroded by aluminum oxide particles with a velocity around 210 m/s. T2 - The 6th World Tribology Congress CY - Beijing, China DA - 17.09.2017 KW - Particle erosion KW - Simulation KW - Wear PY - 2017 SP - 1 EP - 3 AN - OPUS4-42449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlmann, E. A1 - Hinzmann, D. A1 - Kropidlowski, K. A1 - Meier, P. A1 - Prasol, L. A1 - Woydt, Mathias T1 - Substitution of commercially coated tungsten carbide tools in dry cylindrical turning process by HiPIMS coated niobium carbide cutting inserts N2 - In this study the tool behavior of two NbC substrates, defined as NbC0.88-12Co and NbC1.0-12Ni4Mo4VC respectively, is compared to commercial, submicron grained WC-6Co tool material. KW - Turning KW - Tool KW - Coating KW - Physical vapor deposition (PVD) KW - Niobium carbide (NbC) PY - 2018 DO - https://doi.org/10.1016/j.surfcoat.2018.07.105 SN - 0257-8972 VL - 354 SP - 112 EP - 118 PB - Elsevier AN - OPUS4-45963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wägner, Yannick A1 - Binkowski, Sigrid A1 - Woydt, Mathias T1 - Charakterisierung von Hartstoffphasen in Gefüge N2 - Der Beitrag handelt von der Verbesserung der Verschleißbeständigkeit von Hartstoffphasen in Metal Matrix Composites (MMC), Hartgusslegierungen, Hadfield-Stählen oder Werkzeugstählen. T2 - 15. International Metallographie-Tagung CY - Leoben, Asutria DA - 19.09.2018 KW - Verschleißbeständigkeit KW - Hartstoffphasen KW - NbC PY - 2018 SN - 978-3-88355-416-7 VL - 52 SP - 133 EP - 138 PB - DGM - INVENTUM GmbH CY - Sankt Augustin AN - OPUS4-46056 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Igartua, A. A1 - Fdez-Pérez, X. A1 - Illarramendi, I. A1 - Luther, R. A1 - Rausch, J. A1 - Woydt, Mathias ED - Carmo, J. P. ED - Ribeiro, J. E. T1 - Biolubricants and triboreactive materials for automotive applications N2 - The text deals with passenger car motor oils (PCMO) with reduced metal-organic additives. KW - Biolubricants KW - Passenger car motor oils (PCMO) KW - Automotive KW - Tribology PY - 2012 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-464317 SN - 978-9-53510-698-2 DO - https://doi.org/10.5772/46852 SP - 119 EP - 146 PB - INTECH CY - Rijeka, Croatia AN - OPUS4-46431 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias T1 - VGP 2013 - Propelling marine lubricants N2 - This letter to the Editor directs attention to EN 16807-2016:12, Liquid Petroleum products - Bio lubricants - Criteria and requirements of bio lubricants and bio-based lubricants. KW - Bio lubricants KW - Liquid petroleum products KW - EN 16807-2016:12 PY - 2017 SN - 1545-858X VL - 73 IS - 7 SP - 7 PB - Society of Tribologists and Lubrication Engineers CY - Park Ridge, IL AN - OPUS4-41342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Spaltmann, Dirk T1 - Generation of defined tribofilms and their stability under slip-rolling in a 2Disk test machine N2 - Tribofilms formed by additives in lubricants represent a key mechanism for preventing wear, but are difficult to investigate due to the complexity of the composition of lubricants, their tiny thickness and amorphous nature.The tribological profile of such tribofilms were investigated. T2 - Symposium on Tribometry and Tribochemistry CY - Boston, MA, USA DA - 28.06.2017 KW - Slip-rolling KW - 2Disk KW - Friction KW - Wear KW - Tribofilms KW - Additive PY - 2017 AN - OPUS4-40797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Status of nickel bonded niobium carbide (NbC) as a substitute for cobalt-bonded tungsten carbide (WC) as cutting tools and for wear protection N2 - Niobium is today largely available. The initial NbC grade was substoichiometric, SPS sintered and cobalt bonded. The NiMo-bonded stoichiometric NbC1.0 grades enable the substitution of cobalt by nickel, SPS by conventional sintering and NbC0.88 by NbC1.0 in view of functional properties. Nickel bonded NbC grades have improved toughnesses versus cobalt NbC grades, but lose hardness. NiMo and NiMo2C bonded NbC1.0 grades compensated the loss in hardness while keeping the toughness. T2 - POWDERMET 2017 CY - Las Vegas, USA DA - 13.06.2017 KW - Cutting tools KW - Wear KW - Niobium carbide (NbC) PY - 2017 AN - OPUS4-40653 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Status of niobium carbide (NbC) as a substitute for tungsten carbide (WC) as cutting tools and for wear protection N2 - This presentation displays the metallurgical progress on NbC-based hard-metals and are characterized by substiution of Co-binder by Ni, change from SPS to conventional sintering and by switching from lab to pilot scale. T2 - STLE - 72. Annual Meeting & Exhibition CY - Atlanta, GA, USA DA - 21.05.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Hardness PY - 2017 AN - OPUS4-40674 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Status of nickel bonded niobium carbide (NbC) as a substitute for cobalt-bonded tungsten carbide (WC) as cutting tools and for wear protection N2 - Niobium is today largely available. The initial NbC grade was substoichiometric, SPS sintered and cobalt bonded (NbC0.88-12Co SPS). The NiMo-bonded stoichiometric NbC1.0 grades enable the subtituion of cobalt by nickel, SPS by conventional sintering and NbC0.88 by NbC1.0 in view of functional properties. Nickel bonded NbC grades have improved toughnesses versus cobalt bonded NbC grades, but lose hardness. NiMo and NiMo2C bonded NbC1.0 grades compensated the loss in hardness while keeping the toughness. T2 - POWDERMET 2017 CY - Las Vegas, USA DA - 13.06.2017 KW - Niobium carbide (NbC) KW - Cutting tools KW - Wear PY - 2017 SP - 721 EP - 734 PB - Metal Powder Industries Federation AN - OPUS4-40671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Bismuth dodecylbenzene sulfonate (Bi-ddbsa), bismuth dimethyldithiocarbamate (Bi-DTC) and dibenzyldisulphide (DBDS) tribofilms under slip-rolling vs. Mo-dttc N2 - The frictional response of molybdenum bis(C11-14 branched and linear alkyl) carbamodithioate oxo thioxo complex (Mo-dttc) versus bismuth dimethyldithiocarbamate (Bi-dtc) and bismuth dodecylbenzene Sulfonate (Bi-ddbsa) slip-rolling under mixed/boundary lubrication (T=120°C, n=10 millions of cycles, P0max=2.25 GPa) in PAO-based formulation against three different steel alloys were compared. T2 - STLE - 72. Annual Meeting & Exhibition CY - Atlanta, GA, USA DA - 21.05.2017 KW - Bismuth KW - Molybdenum dithiocarbamate KW - Friction KW - Steel PY - 2017 AN - OPUS4-40673 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Application oriented tribological test concepts N2 - The tribotesting categories have different scopes with associated "pros" and "cons" and results obtained in one category cannot be simply transferred to another. The impact of design overrules in general the influence of the metallurgy or materials choice. The "cheap" test methods aim pre-screening and assessment of basic properties as well as use mainly for the test specimens SAE E52100 (100Cr6, SUJ2) ball bearing steel and carbon steels. The main test geometries are ball-on-flat/(disk) or block-on-ring apart 4-ball geometry. The tribological test conditions. This enabled "dynamic" testing, where during a test the "critical" solicitations were repeatedly and freely passed. T2 - New Horizons in Tribotesting CY - München, Germany DA - 05.07.2017 KW - Tribological test KW - Ball bearing steel KW - Carbon steel PY - 2017 AN - OPUS4-41151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - 2Disk test rig for determining the tribological profile under slip-rolling N2 - The slip-rolling 2Disk tribometer from Optimol Instruments represented the technological evolution in tribotesting of the well-known AMSLER-type tribometer marketed in 1922. Both use two discs with the same outer diameter rolling against each other on their circumference. In the AMSLER, the lower disc dips into an oil reservoir, whereas in the 2Disk the oil is injected into the contact. The oil supply of the 2Disk is controlled by pump and temperature by a heat exchanger. T2 - New Horizons in Tribotesting CY - München, Germany DA - 05.07.2017 KW - 2Disk test KW - Tribometer KW - Tribotest PY - 2017 AN - OPUS4-41152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Ehrke, Roman A1 - Woydt, Mathias T1 - Wear of alpha-alumina in hot steam up to 300°C N2 - Selfmated alpha-alumina sliding couples have been investigated under oscillating sliding at 100 N load in different humidity conditions in air as in hot steam up to temperatures of 300°C and ambient pressures up to 4 bar. T2 - 7th International Conference on Mechanics and Materials in Design CY - Albufeira, Portugal DA - 11.06.2017 KW - Apha-alumina KW - Wear KW - Steam KW - Temperature KW - Abrasion PY - 2017 SN - 978-989-98832-6-0 SP - 265 EP - 266 PB - LusoImpress S.A. CY - Avintes, Portugal AN - OPUS4-41128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kropidlowski, K. A1 - Uhlmann, E. A1 - Woydt, Mathias T1 - Außen-Längs-Runddrehen mit Niobcarbid-Schneidstoff N2 - Als Alternative zu Wolframcarbid wird zurzeit Niobcarbid beim Drehen unter extremen Bedingungen untersucht, vorerst ohne Beschichtungen und ohne Kühlschmierstoffe. Aufgrund seiner besonderen Eigenschaften zeigt Niobcarbid als Schneidstoff ein großes Potenzial. KW - Niobcarbid KW - Drehen KW - Schneidstoff PY - 2017 IS - 7-8 SP - 58 EP - 61 PB - Carl Hanser CY - München AN - OPUS4-41129 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Spaltmann, Dirk T1 - Generation of defined tribofilms and their stability under slip-rolling in a 2Disk test machine N2 - Tribofilms formed from additives in lubricants represent a key mechanism for preventing wear, but are difficult to investigate due to the complexity of the composition of lubricants, their tiny thickness and amorphous nature. T2 - Symposium on Tribometry and Tribochemistry CY - Boston, MA, USA DA - 28.06.2017 KW - 2Disk test machine KW - Additives KW - Tribofilms PY - 2017 AN - OPUS4-41130 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - NbC grain growth control and mechanical properties of Ni bonded NbC cermets prepared by vacuum liquid phase sintering N2 - The current study reports on the effect of the sintering temperature and secondary carbide (VC, Mo2C and TiC) additions on the microstructure and concommitant Vickers hardness (HV30) and fracture toughness of Ni-bonded NbC cermets. All cermets were prepared by pressureless sintering in vacuum. Detailed microstructural investigation was performed by electron probe microanalysis (EPMA) and X-ray diffraction (XRD) analysis. Sintering results indicated that both the sintering temperature and secondary carbide additions had a significant effect on the properties of NbC-Ni cermets. Nickel pools and residual pores were observed in the cermets sintered at temperatures ≤ 1340 °C. Increasing of the sintering temperature up to 1420 or 1480 °C resulted in fully densified NbC-Ni based cermets composed of homogeneous contrast cubic NbC grains for the single carbide (VC or Mo2C) modyfied system, whereas core-rim structured NbC grains were observed with the additon of TiC + VC or TiC+Mo2C. The secondary carbide doped cermets with 5–10 vol.% VC/Mo2C and 10 vol.% TiC showed a significantly improved hardness and fracture toughness, as compared to the plain NbC-Ni cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Hard materials KW - Sintering KW - Microstructure KW - Core-rim KW - Mechanical properties PY - 2017 SP - HM 13/1 EP - HM 13/11 AN - OPUS4-40592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Mohrbacher, H. A1 - Vleugels, J. A1 - Huang, S. T1 - Potentials of niobium carbide (NbC) as cutting tools and for wear protection N2 - The tool lifes of uncoated NiMo and NiMo2C-bonded stoichiometric NbC1.0 grades under dry turning 42CrMo4 and C45E were between +30 % to + 100 % higher and up compared to WC-6Co (fine grain). Niobium is today largely available. NbC grades displayed lower dry sliding friction over WC grades. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide KW - Friction KW - Wear KW - NbC KW - Hard metal KW - Machining KW - Nickel PY - 2017 SP - HM 102/1 EP - HM 102/16 AN - OPUS4-40593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Kropidlowski, K. A1 - Woydt, Mathias A1 - Sammler, F. T1 - Cutting tools made from niobium carbide N2 - Niobium carbide (NbC) presented recently excellent Performance as cutting material for processing iron-based materials. Ist high hot hardness and low solubility in alloys make it a promising tool material for the future. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Niobium carbide (NbC) KW - Tungsten carbide (WC) KW - Cutting material KW - Tool wear KW - Turning trials KW - Wear mechanisms PY - 2017 SP - HM 105/1 EP - HM 105/11 AN - OPUS4-40594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Effect of carbon content on the microstructure and mechanical properties of NbC-Ni based cermets N2 - The aim of this work was to correlate the carbon content in NbC-Ni starting powders with the resulting microstructure, hardness and fracture toughness of Ni-bonded NbC cermets. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - Cermet KW - Liquid phase sintering KW - Microstructure KW - Hardness KW - Carbon PY - 2017 SP - HM 109/1 EP - HM 109/11 AN - OPUS4-40595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wäsche, Rolf A1 - Steinborn, Gabriele A1 - Woydt, Mathias T1 - Colloidal processing of metal bonded niobium carbide N2 - Manufacturing of Niobium carbide cermets with nickel binder and different additions of titanium carbide has been realized by colloidal processing in aqueous environment. T2 - 19. Plansee Seminar CY - Reutte, Austria DA - 29.05.2017 KW - NbC KW - TiC KW - Ni KW - Colloidal processing KW - Gas pressure sintering KW - Hardness PY - 2017 SP - HM 135/1 EP - HM 135/11 AN - OPUS4-40596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Dry turning with niobium carbide based tools N2 - Niobium carbide (NbC) has attracted recently some attention as a substitute for tungsten carbide in machining. In the present work it was shown that the metallurgical and mechanical aspects favoring long tool lifes of NbC. T2 - POWDERMET 2018 CY - San Antonio, TX, USA DA - 17.06.2018 KW - Niobium carbide KW - NbC KW - Cutting tool KW - Machining PY - 2018 SN - 978-1-943694-18-1 VL - 2 SP - 538 EP - 545 AN - OPUS4-45802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wäsche, Rolf A1 - Sato, K. A1 - Brandt, Guido A1 - Schmid, Thomas A1 - Sasaki, S. A1 - Woydt, Mathias T1 - Wear behaviour of MgO stabilized zirconia in hot steam environment up to 400°C N2 - Self-mated magnesia stabilized zirconia (Mg-PSZ) ceramic sliding couples have been investigated at 100 N load (P0max= 1324 MPa) in oscillating sliding conditions in different humidity conditions in air and in hot steam. Temperatures have been varied up to 400 °C and pressures up to 6 bars. The results show that the wear behavior of MgO-ZrO2 under high Hertzian contact pressures is strongly dependent on temperature and is similar for both dry oscillating and oscillating in hot steam. However, although the evolution in wear rates on temperature is similar and the wear rates of MgO-ZrO2 plunged above 300 °C in hot steam and air by nearly three orders of magnitude, SEM micrographs revealed in hot steam at 400 °C smooth wear tracks. In contrast, hot steam enhanced the tribochemistry of self-mated alumina couples and reduced wear rates. Hot steam decreased the coefficients of friction of MgO-ZrO2 with increasing temperature, but not the wear rates. KW - Hot steam KW - Zirconia KW - Friction KW - Wear KW - Tribofilm KW - Raman spectroscopy PY - 2019 DO - https://doi.org/10.1016/j.wear.2019.01.047 VL - 426-427 SP - 428 EP - 432 PB - Elsevier B.V. AN - OPUS4-47873 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marwitz, Christian A1 - Stegemann, B. A1 - Breitkreiz, Maxim A1 - Spaltmann, Dirk A1 - Kloß, Heinz A1 - Woydt, Mathias A1 - Sturm, Heinz T1 - Correlation of adhesion force and electrical conductivity in Magnéli-type vanadium oxides and highly oriented pyrolytic graphite N2 - A correlation of adhesion force and electrical conductivity is established for a vanadium oxide and highly oriented pyrolytic graphite (HOPG). Adhesion forces were determined by analysis of pull-off forces obtained from force–distance curves with atomic force microscopy in ultrahigh vacuum, on clean surfaces and with defined contact conditions. The investigated samples include (i) different stoichiometries of Magnéli-type vanadium oxides (V3O5, V4O7, V6O11, and V7O13), which undergo metal-insulator-transitions as a function of temperature, (ii) the (0001) basal plane and the (10–10) prism plane of highly oriented pyrolytic graphite (HOPG), which differ in their respective perpendicular-plane electrical conductivities by several orders of magnitude, and (iii) the (100) surfaces of pure metal single crystals, i.e., silver (Ag), copper (Cu), iron (Fe) and gold (Au). It is shown, that the vanadium oxides as well as the graphite exhibit significantly lower adhesion forces in their electrical conductive state than in their non-electrical conductive state. The values obtained for the electrical conductive states are quantitatively confirmed by the measurements on the single crystal metals. KW - Adhesion force KW - HOPG KW - Vanadium oxide KW - Magnéli phases KW - Single crystal metals KW - Atomic force microscopy PY - 2011 DO - https://doi.org/10.1016/j.susc.2011.04.014 SN - 0039-6028 VL - 605 IS - 13-14 SP - 1271 EP - 1274 PB - Elsevier CY - Amsterdam AN - OPUS4-23953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Genga, R. M. A1 - Rokebrand, P. A1 - Cornish, L. A. A1 - Nelwalani, N. A1 - Brandt, Guido A1 - Kelling, Norbert A1 - Woydt, Mathias A1 - Janse van Vuuren, A. A1 - Polese, C. T1 - High-temperature sliding wear, elastic modulus and transverse rupture strength of Ni bonded NbC and WC cermets N2 - The effects of rapid pulse electric current sintering (PECS), substitution of WC by NbC and Co by Ni, and carbide additives (TiC and Mo2C) on the microstructure, elastic modulus, B3B transverse rupture strength (TRS) and high temperature sliding wear on WC-Co, WC-Ni, NbC-Co and NbC-Ni cermets were studied. High temperature sliding wear tests were carried out using a ball-on-disk tribometer, with a 10 N force, at a sliding speed of 1.34 m/s for 0.8 km (10 min) and 2.4 km (30 min), using 100Cr6 (AISI 52100) steel balls at 400 °C and 0% humidity. Additions of TiC and Mo2C to NbC-12Ni improved the sliding wear resistance, with TiC having the greater effect, reducing the sample wear rate by over 30% from 15.1×10−6mm3/N·m to 9.4×10−6mm3/N·m after sliding distance of 2.4 km. Generally, the LPS samples had lower wear volumes than the corresponding SPS samples, due to higher K1c and TRS. KW - Pulse electric current sintering KW - Niobium carbide KW - Nickel KW - Molybdenum carbide KW - Titanium carbide PY - 2020 DO - https://doi.org/10.1016/j.ijrmhm.2019.105143 SN - 0263-4368 VL - 87 SP - 105143 PB - Elsevier Ltd. AN - OPUS4-51473 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pimentel, A. S. O. A1 - Guesser, W. L. A1 - Portella, Pedro Dolabella A1 - Woydt, Mathias A1 - Burbank, J. T1 - Slip-rolling behavior of ductile and austempered ductile iron containing niobium or chromium N2 - The use of high niobium alloyed cast iron alloys is a relatively new approach in which the niobium addition intends to improve the properties of the material by the precipitation of hard niobium carbides during solidification. Steels can be replaced by ductile cast iron in some rolling applications, such as gears and cams, in order to reduce material costs. The aim of this work is to evaluate ductile iron alloyed with 1 weight percent (wt.%) niobium for the as cast specimens and with 1.8 wt.% and 2.4 wt.% niobium for the austempered specimens under lubricated slip-rolling tests using mixed/boundary conditions in an Amsler-type machine. Austempered ductile iron (ADI) alloyed with 1 wt.% chromium, or Carbidic ADI, was tested for comparison. For the as cast conditions, the niobium addition resulted in an increase of wear resistance owing to the low contact pressure of these tests. However, for the austempered specimens, the best performance was found for unalloyed ADI. The main factor acting in the initiation and propagation of cracks in ductile iron is the presence of the graphite nodules. The coarse carbides also contributed to the initiation of cracks and spalling of the material. KW - Ductile iron KW - Niobium alloying KW - Slip-rolling KW - Carbidic austempered ductile iron PY - 2019 DO - https://doi.org/10.1520/MPC20180188 SN - 2165-3992 SN - 2379-1365 VL - 8 IS - 1 SP - 402 EP - 418 PB - ASTM International CY - West Conshohocken, Pa. AN - OPUS4-51209 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Scholz, C. A1 - Burbank, J. A1 - Spaltmann, Dirk T1 - Slip-rolling resistant steel alloys up to P0max of 3,920 MPa N2 - Downsizing (power-to-weight ratio) and higher speeds lead to a rise in Hertzian contact pressures in combination with an increase in surface or oil temperatures. Under such conditions, commonly used bearing steels, such as 100Cr6, reach their limits, creating a demand for alternative slip-rolling resistant steel alloys. The present work therefore compares the slip-rolling performance of various steel types with Maraging- and PM-type steel alloys such as e.g. CSS-42L™, ASP2012, BIMAX42+, in the Hertzian contact pressure range up to P0max of 4 GPa. Through-hardened 100Cr6H (AISI 52100), case-hardened 20MnCr5 (AISI 5120H) and nitrogen alloyed Croni-dur30 (AMS 5898) still compete in terms of slip-rolling and wear resistance and load carrying capacity, whereas Maraging- and PM-type steel alloys offer superior strength and toughness properties. KW - Steel KW - Alloy KW - Slip-rolling KW - Friction KW - Wear rate KW - Contact pressure KW - 100Cr6 KW - BIMAX42 KW - CSS-42L KW - ASP20212 PY - 2012 DO - https://doi.org/10.1016/j.wear.2021.203707 VL - 474-475 SP - 203707 PB - Elsevier B.V. AN - OPUS4-52549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Dry turning with niobium carbide based tools N2 - The performance of straight and uncoated NbC grades under dry machining of 100Cr6 (SAE 52100), X90CrMoV18 (AISI 440B), 42CrMoV4 Q&T (AISI 4140), C45E (SAE 1045H) and grey cast iron GG35 in comparison to commercially available WC-xxCO and WC-xxCo-zMeC grades will be summarized. T2 - International Conference on Powder Metallurgy & Particulate Materials (POWDERMET 2018) CY - San Antonio, TX, USA DA - 17.06.2018 KW - Niobium carbide KW - Cutting tools KW - Hardness PY - 2018 AN - OPUS4-45389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias T1 - Sub-stoichiometric oxides for wear resistance N2 - In the present work it was shown that the tribologcal profiles of special model oxides under dry unidirectional sliding have shown, that sub-oxides have a contribution to the tribological behavior of carbides and cermets, when they are tribo-oxidatively formed, because their tribological profiles as monolithic materials are homologous in part or totally, or compete with hardmetals or cermets, depending from the operating conditions regarded. KW - Sub-oxide KW - Friction KW - Wear KW - Carbide KW - Hardmetal PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498154 DO - https://doi.org/10.1016/j.wear.2019.203104 SN - 0043-1648 N1 - Eine identische Version zu diesem Artikel wurde publiziert unter: Wear 438-439 (2019) 102735, https://doi.org/10.1016/j.wear.2019.01.066 - An identical version to this article was published under: Wear 438-439 (2019) 102735, https://doi.org/10.1016/j.wear.2019.01.066 VL - 440-441 SP - 203104-1 EP - 203104-7 PB - Elsevier CY - Amsterdam AN - OPUS4-49815 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Girard, L. A1 - Tung, S. A1 - Woydt, Mathias A1 - Bachelder, D. ED - Totten, G. E. ED - Shah, J. S. ED - Forester, D. R. T1 - Automotive engine lubricants N2 - In 2003, ASTM Manual 37, Fuels and Lubricants Handbook: Technology, Properties, Performance and Testing, featured a chapter discussing automotive lubricants, including engine oils, automatic transmission fluids, manual transmission fluids, gear lubricants, and greases. This chapter, by Schwartz, Tung, and McMillan, surveyed all of these classes of lubricants, up to its publication in 2003. More recently, the period between 2003 and 2010 has been addressed as part of a book copublished by ASTM and SAE International (coeditors Simon Tung and George Totten), where Fox surveyed the development of engine oil specifications that emerged during those years. This chapter surveys the evolution of engine oil design and testing since 2002 and concludes with insights into future directions offered by recent tribological research. Our objective is to provide a reader new to the field with an understanding of the following: - Engine oil composition and formulation - North American engine oil specification development, and an outline of emergent European specifications - How emergent specifications and legislative requirements are linked to the introduction of new engine hardware - How tribological innovation can contribute to future enhancements in engine efficiency In parallel, we will provide several tables comparing groups of contemporaneous specifications. KW - Engine oil design KW - Engine oil testing PY - 2019 UR - https://www.astm.org/mnl3720160034.html SN - 978-0-8031-7089-6 SN - 978-0-8031-7090-2 DO - https://doi.org/10.1520/mnl3720160034 SP - 753 EP - 863 PB - ASTM International CY - West Conshohocken, PA ET - 2 AN - OPUS4-53977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huang, S. G. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Woydt, Mathias T1 - Microstructure and mechanical properties of NbC matrix cermets using Ni containing metal binder N2 - The current study reports on the effect of the addition of Al metal and secondary refractory carbides on the microstructure and mechanical properties of Ni bonded NbC matrix cermets. KW - NbC KW - Niobium carbide KW - Hardness KW - Hard materials PY - 2016 DO - https://doi.org/10.1016/j.mprp.2016.05.009 VL - 71 IS - 5 SP - 349 EP - 355 PB - Elsevier Ltd. AN - OPUS4-44623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Machining with niobium carbide based tools N2 - The presentation deals about Niobium Carbide, its location, mine, products, uses, consumtion, and its tribological properties like micro-hardness, density and elastic-modulus. T2 - 59. Tribologie-Fachtagung 2018 CY - Göttingen, Germany DA - 24.09.2018 KW - Niobium carbide KW - NbC KW - Machining KW - Hardness PY - 2018 AN - OPUS4-46168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Machining with niobium carbide based tools N2 - The present work deals with Niobcarbid (NbC). Strategic reflections on tungsten carbide and more and more stringent toxicological restrictions for cobalt associated for both with spiraling stock market prices have attracted recently some attention for Niobium carbide as a substitute for tungsten carbide in machining. T2 - 59. Tribologie-Fachtagung CY - Goettingen, Germany DA - 24.09.2018 KW - Hard tungsten KW - Semi-finishing KW - Niobium carbide KW - Friction KW - Wear KW - NbC KW - Hard metal KW - Cobalt KW - Nickel KW - Fe3Al PY - 2018 SN - 978-3-9817451-3-9 SP - 48/1 EP - 48/11 AN - OPUS4-46170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Uhlmann, E. A1 - Hinzmann, D. A1 - Kropidlowski, K. A1 - Meier, P. A1 - Prasol, L. A1 - Woydt, Mathias T1 - Increased tool performance with niobium carbide based cutting materials in dry cylindrical turning N2 - In the present work it was shown that in contrast to WC tools NbC cutting tools show constant material removal VW at increased cutting speed vc combined with a higher process reliability. KW - Niobium carbide (NbC) KW - Tungsten carbide (WC) KW - Tool wear KW - Cylindrical turning PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-465968 DO - https://doi.org/10.1016/j.procir.2018.08.238 SN - 2212-8271 VL - 77 SP - 541 EP - 544 PB - Elsevier AN - OPUS4-46596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Habig, K.-H. A1 - Woydt, Mathias ED - Grote, K.-H. ED - Bender, B. ED - Göhlich, D. T1 - E5 Tribologie N2 - Das Nachschlagewerk für Studium und Beruf umfasst den gesamten Maschinenbau und seine Randgebiete. Das Kapitel Tribologie umfasst die Teilgebiete Reibung, Verschleiß und Schmierung. KW - Tribologie KW - Reibung KW - Verschleiß KW - Schmierung KW - Nachschlagewerk PY - 2018 SN - 978-3-662-54805-9 DO - https://doi.org/10.1007/978-3-662-54805-9_38 SP - E 90 EP - E 98 PB - Springer-Verlag gmbH Deutschland CY - Berlin, Heidelberg ET - 25 AN - OPUS4-46275 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Burbank, J.-Th. A1 - Spaltmann, Dirk T1 - Generation of defined tribofilms and their stability under slip-rolling in a 2disk test rig N2 - In the present work it was shown that the performance of tribofilms which were generated in 2Disk test rigs on widely used reference steels during slip-rolling in the mixed/boundary lubrication regime at 120°C is compared to those created on alternative steels. KW - slip-rolling KW - 2Disk KW - friction KW - wear KW - tribofilms KW - additive KW - test method PY - 2018 DO - https://doi.org/10.1520/MPC20170078 SN - 2379-1365 SN - 2165-3992 VL - 7 IS - 3 SP - 213 EP - 225 PB - ASTM International CY - West Conshohocken, Pa. AN - OPUS4-46304 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Tailoring the functional profile of niobium carbide (NbC) as cutting tool materials and for wear protection N2 - The present work deals with Niobcarbid (NbC). Strategic reflections on tungsten carbide and more and more stringent toxicological restrictions for cobalt associated for both with spiraling stock market prices have attracted recently some attention for Niobium carbide as a substitute for tungsten carbide in machining. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Niobium carbide KW - NbC KW - Machining KW - Hard turning KW - Cobalt KW - Nickel PY - 2018 AN - OPUS4-46198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Huang, S. A1 - Vleugels, J. A1 - Cannizza, E. A1 - Woydt, Mathias A1 - Liu, Z. A1 - Mohrbacher, H. T1 - Niobium carbide based cermets with secondary carbide and carbonitride addition N2 - In this study, the influence of Ni binder content and carbide/carbonitride additions on the microstructure and mechanical properties of NbC-Ni matrix cermets were investigated. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Cermet KW - Niobium carbide KW - Carbonitride KW - Sintering KW - Mechanical properties PY - 2018 SP - Part 5, 801 EP - 809 AN - OPUS4-46201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Uhlmann, E. A1 - Meier, P. A1 - Hinzmann, D. A1 - Kropidlowski, K. A1 - Prasol, L. A1 - Woydt, Mathias T1 - Dry turning with niobium carbide based tools N2 - In the present work it was shown that Niobium carbide (NbC) offers a competitive profile compared to tungsten carbide (WC) as cutting material regarding ist wear resistance preferably in metal cutting processes. T2 - WORLDPM 2018 CY - Beijing, China DA - 16.09.2018 KW - Turning KW - Semi-finishing KW - Niobium carbide KW - Tungsten carbide KW - Iron-based alloys KW - Aluminum PY - 2018 SP - Part 5, 775 EP - 784 AN - OPUS4-46203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Huang, S. A1 - Vleugels, J. A1 - Mohrbacher, H. A1 - Cannizza, E. T1 - Tailoring the functional profile of niobium carbide (NbC) as cutting tool materials and for wear protection N2 - In the present work it was shown that the properties of NbCx, like micro-hardness, hot-hardness, sliding wear resistance, elastic modulus and toughness can be tailored by the C/Nb ratio, the addition of secondary carbides and the type of binder. T2 - WORLDPM2018 CY - Beijing, China DA - 16.09.2018 KW - Niobium carbide KW - Properties KW - Wear KW - Machining PY - 2018 SP - Part 5, 785 EP - 795 AN - OPUS4-46204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias T1 - Scenarios and new technologies for complying with CO2 regulations - the contribution of lubricants - N2 - The present work deals with lubricants for mobility. T2 - Automechanika: Symposium "The Vital Lubricants" CY - Frankfurt/Main, Germany DA - 12.09.2018 KW - Lubricants KW - New technologies KW - Fuel economy KW - Mobility PY - 2018 AN - OPUS4-46215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vleugels, J. A1 - Cannizza, E. A1 - Woydt, Mathias A1 - Mohrbacher, H. T1 - Influence of sintering temperature and carbide additions on the microstructure and mechanical properties of NbC-Ni based cermets N2 - This study reports on the effect of the sintering temperature and VC, Mo2C and TiC as well as the combination of Mo+VC on the densification, NbC grain growth, microstructure evolution as well as mechanical properties of novel NbC-Ni based cermets. KW - Cermet KW - Niobium carbide KW - Nickel KW - Sintering KW - Mechanical properties PY - 2018 DO - https://doi.org/10.3969/j.issn.1003-7292.2018.02.001 SN - 1003-7292 VL - 35 IS - 2 SP - 69 EP - 78 PB - Yingzhi Hejin Bianjibu CY - Zhuzhou AN - OPUS4-46136 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Woydt, Mathias A1 - Huang, S. A1 - Cannizza, E. A1 - Vleugels, J. A1 - Mohrbacher, H. T1 - Niobium carbide for machining and wear protection - Evolution of properties N2 - The sales of niobium carbide (NbC) have grown in the last years, but NbC is still a hidden carbide and mainly used as grain growth inhibitor in hard metals. In the present work it was shown that the progress in the key properties, like HV30, KIC and strength, followed by machining and tribological results of the respective NbC grades. KW - Niobium carbide KW - Hard metals KW - Tribology PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-485507 DO - https://doi.org/10.1016/j.mprp.2019.02.002 SN - 0026-0657 VL - 74 IS - 2 SP - 82 EP - 89 PB - Elsevier Ltd. AN - OPUS4-48550 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -