TY - JOUR A1 - Krishna Murthy, J. A1 - Gross, U. A1 - Rüdiger, St. A1 - Ünveren, Ercan A1 - Unger, Wolfgang A1 - Kemnitz, E. T1 - Synthesis and characterization of chromium(III)-doped magnesium fluoride catalysts N2 - Cr3+-doped MgF2 systems are synthesised by a novel non-aqueous soft chemistry route using different Cr precursors and varying Cr loading. These systems have been characterized by X-ray powder diffraction (XRD), BET surface area, TPD of ammonia, FT-IR pyridine adsorption analysis and X-ray photoelectron spectroscopy, and tested for their catalytic activity in dismutation of CCl2F2 and CF3–CHClF. Catalysts synthesised starting from CrO3 or (CH3CO2)7Cr3(OH)2 showed better catalytic activity than those prepared with CrCl3. FT-IR pyridine adsorption studies reveal that the catalytic activity is highly correlated with the Lewis acid strength. In TPD of NH3 catalysts prepared from CrO3 and (CH3CO2)7Cr3(OH)2, precursors showed a similar behaviour, different from that of catalysts prepared from CrCl3. KW - Lewis acid KW - Heterogeneous catalysis KW - Metal fluoride KW - Doped systems PY - 2005 UR - http://www.sciencedirect.com/science/journal/0926860X DO - https://doi.org/10.1016/j.apcata.2004.12.004 SN - 0947-8396 VL - 282 IS - 1-2 SP - 85 EP - 91 PB - Springer CY - Berlin AN - OPUS4-7442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ünveren, Ercan A1 - Kemnitz, E. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Surface Characterization of Chromia for Chlorine/Fluorine Exchange Reactions N2 - The dismutation of CCl2F2 was used to probe the effect of halogenation of chromia by Cl/F exchange reactions to find out the difference between the halogenated inactive and active catalysts. The heterogeneous reactions were performed in a continuous flow Ni reactor and also under simulated reaction conditions in a reactor where after the reaction X-ray photoelectron spectroscopy (XPS) and X-ray excited Auger electron spectroscopy (XAES) analyses are possible without air exposure of the catalyst, i.e., under so-called "in situ" conditions. The Cr(III) 2p XP spectra, which revealed multiplet splitting features and satellite emission, were used for chemical analysis by using a simple evaluation procedure which neglects this inherent complexity. Chemical analysis was also applied by using chemical state plots for Cr 3s in order to cross-check Cr 2p related results. Both ex and in situ XPS show that as soon as Cr2O3 is exposed to CCl2F2 at 390°C fluorination as well as chlorination takes place at the catalyst surface. When the XPS surface composition reaches approximately 4 at. % fluorination and 6 at. % chlorination, maximum catalytic activity was obtained. Application of longer reaction times did not change significantly the obtained surface composition of the activated chromia. The fluorination and chlorination of chromia was further investigated by various HF and HCl treatments. The activated chromia samples and the Cr2O3, Cr(OH)3, CrF2OH, CrF3·H2O, α-CrF3, β-CrF3, and CrCl3 reference samples with well-known chemical structures were also characterized by X-ray absorption near edge structure (XANES), time-of-flight secondary ion mass spectroscopy (TOF-SIMS), pyridine-FTIR, wet chemical (F and Cl) analysis, X-ray powder diffraction (XRD), and surface area (BET) analysis. The results suggest that the formation of chromium oxide chloride fluoride species, e.g., chromium oxide halides, at the surface is sufficient to provide catalytic activity. The presence of any CrF3 and/or CrCl3 phases on the activated chromia samples was not found. PY - 2005 DO - https://doi.org/10.1021/jp045902r SN - 1520-6106 SN - 1520-5207 SN - 1089-5647 VL - 109 IS - 5 SP - 1903 EP - 1913 PB - Soc. CY - Washington, DC AN - OPUS4-10531 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Murthy, J.K. A1 - Gross, U. A1 - Rüdiger, S. A1 - Ünveren, Ercan A1 - Unger, Wolfgang A1 - Kemnitz, E. T1 - Synthesis and characterization of chromium(III)-doped magnesium fluoride catalysts N2 - Cr3+-doped MgF2 systems are synthesised by a novel non-aqueous soft chemistry route using different Cr precursors and varying Cr loading. These systems have been characterized by X-ray powder diffraction (XRD), BET surface area, TPD of ammonia, FT-IR pyridine adsorption analysis and X-ray photoelectron spectroscopy, and tested for their catalytic activity in dismutation of CCl2F2 and CF3–CHClF. Catalysts synthesised starting from CrO3 or (CH3CO2)7Cr3(OH)2 showed better catalytic activity than those prepared with CrCl3. FT-IR pyridine adsorption studies reveal that the catalytic activity is highly correlated with the Lewis acid strength. In TPD of NH3 catalysts prepared from CrO3 and (CH3CO2)7Cr3(OH)2, precursors showed a similar behaviour, different from that of catalysts prepared from CrCl3. KW - Lewis acid KW - Heterogeneous catalysis KW - Metal fluoride KW - Doped systems PY - 2005 SN - 0926-860X SN - 1873-3875 VL - 282 IS - 1-2 SP - 85 EP - 91 PB - Elsevier CY - Amsterdam AN - OPUS4-11953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oran, Umut A1 - Ünveren, Ercan A1 - Wirth, Thomas A1 - Unger, Wolfgang T1 - Poly-dimethyl-siloxane (PDMS) contamination of polystyrene (PS) oligomers samples: a comparison of time-of-flight static secondary ion mass spectrometry (TOF-SSIMS) and X-ray photoelectron spectroscopy (XPS) results N2 - Pure and PDMS contaminated PS oligomers films were investigated both by time-of-flight static secondary ion mass spectrometry (TOF-SSIMS) and X-ray photoelectron spectroscopy (XPS). The secondary ion spectra from the PDMS contaminated PS oligomers were almost completely related to PDMS. XPS revealed a PDMS contamination characterized by a silicon surface concentration of 6 at.%. Obviously siloxane contaminants existing on the surface of a silicon wafer may diffuse towards the PS oligomers outermost surface resulting in a rather high PDMS surface concentration of about 85%. Due to the known differences in the information depth and sensitivity of SSIMS and XPS very different detection limits are to be considered. In elimination of siloxane contaminants by ultrasonication in hexane was found to be an effective way. Another common organic cleaning procedure, which is ultrasonication in trichloroethylene (TCE), subsequently in isopropanol and finally in acetone was found to be ineffective for cleaning of PDMS contaminated silicon wafers. KW - PDMS KW - TOF-SIMS KW - Polystyrene KW - Segregation PY - 2004 DO - https://doi.org/10.1016/j.apsusc.2003.12.008 SN - 0169-4332 SN - 1873-5584 VL - 227 SP - 318 EP - 324 PB - North-Holland CY - Amsterdam AN - OPUS4-3479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ünveren, Ercan A1 - Kemnitz, E. A1 - Hutton, S. A1 - Lippitz, Andreas A1 - Unger, Wolfgang T1 - Analysis of highly resolved x-ray photoelectron Cr 2p spectra obtained with a Cr2O3 powder sample prepared with adhesive tape KW - High-resolution XPS KW - Cr2O3 powder KW - Multiplet splitting PY - 2004 SN - 0142-2421 SN - 1096-9918 VL - 36 SP - 92 EP - 95 PB - Wiley CY - Chichester AN - OPUS4-3427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ünveren, Ercan A1 - Kemnitz, E. A1 - Oran, Umut A1 - Unger, Wolfgang T1 - Static TOF-SIMS Surface Analysis of a CCl2F2 Activated Chromia Catalyst Used for a Cl/F Exchange Reaction N2 - Static TOF-SIMS results strongly underpin earlier conclusions from ESCA, XANES, and tracer studies that the accumulation of fluorine and chlorine at the surface of chromia by a heterogeneous reaction with a chlorofluorocarbon compound results in the formation of mixed chromium oxide halide species and not in the nucleation of CrCl3 and/or CrF3 phases. KW - Oberflächenanalytik KW - Katalyse PY - 2004 DO - https://doi.org/10.1021/jp046773h SN - 1520-6106 SN - 1520-5207 SN - 1089-5647 VL - 108 SP - 15454 EP - 15456 PB - Soc. CY - Washington, DC AN - OPUS4-4718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -