TY - CONF A1 - Wosniok, Aleksander T1 - Optical fibers for sensing applications: Towards ionizing radiation monitoring N2 - Overview about existing fiber optic sensing techniques including ionizing radiation monitoring. T2 - WP7 Meeting EU project PREDIS CY - Online meeting DA - 05.02.2021 KW - Fiber optic sensor KW - Radiation-induced attenuation KW - Radiation sensing fibers KW - Distributed sensing PY - 2021 AN - OPUS4-52090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Fibre optic sensors for monitoring tasks in a radiation environment N2 - The topic of the presentation are distributed fiber optic measurement techniques that can be used for long-term monitoring of strain, temperature and radiation distribution in the radiation environment. The fiber optic sensors applied to the surface of waste packages provide detection and localization of cracks. T2 - Workshop WP7.3 EU project PREDIS CY - Online meeting DA - 15.11.2021 KW - Distributed sensing KW - Fiber optic sensor KW - Radiation sensing fibers KW - Brillouin distributed fiber sensor KW - Distributed acoustic sensing PY - 2021 AN - OPUS4-53751 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Smart geosynthetics for structural health monitoring applications N2 - Responding to a growing need for intelligent monitoring of critical geotechnical and civil infrastructures, new multifunctional geotextiles and geogrids with integrated optical fibers were developed and investigated within several research projects. Such smart two-dimensional geosynthetics intercorporating optical fibers as distributed sensors provide solutions both for soil reinforcement, erosion control, drainage or environmental protection and for cost-effective monitoring of critical mechanical deformations and temperature distribution in geotechnical and masonry structures at the same time. The integrated fiber optic sensors provide online information about the condition of the monitored structure and about the occurrence and localization of any damage or degradation for the purpose of preventing a total collapse. T2 - The Fiber Society's Spring 2017 Conference CY - Institut für Textiltechnik der RWTH Aachen, Germany DA - 17.05.2017 KW - Smart geosynthetics KW - Sensor-based geotextiles KW - Fiber optic sensor KW - POF sensor KW - Distributed sensing PY - 2017 SP - 43 AN - OPUS4-42560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Smart geosynthetics for structural health monitoring applications N2 - Responding to a growing need for intelligent monitoring of critical geotechnical and civil infrastructures, new multifunctional geotextiles and geogrids with integrated optical fibers were developed and investigated within several research projects. Such smart two-dimensional geosynthetics intercorporating optical fibers as distributed sensors provide solutions both for soil reinforcement, erosion control, drainage or environmental protection and for cost-effective monitoring of critical mechanical deformations and temperature distribution in geotechnical and masonry structures at the same time. The integrated fiber optic sensors provide online information about the condition of the monitored structure and about the occurrence and localization of any damage or degradation for the purpose of preventing a total collapse. The optical fibers have a serious advantage over other kinds of sensors due to their fibrous nature, so they can be ideally processed like standard textile yarns. The monitoring of extended geotechnical structures like dikes, dams, railways, embankments or slopes requires sensor technologies with measurement lengths of at least some hundred meters which can be realized by the use of silica fibers. However, the integration of silica fibers into geosynthetics during the manufacturing process experienced problems of sensor brittleness, low strain range not exceeding 2 % and bending-related attenuation increase optimized to the value of 1.5 dB/km. Unlike silica fibers, the integration of polymer optical fibers (POFs) into various geosynthetics was easily achieved free of bending losses enabling distributed high strain measurements up to 40 % using PMMA POFs. The first industrial product GEDISE based on a geogrid with integrated PMMA POFs is on the market. Due to the five times lower attenuation of low-loss perfluorinated graded-index POFs (PFGI-POFs), compared to PMMA POFs, the measurement range can be extended to 500 m. The low-loss PFGI-POFs offer the possibility of implementation of Brillouin optical fiber frequency domain analysis (BOFDA) which will significantly improve the measurement accuracy and spatial resolution in comparison with existing POF-based distributed measurement methods like POF OTDR. The development of a distributed Brillouin system based on PFGI-POFs is in progress. T2 - The Fiber Society’s Spring 2017 Conference CY - Institut für Textiltechnik der RWTH Aachen, Germany DA - 17.05.2017 KW - Smart geosynthetics KW - Sensor-based geotextiles KW - Fiber optic sensor KW - Distributed sensing PY - 2017 AN - OPUS4-40319 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Liehr, Sascha T1 - Health monitoring of geotechnical structures by distributed fiber optic sensors N2 - Health monitoring of ground movement via highly sensitive fiber optic sensors allows operators to detect early potential or ongoing failures in critical geotechnical structures. Particularly, the fiber optic sensors can be embedded in geosynthetics which are nowadays widely used in many geotechnical applications including earth dikes, railway embankments, landfill liners, quarries and mines. Thereby, such smart geosynthetics can be used for reinforcement, layer separation, filtration or drainage while the embedded fiber optic sensors provide information about the condition of the geotechnical structures in real time. The paper highlights the results achieved in this innovative field in the framework of several German and European projects. The presented measurement methods for long-term monitoring are based on Brillouin scattering in silica glass optical fibers (GOFs) and optical time domain reflectometry (OTDR) in polymer optical fibers (POFs). T2 - AMA Conferences 2017 Sensor 2017 CY - Nürnberg, Germany DA - 30.05.2017 KW - Fiber optic sensor KW - Distributed sensor KW - Smart geosynthetics KW - Brillouin sensor KW - OTDR PY - 2017 SN - 978-3-9816876-4-4 DO - https://doi.org/10.5162/sensor2017/B7.4 SP - 280 EP - 285 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-40514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander T1 - Health monitoring of geotechnical structures by distributed fiber optic sensors N2 - Health monitoring of ground movement via highly sensitive fiber optic sensors allows operators to detect early potential or ongoing failures in critical geotechnical structures. Particularly, the fiber optic sensors can be embedded in geosynthetics which are nowadays widely used in many geotechnical applications including earth dikes, railway embankments, landfill liners, quarries and mines. Thereby, such smart geosynthetics can be used for reinforcement, layer separation, filtration or drainage while the embedded fiber optic sensors provide information about the condition of the geotechnical structures in real time. The paper highlights the results achieved in this innovative field in the framework of several German and European projects. The presented measurement methods for long-term monitoring are based on Brillouin scattering in silica glass optical fibers (GOFs) and optical time domain reflectometry (OTDR) in polymer optical fibers (POFs). T2 - AMA Conferences 2017 Sensor 2017 CY - Nürnberg, Germany DA - 30.05.2017 KW - Fiber optic sensor KW - Distributed sensor KW - Smart geosynthetics KW - Brillouin sensor KW - OTDR PY - 2017 AN - OPUS4-40523 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Wosniok, Aleksander A1 - Nöther, Nils A1 - Krebber, Katerina A1 - Thiele, E. T1 - Distributed monitoring of mechanical deformation in river dikes T2 - EUROSENSORS XXII CY - Dresden, Germany DA - 2008-09-07 KW - Fiber optic sensor KW - Distributed Brillouin sensor KW - Dike monitoring PY - 2008 SN - 978-3-00-025217-4 SP - 1457 EP - 1460 AN - OPUS4-18322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krebber, Katerina A1 - Lenke, Philipp A1 - Liehr, Sascha A1 - Nöther, Nils A1 - Wendt, Mario A1 - Wosniok, Aleksander ED - Santos, J.L. ED - Culshaw, B. ED - López-Higuera, J.M. ED - MacPherson, W.N. T1 - Distributed fiber optic sensors embedded in technical textiles for structural health monitoring N2 - Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects. T2 - 4th European workshop on optical fibre sensors CY - Porto, Portugal DA - 2010-09-08 KW - Fiber optic sensor KW - Distributed sensor KW - Brillouin sensor KW - Polymer optical fibers (POF) KW - POF sensor KW - POF OTDR KW - Strain sensor KW - Technical textiles KW - Geotextiles PY - 2010 SN - 978-0-8194-8083-5 DO - https://doi.org/10.1117/12.868052 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7653 SP - 76530A-1 - 76530A-12 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-21948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Simultaneous measurement of temperature and strain distribution using Brillouin scattering in dispersion-shifted fibers N2 - We studied Brillouin gain spectrum characteristics in dispersion-shifted fibers having compound GeO2-doping compositions in the fiber core to realize simultaneous measurement of distributed strain and temperature. Due to various dopant concentration alongside the radius of tested nonzero dispersion-shifted fibers several multiple Brillouin scattering resonances were observed in the stimulated Brillouin spectra arose through backscattering on higher acoustic modes which propagated along the fiber axis. As a result of the varying acoustic velocities, the Brillouin resonance peaks featured different temperature coefficients which can be used to accomplish the simultaneous measurement of fiber strain and temperature. We presented our first measurement results for NZDS Fujikura and LEAF Corning fiber and discussed the superior sensory suitability of the former fiber types. T2 - IEEE Sensors 2011 conference CY - Limerick, Ireland DA - 28.10.2011 KW - Fiber optic sensor KW - Spatial distributed sensor KW - Brillouin gain spectrum (BGS) KW - Nonzero dispersion-shifted fiber (NZDSF) KW - Brillouin sensor KW - BOTDA KW - BOFDA PY - 2011 SN - 978-1-4244-9288-6 SP - 1476 EP - 1479 AN - OPUS4-24828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krebber, Katerina A1 - Lenke, Philipp A1 - Liehr, Sascha A1 - Nöther, N. A1 - Wendt, Mario A1 - Wosniok, Aleksander A1 - Daum, Werner T1 - Structural health monitoring by distributed fiber optic sensors embedded into technical textiles N2 - Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such 'smart' technical textiles are used for reinforcement of geotechnical and masonry structures. The embedded fiber optic sensors provide online information about the condition of the structure and about the occurrence and location of any damage or degradation.-------------------------------------------------------------------------------------------------------------------------------------------------------- Technische Textilien mit integrierten faseroptischen Sensoren eröffnen neue Möglichkeiten der Zustandsüberwachung (structural health monitoring) in Geotechnik und Ingenieurbau. Die verteilt messenden Sensoren basieren auf der Brillouin-Streuung in Glasfasern und auf der OTDR in polymeroptischen Fasern. Derartige 'intelligente' technische Textilien werden in erster Line zur Verstärkung von geotechnischen Bauwerken und von Gebäuden genutzt. Die integrierten Sensoren liefern eine zeitnahe Information über den bestimmungsgemäßen Zustand des Bauwerks sowie über die Entstehung und den Ort von lokalen Bauwerksschäden. KW - Fiber optic sensor KW - Distributed sensor KW - Brillouin scattering KW - Polymer optical fiber KW - Strain sensor KW - Smart geotextiles KW - Faseroptischer Sensor KW - Verteilter Sensor KW - Brillouin-Streuung KW - Polymeroptische Faser KW - Dehnungssensor KW - Intelligentes Geotextil PY - 2012 DO - https://doi.org/10.1524/teme.2012.0238 SN - 0340-837X SN - 0178-2312 SN - 0171-8096 VL - 79 IS - 7-8 SP - 337 EP - 347 PB - Oldenbourg CY - München AN - OPUS4-26387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -