TY - JOUR A1 - Silverstein, R. A1 - Sobol, Oded A1 - Böllinghaus, Thomas A1 - Unger, Wolfgang A1 - Eliezer, D. T1 - Hydrogen behavior in SAF 2205 duplex stainless steel JF - Journal of Alloys and Compounds N2 - This paper describes austenitic-ferritic duplex stainless steels, SAF 2205, in the presence of hydrogen. The duplex stainless steels (DSS) properties include excellent resistance to stress corrosion cracking, high strength and good weldability. Those steels are preferably used in industries combining hydrogen and loads. Hydrogen location in addition to hydrogen binding energy with the steel's defects are of great importance for the analysis of hydrogen embrittlement model in that steel. It is known from previously published works that the susceptibility to hydrogen embrittlement will depend on the competition between reversible and irreversible traps; meaning a direct relation to the hydrogen's state and position in the steel. In this work, we examine the local hydrogen concentration, trapping and distribution by two modern and advanced techniques: thermal desorption spectrometry (TDS) and we support it by time of flight-secondary ion mass spectrometer (ToF-SIMS). In this paper, we support and give for the first time new insights and better understanding to the hydrogen embrittlement mechanism in SAF 2205. The trapping energies levels were calculated using TDS and Lee and Lee's model. This model revealed reversible in addition to irreversible trapping sites. Also the trapping controlling mechanism was found to be a combination of detrapping controlled mechanism and diffusion controlled mechanism. The use of ToF-SIMS for local imaging the distribution of hydrogen species supports the discussion of the different hydrogen traps in this type of steel. The hydrogen embrittlemet phenomenon in SAF 2205 will be discussed in details in that paper. KW - Hydrogen trapping KW - Duplex stainless steel KW - Thermal desorption spectrometry (TDS) KW - ToF-SIMS PY - 2017 DO - https://doi.org/10.1016/j.jallcom.2016.11.184 SN - 0925-8388 SN - 1873-4669 VL - 695 SP - 2689 EP - 2695 PB - Elsevier B.V. AN - OPUS4-38856 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khosravi, Z. A1 - Kotula, S. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Klages, C.-P. T1 - IR- and NEXAFS-spectroscopic characterization of plasma-nitrogenated polyolefin surfaces JF - Plasma Processes and Polymers N2 - Modification of polyethylene and polypropylene surfaces by atmospheric-pressure plasmas using mixtures of nitrogen and hydrogen was studied using Fouriertransform infrared spectroscopy in the attenuated total reflection mode (FTIR-ATR) and by near-edge x-ray absorption fine structure spectroscopy (NEXAFS) in order to shed some light on the chemical nature of nitrogen-containing functional Groups on the polymer surface. Using FTIR-ATR spectroscopy combined with hydrogendeuterium isotope exchange of active hydrogen atoms, it was shown that the direct treatment of PE foils by dielectric barrier discharges (DBDs) in N2/H2 mixtures and a subsequent exposure of the samples to the ambient air results in the formation of –NH2 moieties of primary amides on the polymer surface. Corresponding in situ experiments with streaming N2/H2 DBD post-discharges virtually free of H2O and O2, on the other hand, showing the absence of –NH2, proving that no primary amines or amides are formed by this treatment although substantial amounts of nitrogen are incorporated. Moreover, directly N2/H2-plasma-treated polymer surfaces, similar to afterglow-treated low-density polyethylene (LDPE), show amphiphilic character as to be seen by chemical derivatization with nucleophilic reagents 4-(trifluoromethyl) phenylhydrazine and 4-(trifluoromethyl)benzylamine, in addition to electrophilic aromatic aldehydes normally used to derivatize such surfaces. The presence of imines or other functional groups with CN moieties which may be invoked to explain the dual (amphiphilic) reactivity is proven by NEXAFS studies on ultrathin plasma-treated PE films, confirming significant amounts of nitrogen in CN bonds and carbon in CC bonds. KW - X-ray spectroscopy KW - IR spectroscopy KW - Plasma-nitrogenated polyolefin surfaces KW - Unsaturated CN bonds KW - NEXAFS PY - 2017 DO - https://doi.org/10.1002/ppap.201700066 SN - 1612-8869 SN - 1612-8850 VL - 15 IS - 1 SP - e1700066, 1 EP - 15 PB - WILEY-VCH Verlag GmbH & Co. KGaA, CY - Weinheim AN - OPUS4-43786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Unger, Wolfgang A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Bütefisch, S. A1 - Busch, I. T1 - Lateral resolution delivered by imaging surface-analytical instruments as SIMS, AES and XPS: Application of the BAM-L200 Certified Reference Material and related ISO Standards JF - Journal of Surface Analysis N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1-xAs and InxGa1 xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers a plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. KW - Standardization KW - AES KW - XPS KW - SIMS KW - Lateral resolution KW - Certified reference material PY - 2017 SN - 1341-1756 VL - 24 IS - 2 SP - 123 EP - 128 AN - OPUS4-43138 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kaur, I. A1 - Ellis, L.-J. A1 - Romer, I. A1 - Tantra, R. A1 - Carriere, M. A1 - Allard, S. A1 - Mayne-L'Hermite, M. A1 - Minelli, C. A1 - Unger, Wolfgang A1 - Potthoff, A. A1 - Rades, Steffi A1 - Valsami-Jones, E. T1 - Dispersion of nanomaterials in aqueous media: Towards protocol optimization JF - Journal of Visualized Experiments N2 - The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time Points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the Quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology. KW - Dispersion of nanomaterials KW - Aqueous media KW - Protocol development PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435886 UR - https://www.jove.com/video/56074 DO - https://doi.org/10.3791/56074 SN - 1940-087X IS - 130 SP - e560741, 1 EP - e560741, 23 PB - MyJove Corp. CY - Cambridge, MA, USA AN - OPUS4-43588 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Swaraj, S. A1 - Dietrich, Paul A1 - Unger, Wolfgang T1 - Simultaneous surface and bulk sensitive XAS measurements of magnetic particle clusters JF - IOP Conf. Series: Journal of Physics: Conf. Series N2 - Magnetic iron oxide nanoparticle clusters (mnpc) coated with organic stabilizers were investigated using scanning transmission x-ray microscopy (STXM). Simultaneous surface and bulk sensitive Fe L3 edge absorption spectra, obtained using a photomultiplier tube and a channeltron, were used to detect subtle changes in the oxidation state in the surface and bulk of Iron Oxide mnpc. The effectiveness of this mode of STXM operation is demonstrated for These nanoparticle clusters. T2 - X-Ray Microscopy Conference 2016 (XRM 2016) CY - Oxford, UK DA - 15.08.2016 KW - Scanning transmission x-ray microscopy (STXM) KW - Magnetic nanoparticles KW - Fe L3 edge absorption spectra PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-435907 UR - http://iopscience.iop.org/article/10.1088/1742-6596/849/1/012014/meta DO - https://doi.org/10.1088/1742-6596/849/1/012014 VL - 849 SP - 012014, 1 EP - 012014, 4 PB - IOP Publishing AN - OPUS4-43590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grötzsch, D. A1 - Streeck, C. A1 - Nietzold, Carolin A1 - Malzer, W. A1 - Mantouvalou, I. A1 - Nutsch, A. A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Beckhoff, B. A1 - Kanngießer, B. T1 - A sealable ultrathin window sample cell for the study of liquids by means of soft X-ray spectroscopy JF - Review of Scientific Instruments N2 - A new sample cell concept for the analysis of liquids or solid-liquid interfaces using soft X-ray spectroscopy is presented, which enables the complete sealing of the cell as well as the Transport into vacuum via, for example, a load-lock system. The cell uses pressure monitoring and active as well as passive pressure regulation systems, thereby facilitating the full control over the pressure during filling, sealing, evacuation, and measurement. The cell design and sample preparation as well as the crucial sealing procedure are explained in detail. As a first proof-of-principle experiment, successful nitrogen K-edge fluorescence yield near-edge X-ray absorption fine structure experiments of a biomolecular solution are presented. For this purpose, it is shown that the careful evaluation of all involved parameters, such as window type or photon flux, is desirable for optimizing the experimental result. KW - X-ray spectroscopy KW - Analysis of liquids KW - Wet cell KW - Concanavalin A KW - NEXAFS PY - 2017 DO - https://doi.org/10.1063/1.5006122 SN - 0034-6748 SN - 1089-7623 VL - 88 IS - 12 SP - 123112-1 EP - 123112-7 PB - American Institute of Physics AN - OPUS4-43611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Merk, V. A1 - Müller, Anja A1 - Unger, Wolfgang A1 - Kneipp, Janina T1 - Role of metal cations in plasmon-catalyzed oxidation: A case study of p-aminothiophenol dimerization JF - ACS Catalysis N2 - The mechanism of the plasmon-catalyzed reaction of p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (DMAB) on the surface of metal nanoparticles has been discussed using data from surface-enhanced Raman scattering of DMAB. Oxides and hydroxides formed in a plasmon-catalyzed process were proposed to play a central role in the reaction. Here, we report DMAB formation on gold nanoparticles occurring in the presence of the metal cations Ag+, Au3+, Pt4+, and Hg2+. The experiments were carried out under conditions where formation of gold oxide or hydroxide from the nanoparticles can be excluded and at high pH where the formation of the corresponding oxidic species from the metal ions is favored. On the basis of our results, we conclude that, under these conditions, the selective oxidation of PATP to DMAB takes place via formation of a metal oxide from the ionic species in a plasmon-catalyzed process. By evidencing the necessity of the presence of the metal cations, the reported results underpin the importance of metal oxides in the reaction. KW - Metal ions KW - Plasmonic catalysis KW - p-aminothiophenol KW - 4,4'-dimercaptoazobenzene KW - Surface-enhanced Raman scattering PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acscatal.7b02700 DO - https://doi.org/10.1021/acscatal.7b02700 SN - 2155-5435 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. VL - 7 IS - 11 SP - 7803 EP - 7809 PB - American Chemical Society CY - Washington AN - OPUS4-43001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Dietrich, P. A1 - Thissen, A. A1 - Kulak, N. A1 - Kjaervik, Marit A1 - Unger, Wolfgang T1 - XPS surface chemical analysis of aqueous solutions with EnviroESCA T2 - SPECS Application Notes N2 - Water and aqueous reagents are essential in any biological process or system. But apart from a few special low vapor-pressure cases, liquids have not been accessible to any technique requiring UHV conditions. EnviroESCA opens up this exciting field of applications. In this paper first results from water based samples are presented as a proof of concept to demonstrate the special capabilities of EnviroESCA analyzing liquid samples. The following solutions were investigated under near ambient pressure conditions: i.) water, ii.) brine, iii.) an oil in water dispersion, iv.) aqueous iron(II) sulfate heptahydrate, and v.) a suspension of nano silver particles in water. KW - Surface Analysis KW - Near Ambient Pressure XPS KW - Aqueous Solutions PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394603 UR - http://www.enviro.specs.de/cms/upload/bilder/EnviroESCA/Applications/Liquids/Application-Note_EnviroESCA_Aqueous_Solutions.pdf N1 - BAM Mitarbeiter Beitrag im Acknowledgement definiert. IS - #000394 SP - 1 PB - SPECS CY - Berlin AN - OPUS4-39460 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Abbas, F. A1 - Donskyi, Ievgen A1 - Gholami, M. A1 - Ziem, B. A1 - Lippitz, Andreas A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Rabe, J. A1 - Haag, R. A1 - Adeli, M. T1 - Controlled covalent functionalization of thermally reduced graphene oxide to generate defined bifunctional 2D nanomaterials JF - Angewandte Chemie International Edition N2 - A controlled, reproducible, gram-scale method is reported for the covalent functionalization of graphene Sheets by a one-pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6-trichloro-1,3,5-triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine-functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post-modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. KW - Graphene oxide KW - Bifunctional 2D nanomaterials KW - XPS KW - NEXAFS KW - AFM PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394789 DO - https://doi.org/10.1002/ange.201612422 SN - 1433-7851 VL - 56 IS - 10 SP - 2675 EP - 2679 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-39478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Wolfgang A1 - Sobol, Oded A1 - Straub, Franka A1 - Nolze, Gert A1 - Wirth, Thomas A1 - Böllinghaus, Thomas T1 - Tof-SIMS imaging of Deuterium in DSS steel microstructures and data fusion with SEM topography data: Towards a better understanding of hydrogen assisted cracking in steel N2 - The use of duplex stainless steels (DSS) in energy related applications is well known. Nowadays, DSS steels become more favorable than austenitic steels due to the outstanding mechanical properties, the good corrosion resistance and the lower nickel content. However, the use of the duplex grade in acidic environments such as seawater often leads to severe degradation of the structural integrity of the steel by hydrogen-induced/assisted cracking (HAC) phenomena, which can eventually result in premature failure. Hydrogen assisted degradation and cracking of steels are active fields of research even though this topic is intensively studied for more than a century. A bottleneck is the analytical validation of the theoretical models proposed ion the literature at the sub-micron scale. Industrial and the research communities see a need for an accurate analytical method by which it is possible to image the distribution of hydrogen in the microstructure of a steels or and other alloys. Among the very few available methods hydrogen imaging methods, Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) has the principal capability for mapping of hydrogen in a steel’s microstructure. The combination of ToF-SIMS with multivariate data analysis (MVA), electron microscopy (SEM) and electron-backscattered diffraction (EBSD) is a powerful approach for providing chemical and structural information. The use of data fusion techniques has been shown recently to enhance the better understanding of the hydrogen induced degradation processes in in a DSS steel. T2 - The Scientific International Symposium on SIMS and Related Techniques Based on Ion-Solid Interactions (SISS19) CY - Kyoto, Japan DA - 11.5.17 KW - Hydrogen KW - DSS steel KW - ToF SIMS KW - SEM KW - EDX KW - EBSD KW - Data fusion PY - 2017 AN - OPUS4-40276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -