TY - JOUR A1 - Silverstein, R. A1 - Sobol, Oded A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - Hydrogen behavior in SAF 2205 duplex stainless steel N2 - This paper describes austenitic-ferritic duplex stainless steels, SAF 2205, in the presence of hydrogen. The duplex stainless steels (DSS) properties include excellent resistance to stress corrosion cracking, high strength and good weldability. Those steels are preferably used in industries combining hydrogen and loads. Hydrogen location in addition to hydrogen binding energy with the steel's defects are of great importance for the analysis of hydrogen embrittlement model in that steel. It is known from previously published works that the susceptibility to hydrogen embrittlement will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's state and position in the steel. In this work, we examine the local hydrogen concentration, trapping and distribution by two modern and advanced techniques: thermal desorption spectrometry (TDS) and we support it by time of flight-secondary ion mass spectrometer (ToF-SIMS). In this paper, we support and give for the first time new insights and better understanding to the hydrogen embrittlement mechanism in SAF 2205. The trapping energies levels were calculated using TDS and Lee and Lee's model. This model revealed reversible in addition to irreversible trapping sites. Also the trapping controlling mechanism was found to be a combination of detrapping controlled mechanism and diffusion controlled mechanism. The use of ToF-SIMS for local imaging the distribution of hydrogen species supports the discussion of the different hydrogen traps in this type of steel. The hydrogen embrittlemet phenomenon in SAF 2205 will be discussed in details in that paper. KW - Hydrogen trapping KW - Duplex stainless steel KW - Thermal desorption spectrometry (TDS) KW - ToF-SIMS PY - 2017 DO - https://doi.org/10.1016/j.jallcom.2016.11.184 SN - 0925-8388 SN - 1873-4669 VL - 695 SP - 2689 EP - 2695 PB - Elsevier B.V. AN - OPUS4-38856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khosravi, Z. A1 - Kotula, S. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Klages, C.-P. T1 - IR- and NEXAFS-spectroscopic characterization of plasma-nitrogenated polyolefin surfaces N2 - Modification of polyethylene and polypropylene surfaces by atmospheric-pressure plasmas using mixtures of nitrogen and hydrogen was studied using Fouriertransform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR) and by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) in order to shed some light on the chemical nature of nitrogen-containing functional Groups on the polymer surface. Using FTIR-ATR spectroscopy combined with hydrogendeuterium isotope exchange of active hydrogen atoms, it was shown that the direct treatment of PE foils by dielectric barrier discharges (DBDs) in N2/H2 mixtures and a subsequent exposure of the samples to the ambient air results in the formation of –NH2 moieties of primary amides on the polymer surface. Corresponding in situ experiments with streaming N2/H2 DBD post-discharges virtually free of H2O and O2, on the other hand, showing the absence of –NH2, proving that no primary amines or amides are formed by this treatment although substantial amounts of nitrogen are incorporated. Moreover, directly N2/H2-plasma-treated polymer surfaces, similar to afterglow-treated low-density polyethylene (LDPE), show amphiphilic character as to be seen by chemical derivatization with nucleophilic reagents 4-(trifluoromethyl) phenylhydrazine and 4-(trifluoromethyl)benzylamine, in addition to electrophilic aromatic aldehydes normally used to derivatize such surfaces. The presence of imines or other functional groups with CN moieties which may be invoked to explain the dual (amphiphilic) reactivity is proven by NEXAFS studies on ultrathin plasma-treated PE films, confirming significant amounts of nitrogen in CN bonds and carbon in CC bonds. KW - X-ray spectroscopy KW - IR spectroscopy KW - Plasma-nitrogenated polyolefin surfaces KW - Unsaturated CN bonds KW - NEXAFS PY - 2017 DO - https://doi.org/10.1002/ppap.201700066 SN - 1612-8869 SN - 1612-8850 VL - 15 IS - 1 SP - e1700066, 1 EP - 15 PB - WILEY-VCH Verlag GmbH & Co. KGaA, CY - Weinheim AN - OPUS4-43786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Bütefisch, S. A1 - Busch, I. T1 - Lateral resolution delivered by imaging surface-analytical instruments as SIMS, AES and XPS: Application of the BAM-L200 Certified Reference Material and related ISO Standards N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1 xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. KW - Standardization KW - AES KW - XPS KW - SIMS KW - Lateral resolution KW - Certified reference material PY - 2017 SN - 1341-1756 VL - 24 IS - 2 SP - 123 EP - 128 AN - OPUS4-43138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaur, I. A1 - Ellis, L.-J. A1 - Romer, I. A1 - Tantra, R. A1 - Carriere, M. A1 - Allard, S. A1 - Mayne-L'Hermite, M. A1 - Minelli, C. A1 - Unger, Wolfgang A1 - Potthoff, A. A1 - Rades, Steffi A1 - Valsami-Jones, E. T1 - Dispersion of nanomaterials in aqueous media: Towards protocol optimization N2 - The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time Points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the Quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology. KW - Dispersion of nanomaterials KW - Aqueous media KW - Protocol development PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435886 UR - https://www.jove.com/video/56074 DO - https://doi.org/10.3791/56074 SN - 1940-087X IS - 130 SP - e560741, 1 EP - e560741, 23 PB - MyJove Corp. CY - Cambridge, MA, USA AN - OPUS4-43588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaraj, S. A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Simultaneous surface and bulk sensitive XAS measurements of magnetic particle clusters N2 - Magnetic iron oxide nanoparticle clusters (mnpc) coated with organic stabilizers were investigated using scanning transmission x-ray microscopy (STXM). Simultaneous surface and bulk sensitive Fe L3 edge absorption spectra, obtained using a photomultiplier tube and a channeltron, were used to detect subtle changes in the oxidation state in the surface and bulk of Iron Oxide mnpc. The effectiveness of this mode of STXM operation is demonstrated for These nanoparticle clusters. T2 - X-Ray Microscopy Conference 2016 (XRM 2016) CY - Oxford, UK DA - 15.08.2016 KW - Scanning transmission x-ray microscopy (STXM) KW - Magnetic nanoparticles KW - Fe L3 edge absorption spectra PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435907 UR - http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012014/meta DO - https://doi.org/10.1088/1742-6596/849/1/012014 VL - 849 SP - 012014, 1 EP - 012014, 4 PB - IOP Publishing AN - OPUS4-43590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grötzsch, D. A1 - Streeck, C. A1 - Nietzold, Carolin A1 - Malzer, W. A1 - Mantouvalou, I. A1 - Nutsch, A. A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Beckhoff, B. A1 - Kanngießer, B. T1 - A sealable ultrathin window sample cell for the study of liquids by means of soft X-ray spectroscopy N2 - A new sample cell concept for the analysis of liquids or solid-liquid interfaces using soft X-ray spectroscopy is presented, which enables the complete sealing of the cell as well as the Transport into vacuum via, for example, a load-lock system. The cell uses pressure monitoring and active as well as passive pressure regulation systems, thereby facilitating the full control over the pressure during filling, sealing, evacuation, and measurement. The cell design and sample preparation as well as the crucial sealing procedure are explained in detail. As a first proof-of-principle experiment, successful nitrogen K-edge fluorescence yield near-edge X-ray absorption fine structure experiments of a biomolecular solution are presented. For this purpose, it is shown that the careful evaluation of all involved parameters, such as window type or photon flux, is desirable for optimizing the experimental result. KW - X-ray spectroscopy KW - Analysis of liquids KW - Wet cell KW - Concanavalin A KW - NEXAFS PY - 2017 DO - https://doi.org/10.1063/1.5006122 SN - 0034-6748 SN - 1089-7623 VL - 88 IS - 12 SP - 123112-1 EP - 123112-7 PB - American Institute of Physics AN - OPUS4-43611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Merk, V. A1 - Müller, Anja A1 - Unger, Wolfgang A1 - Kneipp, Janina T1 - Role of metal cations in plasmon-catalyzed oxidation: A case study of p-aminothiophenol dimerization N2 - The mechanism of the plasmon-catalyzed reaction of p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (DMAB) on the surface of metal nanoparticles has been discussed using data from surface-enhanced Raman scattering of DMAB. Oxides and hydroxides formed in a plasmon-catalyzed process were proposed to play a central role in the reaction. Here, we report DMAB formation on gold nanoparticles occurring in the presence of the metal cations Ag+, Au3+, Pt4+, and Hg2+. The experiments were carried out under conditions where formation of gold oxide or hydroxide from the nanoparticles can be excluded and at high pH where the formation of the corresponding oxidic species from the metal ions is favored. On the basis of our results, we conclude that, under these conditions, the selective oxidation of PATP to DMAB takes place via formation of a metal oxide from the ionic species in a plasmon-catalyzed process. By evidencing the necessity of the presence of the metal cations, the reported results underpin the importance of metal oxides in the reaction. KW - Metal ions KW - Plasmonic catalysis KW - p-aminothiophenol KW - 4,4'-dimercaptoazobenzene KW - Surface-enhanced Raman scattering PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acscatal.7b02700 DO - https://doi.org/10.1021/acscatal.7b02700 SN - 2155-5435 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. VL - 7 IS - 11 SP - 7803 EP - 7809 PB - American Chemical Society CY - Washington AN - OPUS4-43001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Thissen, A. A1 - Kulak, N. A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - XPS surface chemical analysis of aqueous solutions with EnviroESCA N2 - Water and aqueous reagents are essential in any biological process or system. But apart from a few special low vapor-pressure cases, liquids have not been accessible to any technique requiring UHV conditions. EnviroESCA opens up this exciting field of applications. In this paper first results from water based samples are presented as a proof of concept to demonstrate the special capabilities of EnviroESCA analyzing liquid samples. The following solutions were investigated under near ambient pressure conditions: i.) water, ii.) brine, iii.) an oil in water dispersion, iv.) aqueous iron(II) sulfate heptahydrate, and v.) a suspension of nano silver particles in water. KW - Surface Analysis KW - Near Ambient Pressure XPS KW - Aqueous Solutions PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394603 UR - http://www.enviro.specs.de/cms/upload/bilder/EnviroESCA/Applications/Liquids/Application-Note_EnviroESCA_Aqueous_Solutions.pdf N1 - BAM Mitarbeiter Beitrag im Acknowledgement definiert. IS - #000394 SP - 1 PB - SPECS CY - Berlin AN - OPUS4-39460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, F. A1 - Donskyi, Ievgen A1 - Gholami, M. A1 - Ziem, B. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Rabe, J. A1 - Haag, R. A1 - Adeli, M. T1 - Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials N2 - A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene Sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. KW - Graphene oxide KW - Bifunctional 2D nanomaterials KW - XPS KW - NEXAFS KW - AFM PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394789 DO - https://doi.org/10.1002/ange.201612422 SN - 1433-7851 VL - 56 IS - 10 SP - 2675 EP - 2679 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-39478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Sobol, Oded A1 - Straub, Franka A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Böllinghaus, Thomas T1 - Tof-SIMS imaging of Deuterium in DSS steel microstructures and data fusion with SEM topography data: Towards a better understanding of hydrogen assisted cracking in steel N2 - The use of duplex stainless steels (DSS) in energy related applications is well known. Nowadays, DSS steels become more favorable than austenitic steels due to the outstanding mechanical properties, the good corrosion resistance and the lower nickel content. However, the use of the duplex grade in acidic environments such as seawater often leads to severe degradation of the structural integrity of the steel by hydrogen-induced/assisted cracking (HAC) phenomena, which can eventually result in premature failure. Hydrogen assisted degradation and cracking of steels are active fields of research even though this topic is intensively studied for more than a century. A bottleneck is the analytical validation of the theoretical models proposed ion the literature at the sub-micron scale. Industrial and the research communities see a need for an accurate analytical method by which it is possible to image the distribution of hydrogen in the microstructure of a steels or and other alloys. Among the very few available methods hydrogen imaging methods, Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) has the principal capability for mapping of hydrogen in a steel’s microstructure. The combination of ToF-SIMS with multivariate data analysis (MVA), electron microscopy (SEM) and electron-backscattered diffraction (EBSD) is a powerful approach for providing chemical and structural information. The use of data fusion techniques has been shown recently to enhance the better understanding of the hydrogen induced degradation processes in in a DSS steel. T2 - The Scientific International Symposium on SIMS and Related Techniques Based on Ion-Solid Interactions (SISS19) CY - Kyoto, Japan DA - 11.5.17 KW - Hydrogen KW - DSS steel KW - ToF SIMS KW - SEM KW - EDX KW - EBSD KW - Data fusion PY - 2017 AN - OPUS4-40276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang T1 - Metrology for spatially resolved chemical analysis at the micro and nanometre scales - Surface analysis working group (SAWG) - Report for 15th meeting (2016/17) N2 - CCQM has established a framework of comparisons to demonstrate the international comparability of chemical measurements. The key point is the establishment of comparable measurements, with traceability to internationally or nationally stated references. Originally initiated by Dr Martin P Seah, NPL, the Surface Analysis Working Group (SAWG) has been formally founded in 2003. The following terms of reference were presented to CCQM in April 2002. CCQM ratified the group as a full working group of CCQM in April 2003 with these terms of reference: - to develop pilot studies and carry out key comparisons of national measurement standards for surface and micro/nano-analysis; - to assist in identifying and establishing inter-laboratory work to improve the traceability of surface and micro/nano-analysis; - to establish and update a work plan to be adopted by CCQM; - to discuss and review the scope of the working group and to liase with other working groups related to nanotechnology. Following the 2016 meeting, the Key Comparison K-129 "Measurement of atomic fractions in Cu(In,Ga)Se2 Films" lead by KRISS and the Key Comparison K-136 on "BET specific surface area of nanoporous Al2O3" lead by UNIIM&BAM have been finished in 2016. The 15th meeting of SAWG will focus on - survey on CMC claim submitted with reference to K-129 and K-136. - the overall and SAWG specific aspects of the CCQM Strategy process, - a joint meeting with the Inorganic Working Group addressing number concentrations of nano particles, - discussion of future comparisons. T2 - CCQM Plenary Meeting at BIPM 2017 CY - Paris, France DA - 27.4.17 KW - Metrology KW - Comparisons KW - CCQM PY - 2017 AN - OPUS4-40277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Treu, Dieter A1 - Kalbe, Henryk A1 - Krumrey, M. A1 - Gross, Thomas A1 - Marti, K. A1 - Unger, Wolfgang T1 - Experimental determination of the effective attenuation length of palladium 3d 5/2 photoelectrons in a magnetron sputtered Pd nanolayer N2 - An electron effective attenuation length (EAL) of 1.68nm for Al Kα excited Pd 3d 5/2 photoelectrons with a kinetic energy of 1.152 keV has been determined experimentally using a sputtered Pd film deposited on an ultra flat fused quartz substrate. The film thickness was reduced by Ar ion sputtering several times in order to obtain different Pd film thicknesses which are used to determine experimental EAL values. These results are compared to data generated by using a Simulation of Electron Spectra for Surface Analysis (SESSA) simulation using an inelastic mean free path (IMFP) calculated with the Tanuma–Powell–Penn (TPP)-2M formula and with ‘elastic scattering on and off’. Contributions to the uncertainty budget related to the experimental approach are discussed in detail. Proposals on how to further improve the approach are suggested. KW - Pd 3d KW - Electron effective attenuation length KW - XPS PY - 2017 UR - http://onlinelibrary.wiley.com/doi/10.1002/sia.6141/abstract?campaign=woletoc DO - https://doi.org/10.1002/sia.6141 SN - 0142-2421 SN - 1096-9918 VL - 49 IS - 5 SP - 464 EP - 468 PB - John Wiley & Sons, Ltd AN - OPUS4-39682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sobol, Oded A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Eliezer, D. A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang T1 - Novel approach to image hydrogen distribution and related phase transformation in duplex stainless steels at the sub-micron scale N2 - The effect of electrochemical charging of hydrogen on the structure of a lean duplex stainless steel LDX 2101® (EN 1.4162, UNS S32101) was examined by both Time-of-Flight secondary ion mass spectrometry and electron back-scatter diffraction. The goal is to correlate hydrogen concentration and induced structural changes. Chemical and structural characterizations were done for the same region at the sample's surface with sub-micron spatial resolution. Regions of interest were varying in size between 50 × 50 μm and 100 × 100 μm. The results show a phase transformation of austenite to mainly a defect-rich BCC and scarcely a HCP phase. The phase transformation occurred in deuterium rich regions in the austenite. KW - Time-of-flight secondary ion mass spectrometry KW - ToF-SIMS KW - Electron backscatter diffraction KW - EBSD KW - Hydrogen-assisted cracking KW - Data fusion KW - Lean duplex stainless steel PY - 2017 DO - https://doi.org/10.1016/j.ijhydene.2017.08.016 SN - 0360-3199 VL - 42 IS - 39 SP - 25114 EP - 25120 AN - OPUS4-42022 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Lippitz, A. A1 - Illgen, R. A1 - Ehlert, C. A1 - Girard-Lauriault, P.-L. A1 - Donskyi, Ievgen A1 - Haag, R. A1 - Adeli, M. T1 - Low pressure plasma, UV photo and wet chemical modification of graphite, graphene and carbon nano tubes N2 - Graphene is a two-dimensional carbon network with unique properties, including high mechanical stiffness, strength, and elasticity, outstanding electrical and thermal conductivity, and many others. Despite these advantages, its low solubility, poor reactivity and the limited accessibility of a well-defined basal plane are major challenges for applications. An ideal method to overcome these problems is the covalent attachment of functional molecules to its surface which enables further reactive modifications for specific applications. There is a number of different technologies for surface functionalization of graphene and related CNT materials. However, to get control on the functionalization process and to optimize the performance of the modified surfaces analytical tools for surface chemical characterization are required. X-ray absorption (NEXAFS) and photoelectron spectroscopy (XPS) have been identified to be rather powerful here. Specifically NEXAFS spectroscopy underpinned by quantum chemical spectrum simulations is unique in a way to address changes of aromaticity and defect formation at the graphene surface during functionalization. For relevant surface modification technologies, we present examples on how NEXAFS and XPS can perform well. All presented modifications aim on the production of platforms for defined functional 2D nanomaterials, as for example multifunctional hybrid architectures. In detail, we investigated: • Graphene and carbon nanotube functionalized by a Vacuum-Ultraviolet (VUV) induced photochemical process in NH3 or O2 atmospheres in order to introduce amino or hydroxy functionalities, respectively. • Br bonding on r.f. cw low pressure plasma brominated graphite surfaces by using Br2 and bromoform as plasma gases. • A wet chemical method for covalent functionalization of graphene sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. Here a reaction between 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized graphene sheets. T2 - The 17th European Conference on Applications of Surface and Interface Analysis CY - Montpellier, France DA - 24.09.2017 KW - Graphene KW - XPS KW - NEXAFS PY - 2017 AN - OPUS4-42787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Fréjafon, Emeric A1 - Hazebrouck, Benoît T1 - Designing a sustainable European centre for risk management and safe innovation in nanomaterials & nanotechnologies (EC4SafeNano) N2 - A central challenge to ensure the sustainable production and use of nanotechnologies is to understand the risks for environment, health and safety associated with this technology and resulting materials and products, and to identify and implement practical strategies to minimize these risks. Knowledge about nanotechnology-enabled processes and products and related environment, health and safety issues is growing rapidly, achieved through numerous European or national R&D programs over the last decade, but effective use of this knowledge for risk management by market actors is lagging behind. The EC4SafeNano initiative (www.EC4SafeNano.eu) is an ongoing effort to build a European Centre for Risk Management and Safe Innovation in Nanomaterials and Nanotechnologies. EC4SafeNano aims to bridge the gap between scientific knowledge on hazard and risk, and ‘fit-for-purpose’ risk management tools and strategies supported by measurement and control methods. The consortium comprises 15 partners (INERIS (coordinator), EU-VRi, TNO, BAM, FIOH, VITO, SP, DEMOKRITOS, TECNALIA, Health and Safety Executive, NRCWE, Paris Lodron University Salzburg, Université Libre de Bruxelles, University of Birmingham and ENEA) from 11 European Member States with significant expertise on risk assessment and management, who already provide knowledge and technical services to public and private organizations, to industry and to public authorities and regulatory bodies. The overall objective of the EC4SafeNano project is to develop a distributed Centre of European Organisations offering services for Risk Management and Safe Innovation for Nanomaterials & Nanotechnologies. The Centre will be structured as a hub-based network of organizations managed by a core group of public-oriented bodies providing risk management and safe innovation support to all stakeholders. It will be operated with the support of Associated Partners so as to expand its capabilities, resources and services. It will interact with existing platforms and centres of excellence in nanosafety and foster the organization or development of national hubs mirroring the European hub. The Centre will seek financial support from stakeholders and service users to sustain the services in the longer term. The operational objectives of the project involve understanding and mapping the needs of the various stakeholders (private and public). It will identify the resources and capabilities and develop a range of harmonized services required to meet these needs. The construction of the centre will include putting in place and implementing processes to deliver and update services, to test and benchmark services, to evaluate the governance of the Centre, and developing a business plan to ensure self-sufficiency of the Centre beyond the project lifetime. A cornerstone of the project is to build a community for risk management and safe innovation for nanotechnology. Interested persons or organisations are invited to join this initiative as registered stakeholders or Associated Partners, to engage in focus networks and to help shape the future Centre. The poster will present the EC4SafeNano initiative and will detail the role of registered stakeholders and Associated Partners. T2 - UBA Scientific Stakeholder Meeting on Nanomaterials in the Environment CY - Dessau, Germany DA - 10.10.2017 KW - Risk management KW - Nanomaterials KW - Nanotechnologies PY - 2017 AN - OPUS4-42788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bresch, Harald A1 - Unger, Wolfgang A1 - Schulte, Petra A1 - Hodoroaba, Vasile-Dan T1 - Nanotechnologie Aktivitäten der BAM N2 - Die Präsentation gibt einen Überblick über die verschiedenen Aktivitäten der BAM im Bereich der Nanotechnologie mit den Schwerpunkten Nanopartikel und Nanosicherheit. Es wird sowohl die Transportsicherheit, als auch die Sicherheit von Batterien mit Nanopartikeln angesprochen. Verschiedene BAM-Projekte zum Thema Nano werden vorgestellt, beginnend mit relevanten REFOPlanprojekten über die Erstellung der OECD nanoTG110 bis hin zu EU-Projekten zur Standardisierung von Messungen an Nanomaterialien, hier insbesondere AEROMET, NanoDefine, NanoValid und EC4SafeNano. T2 - Nano-Behördenklausur der Bundesoberbehörden CY - Berlin, Germany DA - 02.11.2017 KW - Nano KW - Nanotechnologie KW - Nanopartikel KW - Nanosicherheit KW - Nanoanalytik PY - 2017 AN - OPUS4-42793 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobol, Oded A1 - Boellinghaus, Thomas A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - High resolution ToF-SIMS imaging of deuterium permeation and cracking in duplex stainless steels N2 - Fundamental understanding and elucidation of hydrogen assisted degradation and trapping mechanisms is dependent on sufficient imaging techniques for respective hydrogen interactions, in particular with multi-phase metallic microstructures. The present work shows the progress in elucidating the deuterium behavior in austenitic-ferritic duplex stainless steels under the consideration that deuterium behaves in many ways similarly to hydrogen. A novel combination of deuterium permeation and in-situ Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) imaging technique is compared with post charging ToF-SIMS imaging experiments. As a step beyond state-of-the-art, integration of chemo-metric and high resolution structural characterization techniques with computational multivariate data analysis (MVA) and data fusion is presented. T2 - 2016 International Hydrogen Conference CY - Grand Teton National Park, Jackson Lake Lodge, Wyoming, USA DA - 11.09.2016 KW - DSS KW - ToF-SIMS KW - Data-fusion KW - EBSD PY - 2017 SN - 978-0-7918-6138-7 SP - 407 EP - 415 PB - ASME Press CY - Two Park Ave. New-York, NY 10016, USA AN - OPUS4-42647 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kjaervik, Marit A1 - Müller, Anja A1 - Dietrich, P. A1 - Thissen, A. A1 - Bahr, S. A1 - Ritter, B. A1 - Kemnitz, E. A1 - Unger, Wolfgang T1 - Detection of suspended nanoparticles with near-ambient pressure x-ray photoelectron spectroscopy N2 - Two systems of suspended nanoparticles have been studied with near-ambient pressure x-ray photoelectron spectroscopy: silver nanoparticles in water and strontium fluoride—calcium fluoride core-shell nanoparticles in ethylene glycol. The corresponding dry samples were measured under ultra high vacuum for comparison. The results obtained under near-ambient pressure were overall comparable to those obtained under ultra high vacuum, although measuring silver nanoparticles in water requires a high pass energy and a long acquisition time. A shift towards higher binding energies was found for the silver nanoparticles in aqueous Suspension compared to the corresponding dry sample, which can be assigned to a change of surface potential at the water-nanoparticle interface. The shell-thickness of the core-shell nanoparticles was estimated based on simulated spectra from the National Institute of Standards and Technology database for simulation of electron spectra for surface analysis. With the instrumental set-up presented in this paper, nanoparticle suspensions in a suitable Container can be directly inserted into the analysis chamber and measured without prior sample preparation. KW - Nanoparticles KW - Suspensions KW - Core-shell nanoparticles KW - NAP-XPS PY - 2017 DO - https://doi.org/10.1088/1361-648X/aa8b9d SN - 1361-648X SN - 0953-8984 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. VL - 29 IS - 47 SP - 474002, 1 EP - 474002, 9 PB - IOP Publishing CY - UK AN - OPUS4-42951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaraj, S. A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Simultaneous surface and bulk sensitive XAS measurements of magnetic particle clusters N2 - Magnetic iron oxide nanoparticle clusters (mnpc) coated with organic stabilizers were investigated using scanning transmission x-ray microscopy (STXM). Simultaneous surface and bulk sensitive Fe L₃ edge absorption spectra, obtained using a photomultiplier tube and a channeltron, were used to detect subtle changes in the oxidation state in the surface and bulk of Iron Oxide mnpc. The effectiveness of this mode of STXM operation is demonstrated for these nanoparticle clusters. T2 - X-Ray Microscopy Conference 2016 (XRM 2016) CY - Oxford, UK DA - 15.08. 2016 KW - Fe L3 edge absorption spectra KW - Scanning transmission x- ray microscopy KW - Magnetic iron oxide nanoparticle clusters KW - XAS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-410576 UR - http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012014/pdf DO - https://doi.org/10.1088/1742-6596/849/1/012014 SN - 1742-6588 VL - 849 SP - 012014, 1 EP - 012014, 5 PB - IOP Publishing AN - OPUS4-41057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hentrich, D. A1 - Taabache, Soraya A1 - Brezesinski, G. A1 - Lange, Nele A1 - Unger, Wolfgang A1 - Kübel, C. A1 - Bertin, Annabelle A1 - Taubert, A. T1 - A dendritic amphiphile for efficient control of biomimetic calcium phosphate mineralization N2 - The phase behavior of a dendritic amphiphile containing a Newkome-type dendron as the hydrophilic moiety and a cholesterol unit as the hydrophobic segment is investigated at the air–liquid interface. The amphiphile forms stable monomolecular films at the air–liquid interface on different subphases. Furthermore, the mineralization of calcium Phosphate beneath the monolayer at different calcium and phosphate concentrations versus mineralization time shows that at low calcium and Phosphate concentrations needles form, whereas flakes and spheres dominate at higher concentrations. Energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron diffraction confirm the formation of calcium phosphate. High-resolution transmission electron microscopy and electron diffraction confirm the predominant formation of octacalcium phosphate and hydroxyapatite. The data also indicate that the final products form via a complex multistep reaction, including an association step, where nano-needles aggregate into larger flake-like objects. KW - Dendritic amphiphile KW - Calcium phosphate KW - Biomineralization PY - 2017 DO - https://doi.org/10.1002/mabi.201600524 SN - 1616-5187 SN - 1616-5195 VL - 17 IS - 8 SP - Article 1600524, 1 EP - 14 AN - OPUS4-41825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Passiu, Cristiana A1 - Rossi, Antonella A1 - Bernard, Laetitia A1 - Paul, Dennis A1 - Hammond, John A1 - Unger, Wolfgang A1 - Venkataraman, Nagaiyanallur V. A1 - Spencer, Nicholas D. T1 - Fabrication and Microscopic and Spectroscopic Characterization of Planar, Bimetallic, Micro- and Nanopatterned Surfaces N2 - Micropatterns and nanopatterns of gold embedded in silver and titanium embedded in gold have been prepared by combining either photolithography or electron-beam lithography with a glue-free template-stripping procedure. The obtained patterned surfaces have been topographically characterized using atomic force microscopy and scanning electron microscopy, showing a very low root-mean-square roughness (<0.5 nm), high coplanarity between the two metals (maximum height difference ≈ 2 nm), and topographical continuity at the bimetallic interface. Spectroscopic characterization using X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (ToF-SIMS), and Auger electron spectroscopy (AES) has shown a sharp chemical contrast between the two metals at the interface for titanium patterns embedded in gold, whereas diffusion of silver into gold was observed for gold patterns embedded in silver. Surface flatness combined with a high chemical contrast makes the obtained surfaces suitable for applications involving functionalization with molecules by orthogonal adsorption chemistries or for instrumental calibration. The latter possibility has been tested by determining the image sharpness and the analyzed area on circular patterns of different sizes for each of the spectroscopic techniques applied for characterization.This is the first study in which the analyzed area has been determined using XPS and AES on a flat surface, and the first example of a method for determining the analyzed area using ToF-SIMS. KW - XPS KW - AES KW - SIMS KW - Lateral resolution KW - Test pattern PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acs.langmuir.7b00942 DO - https://doi.org/10.1021/acs.langmuir.7b00942 SN - 0743-7463 VL - 33 IS - 23 SP - 5657 EP - 5665 PB - ACS AN - OPUS4-40929 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -