TY - JOUR A1 - Geißler, Daniel A1 - Würth, Christian A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute T1 - Excitation wavelength dependence of the photoluminescence quantum yield and decay behavior of CdSe/CdS quantum dot/quantum rods with different aspect ratios JF - Physical Chemistry Chemical Physics (PCCP) N2 - The excitation wavelength (lexc) dependence of the photoluminescence (PL) quantum yield (FPL) and decay behavior (tPL) of a series of CdSe/CdS quantum dot/Quantum rods (QDQRs), consisting of the same spherical CdSe core and rod-shaped CdS shells, with aspect ratios ranging from 2 to 20 was characterized. lexc between 400–565 nm were chosen to cover the first excitonic absorption band of the CdSe core material, the onset of absorption of the CDs shell, and the region of predominant shell absorption. A strong lexc dependence of relative and absolutely measured FPL and tPL was found particularly for the longer QDQRs with higher aspect ratios. This is attributed to combined contributions from a length-dependent shell-to-core exciton localization efficiency, an increasing number of defect states within the shell for the longest QDQRs, and probably also the presence of absorbing, yet non-emitting shell material. Although the FPL values of the QDQRs decrease at shorter wavelength, the extremely high extinction coefficients introduced by the shell outweigh this effect, leading to significantly higher brightness values at wavelengths below the absorption onset of the CdS Shell compared with direct excitation of the CdSe cores. Moreover, our results present also an interesting example for the comparability of absolutely measured FPL using an integrating sphere setup and FPL values measured relative to common FPL standards, and underline the Need for a correction for particle scattering for QDQRs with high aspect ratios. KW - Quantum dot KW - Quantum rod KW - Quantum yield KW - Integrating sphere KW - Decay time PY - 2017 DO - https://doi.org/10.1039/C7CP02142A SN - 1463-9076 SN - 1463-9084 VL - 19 IS - 19 SP - 12509 EP - 12516 PB - Royal Society of Chemistry (RSC) AN - OPUS4-40814 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hirsch, A. A1 - Lohmann, S.-H. A1 - Strelow, C. A1 - Kipp, T. A1 - Würth, Christian A1 - Geißler, Daniel A1 - Komoski, A. A1 - Wolter, C. A1 - Weller, H. A1 - Resch-Genger, Ute A1 - Mews, A. T1 - Fluorescence Quantum Yield and Single-Particle Emission of CdSe JF - Physical Chemistry N2 - The fluorescence quantum yield (QY) of CdSe dot/CdS rod (DR) nanoparticle ensembles is dependent on the Shell growth and excitation wavelength. We analyze the origin of this dependency by comparing the optical properties of DR ensembles to the results obtained in single-particle experiments. On the Ensemble level, we find that the QY of DRs with shell lengths shorter than 40 nm exhibits no dependence on the excitation wavelength, whereas for DRs with shell lengths longer than 50 nm, the QY significantly decreases for excitation above the CdS band gap. Upon excitation in the CdSe core, the ensemble QY, the fluorescence wavelength, and the fluorescence blinking behavior of individual particles are only dependent on the radial CdS shell thickness and not on the CDs shell length. If the photogenerated excitons can reach the CdSe core region, the fluorescence properties will be dependent only on the surface passivation in close vicinity to the CdSe core. The change in QY upon excitation above the band gap of CdS for longer DRs cannot be explained by nonradiative particles because the ratio of emitting DRs is found to be independent of the DR length. We propose a model after which the decrease in QY for longer CdS shells is due to an increasing fraction of nonradiative exciton recombination within the elongated shell. This is supported by an effective-mass-approximation-based calculation, which suggests an optimum length of DRs of about 40 nm, to combine the benefit of high CdS absorption cross section with a high fluorescence QY. KW - Fluorescence KW - Quantum dot KW - Photophysics KW - Single particle spectroscopy KW - Mechanism KW - Theory KW - Ensemble measurements KW - Quantum yield KW - CdSe KW - CdS shell PY - 2019 DO - https://doi.org/10.1021/acs.jpcc.9b07957 VL - 123 IS - 39 SP - 24338 EP - 24346 PB - ACS Publications AN - OPUS4-49556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -